Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Carbohydr Res ; 541: 109170, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38830279

RESUMO

The development of chitinase tailored for the bioconversion of chitin to chitin oligosaccharides has attracted significant attention due to its potential to alleviate environmental pollution associated with chemical conversion processes. In this present investigation, we purified extracellular chitinase derived from marine Bacillus haynesii to homogeneity and subsequently characterized it. The molecular weight of BhChi was approximately 35 kDa. BhChi displayed its peak catalytic activity at pH 6.0, with an optimal temperature of 37 °C. It exhibited stability across a pH range of 6.0-9.0. In addition, BhChi showed activation in the presence of Mn2+ with the improved activity of 105 U mL-1. Ca2+ and Fe2+ metal ions did not have any significant impact on enzyme activity. Under the optimized enzymatic conditions, there was a notable enhancement in catalytic activity on colloidal chitin with Km of 0.01 mg mL-1 and Vmax of 5.75 mmol min-1. Kcat and catalytic efficiency were measured at 1.91 s-1 and 191 mL mg-1 s-1, respectively. The product profiling of BhChi using thin layer chromatography and Mass spectrometric techniques hinted an exochitinase mode of action with chitobiose and N-Acetyl glucosamine as the products. This study represents the first report on an exochitinase from Bacillus haynesii. Furthermore, the chitinase showcased promising antifungal properties against key pathogens, Fusarium oxysporum and Penicillium chrysogenum, reinforcing its potential as a potent biocontrol agent.


Assuntos
Antifúngicos , Bacillus , Quitina , Quitinases , Quitinases/metabolismo , Quitinases/isolamento & purificação , Quitinases/química , Quitinases/farmacologia , Quitina/química , Quitina/metabolismo , Quitina/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/metabolismo , Bacillus/enzimologia , Fusarium/enzimologia , Fusarium/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Temperatura
2.
J Hazard Mater ; 474: 134814, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850932

RESUMO

Identification of components in pesticide mixtures has been a major challenge in spectral analysis. In this paper, we assembled monolayer Ag nanoparticles on Thin-layer chromatography (TLC) plates to prepare TLC-Ag substrates with mixture separation and surface-enhanced Raman scattering (SERS) detection. Spectral scans were performed along the longitudinal direction of the TLC-Ag substrate to generate SERS spectra of all target analytes on the TLC plate. Convolutional neural network classification and spectral angle similarity machine learning algorithms were used to identify pesticide information from the TLC-SERS spectra. It was shown that the proposed automated spectral analysis method successfully classified five categories, including four pesticides (thiram, triadimefon, benzimidazole, thiamethoxam) as well as a blank TLC-Ag data control. The location of each pesticide on the TLC plate was determined by the intersection of the information curves of the two algorithms with 100 % accuracy. Therefore, this method is expected to help regulators understand the residues of mixed pesticides in agricultural products and reduce the potential risk of agricultural products to human health and the environment.

3.
Plant Physiol Biochem ; 213: 108806, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38861822

RESUMO

The enzyme phospholipase A2 (PLA2) plays a crucial role in acyl remodeling of phospholipids via the Lands' cycle, and consequently alters fatty acid compositions in triacylglycerol (TAG). In this study, a full-length cDNA sequence coding Myrmecia incisa phospholipase A2 (MiPLA2) was cloned using the technique of rapid amplification of cDNA ends. Comparison of the 1082-bp cDNA with its corresponding cloned DNA sequence revealed that MiPLA2 contained 3 introns. Mature MiPLA2 (mMiPLA2) had a conserved Ca2+-binding loop and a catalytic site motif that has been recognized in plant secretory PLA2 (sPLA2) proteins. Correspondingly, phylogenetic analysis illustrated that MiPLA2 was clustered within GroupXIA of plant sPLA2 proteins. To ascertain the function of MiPLA2, the cDNA coding for mMiPLA2 was subcloned into the vector pET-32a to facilitate the production of recombinant mMiPLA2 in Escherichia coli. Recombinant mMiPLA2 was purified and used for the in vitro enzyme reaction. Thin-layer chromatography profiles of the catalytic products generated by recombinant mMiPLA2 indicated a specificity for cleaving sn-2 acyl chains from phospholipids, thereby functionally characterizing MiPLA2. Although recombinant mMiPLA2 displayed a strong preference for phosphatidylethanolamine, it preferentially hydrolyzes arachidonic acid (ArA) at the sn-2 position of phosphatidylcholine. Results from the fused expression of p1300-sp-EGFP-mMiPLA2 illustrated that MiPLA2 was localized in the intercellular space of onion epidermis. Furthermore, the positive correlation between MiPLA2 transcription and free ArA levels were established. Consequently, the role of mMiPLA2 in the biosynthesis of ArA-rich TAG was elucidated. This study helps to understand how M. incisa preferentially uses ArA to synthesize TAG.


Assuntos
Ácido Araquidônico , Fosfatidilcolinas , Fosfolipases A2 , Fosfolipases A2/metabolismo , Fosfolipases A2/genética , Ácido Araquidônico/metabolismo , Fosfatidilcolinas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade por Substrato , Sequência de Aminoácidos , Microalgas/genética , Microalgas/enzimologia , Microalgas/metabolismo , Clonagem Molecular
4.
BMC Chem ; 17(1): 163, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996961

RESUMO

Two simple and rapid chromatographic methods were developed and validated for the analysis of levamisole and triclabendazole simultaneously in pure and pharmaceutical products. The first method is thin-layer chromatography (TLC) with densitometry, and the second method is high-performance liquid chromatography with PDA detection (HPLC-PDA). A Hypersil BDS C18 column with dimensions of 4.6 × 150 mm and a particle size of 5 µm was used in the HPLC-PDA method. An isocratic condition was used to carry out the separation, and the mobile phase was made up of acetonitrile and a 0.03 M potassium dihydrogen phosphate buffer in double-distilled water. The ratio of the mobile phase preparation was 70:30 (v/v), and the flow rate was 1 mL/min. A wavelength of 215 nm was employed for analyte detection. Precoated silica gel 60 F254 aluminium plates were used for the TLC method's separation. Mobile phase was made of ethyl acetate, hexane, methanol, and ammonia (69:15:15:1) for the separation. The detection wavelength selected was 215 nm. According to the International Council for Harmonization (ICH) guidelines, the proposed methods were validated and it was found that the two chromatographic methods are accurate, precise, and linear for both compounds in the range of 3.75-37.5 and 6-60 mg/L for the HPLC method for levamisole and triclabendazole, respectively and in the range of 2-14 µg/spot for the TLC method. The developed methods greenness profile was assessed using AGREE and ComplexGAPI tools.

5.
Methods Enzymol ; 683: 191-224, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37087188

RESUMO

Diacylglycerols (DAGs) are anabolic precursors to membrane lipid and storage triacylglycerol biosynthesis, metabolic intermediates of lipid catabolism, and potent cellular signaling molecules. The different DAG molecular species that accumulate over development or in different tissues reflect the changing aspects of cellular lipid metabolism. Consequently, an accurate determination of DAG molecular species in biological samples is essential to understand various metabolic processes and their diagnostic relevance. However, quantification of DAG molecular species in various biological samples represents a challenging task because of their low abundance, hydrophobicity, and instability. This chapter describes the most common chromatographic (TLC and HPLC) and mass spectrometry (MS) methods used to analyze DAG molecular species. In addition, we directly compared the three methods using DAG obtained by phospholipase C hydrolysis of phosphatidylcholine purified from a Nicotiana benthamiana leaf extract. We conclude that each method identified similar major molecular species, however, the exact levels of those varied mainly due to sensitivity of the technique, differences in sample preparation, and processing. This chapter provides three different methods to analyze DAG molecular species, and the discussion of the benefits and challenges of each technique will aid in choosing the right method for your analysis.


Assuntos
Diglicerídeos , Espectrometria de Massas por Ionização por Electrospray , Diglicerídeos/análise , Diglicerídeos/química , Diglicerídeos/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Fosfatidilcolinas
6.
Food Chem ; 416: 135822, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36893638

RESUMO

Herein, we developed a method coupling TLC and enzyme inhibition principles to rapidly detect OPs (dichlorvos, paraoxon and parathion). After the removal of the organic solvent from the samples using TLC and paper-based chips, the enzyme was added to the detection system. The results showed that the current method effectively reduced the effects of solvents on enzyme behavior. Moreover, the pigments could be successfully retained on TLC with 40% ddH2O/ACN solution (v/v) as a developing solvent. Additionally, the detection limits (LODs) were 0.002 µg/mL for dichlorvos, 0.006 µg/mL for paraoxon, and 0.003 µg/mL for parathion. Finally, the method was applied to spiked cabbage, cucumber, and spinach and showed good average recoveries ranging between 70.22% and 119.79%. These results showed that this paper-based chip had high sensitivity, precleaning, and elimination of organic solvent properties. Furthermore, it provides a valuable idea for sample pretreatment and rapid determination of pesticide residues in food.


Assuntos
Paration , Resíduos de Praguicidas , Praguicidas , Praguicidas/análise , Diclorvós/análise , Cromatografia em Camada Fina , Paraoxon/análise , Resíduos de Praguicidas/análise , Paration/análise , Solventes
7.
Se Pu ; 41(1): 24-36, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36633074

RESUMO

Thin layer chromatography (TLC) is a very useful liquid chromatography approach. The simple device, convenient operation, versatility, high throughput capabilities, low cost, and simple sample pretreatments make it widely employed in various fields. In recent years, TLC-MS has become one of the most prominent trends for this technology as developments of modern analytical technology and comprehensive application of different approaches. With the development and upgrading of medicine, food, and scientific instrument industries, it is believed that TLC-MS technology should play a better role and obtain an opportunity for development. This study reviewed TLC-MS interface technologies (most of which are in recent 10 years) based on more than 150 studies and classified these TLC-MS technologies as three strategies. The first is indirect coupling using commercially available interface instruments. The second is TLC-in-site detection directly with special MS ion source devices like fast-atom-bombardment desorption ionization, matrix-assisted laser desorption ionization, surface-assisted laser desorption ionization, electrospray-assisted laser desorption ionization, laser-induced acoustic desorption/electrospray ionization, electrostatic-spray ionization, easy ambient sonic-spray ionization, desorption sonic spray ionization, ionization using "desorption/ionization resource", ionization using "molecular ionization-desorption analysis source", multiwavelength laser desorption ionization, ionization using flowing afterglow-atmospheric pressure glow discharge, ionization low-temperature plasma probe, desorption/ionization induced using neutral clusters, ionization using inductively coupled plasma and so on. These MS analyses are performed after TLC development, thus, the relative position of the chromatographic bands on TLCs is invariable, and this analysis can be regarded as static detection, though flexible travel stages or conveyor belts can be introduced to move TLC plates. The third strategy is to monitor TLC run using MS in real-time just as the monitor employed in HPLC, in which the chromatographic bands are still moving. This strategy is generally run on forced-flow TLC techniques and is less examined. The typical coupling technologies (especially appeared in recent ten years) are summarized and briefly described in this study. TLC-MS has greatly enhanced the research efficiency of bioactive substances for food and drugs due to the widespread usage of TLC-bioautography technology. Nowadays, the main bottleneck in the development of TLC-MS is the design and commercialization of "plug and play" components. The high-throughput and real-time monitoring TLC-MS technology with flexible scanning functions is also expected. Furthermore, the comparative studies of different kinds of desorbing-ionizing technologies are also application problems for further discussion.


Assuntos
Compostos Orgânicos , Cromatografia em Camada Fina , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cromatografia Líquida de Alta Pressão
8.
Forensic Toxicol ; 40(1): 125-131, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454483

RESUMO

PURPOSE: Various forms of cannabidiol (CBD)-containing products are sold in Japan. CBD is easily converted to mixtures of ∆9-tetrahydrocannabinol (∆9-THC) and its isomer, ∆8-THC, using household chemicals like diluted hydrochloric acid. This ease of production increases concerns regarding production of homemade THC mixtures. It is difficult to separate ∆9-THC, ∆8-THC, and CBD using thin-layer chromatography (TLC) on conventional silica gel. The selectivity of TLC on silver nitrate-impregnated silica gel (AgNO3-silica gel) differs from that of conventional silica gel. This study thus aimed to evaluate the separation ability of AgNO3-silica gel TLC. METHODS: To evaluate potential separation ability, standards of five THC isomers (∆9-THC, ∆8-THC, a pair of diastereomers of ∆10-THC, and ∆6a,10a-THC), CBD, CBN, and ∆9-THCA were analyzed by 10% AgNO3-silica gel TLC (developed using toluene, system A) and silica gel TLC [developed using n-hexane/diethyl ether (8:2, v/v), system B]. Then, mock homemade THC mixtures, prepared by heating crystalline CBD in acidic ethanol, were analyzed using systems A and B. RESULTS: System A showed clear separation between the five THC isomers and between ∆9-THC, ∆8-THC, CBD, and their by-products in the mock homemade THC mixture. However, system B did not separate some combinations of THC isomers and gave a single group-like spot to the THC mixture. CONCLUSION: AgNO3-silica gel TLC shows high separation ability between THC isomers and among ∆9-THC, ∆8-THC, and CBD. It will thus be useful for analyzing homemade THC mixtures.


Assuntos
Canabidiol , Dronabinol , Sílica Gel , Cromatografia em Camada Fina , Nitrato de Prata , Corantes
9.
Methods Mol Biol ; 2522: 351-362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36125762

RESUMO

Many research areas, e.g., basic research but also applied fields of biotechnology, biomedicine, and diagnostics often suffer from the unavailability of metabolic compounds. This is mostly due to missing easy and efficient synthesis procedures. We herein describe the biocatalytic/enzymatic production of 2-keto-3-deoxy-D-gluconate, an intermediate of central metabolic pathways in all three domains of life and also of bacterial polysaccharides, lipopolysaccharides, and cell wall components. The method is based on the gluconate dehydratase from the hyperthermophilic crenarchaeon Thermoproteus tenax, which can be easily recombinantly overproduced in Escherichia coli and-due to its intrinsic thermostability-rapidly be purified by two precipitation steps. The enzyme completely converts D-gluconate to solely stereochemically pure KDG, taking benefits from the enol-keto-tautomerism of the primary reaction product. The final product can then easily be separated from the protein by ultrafiltration. The simple one-step procedure, which is suitable at least for the lab-scale/gram-scale production of KDG, replaces lengthy multi-step reactions and is easily scalable. This approach also illustrates the great application potential of Archaea with their unusual metabolic pathways and enzymes for the synthesis of added value products.


Assuntos
Thermoproteus , Escherichia coli/metabolismo , Gluconatos/metabolismo , Hidroliases , Lipopolissacarídeos/metabolismo , Thermoproteus/metabolismo
10.
Plants (Basel) ; 11(14)2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35890456

RESUMO

The dark brown mixture resulting from the autooxidation of catechinic acid (CA) (AOCA) has been reported to possess antiviral activity against Herpes Simplex Virus 1 and 2 (HSV-1 and HSV-2). Unfortunately, the constituents of AOCA were not separated or identified and the compound(s) responsible for AOCA's antiviral activity remained unknown until recently. Colorless 4-hydroxy benzoic acid (4-HBA) has been reported as the main constituent (75%) of AOCA, and as being responsible for its antiviral activity. The findings seemed not to be reliable because of the existence in the literature of very different findings, because of the high concentration that was attributed to the supposed 4-HBA in the dark mixture, and because of the absence of essential analytical experiments to confirm 4-HBA in AOCA. Particularly, the AOCA chromatograms highlighting a peak attributable to 4-HBA, using commercial 4-HBA as a standard, is missing, as well as investigations concerning the antiviral activity of marketed 4-HBA. Therefore, in this study, to verify the exactness of the recent reports, we prepared CA from catechin and AOCA from CA, and the absence of 4-HBA in the mixture was first established by thin-layer chromatography (TLC), and then was confirmed by UHPLC­MS/MS, UV­Vis, and ATR­FTIR analyses. For further confirmation, the ATR­FTIR spectral data were processed by principal components analysis (PCA), which unequivocally established strong structural differences between 4-HBA and AOCA. Finally, while the antiviral effects of AOCA against HSV-2 were confirmed, a commercial sample of 4-HBA was completely inactive.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 280: 121464, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35717930

RESUMO

A facile cotton fabric with a built-in TLC-SERS structure was fabricated to demonstrate an integrated TLC separation and SERS identification of mixed dyes. The soft and flexible SERS fabric was firstly fabricated using a simple method in which gold nanoparticles were in-situ synthesized on cotton fabrics by heating. ß-CD was then grafted onto cotton fabric through crosslinking with citric acid in presence of sodium hypophosphite monohydrate via esterification reaction. The adsorption and TLC development performance of ß-CD grafted fabrics were comprehensively investigated with two organic dyes, one anionic dye and one nonionic dye. Besides, the recyclable adsorption and separation performance were tested to evaluate its sustainable application prospects. It displayed less adsorption capacity loss and reusable separation performance after several cycles than the pristine cotton fabrics. Finally, two sets of mixed dyes were successfully separated on the TLC fabrics and then identified via on-site SERS according to their different migration distance. The developed TLC-SERS fabric shows the advantage of quick, easy to handle, low-cost, sensitive, and could be exploited in on-site study of synthetic dyes in art objects, textile and packaging products or forensic applications.


Assuntos
Corantes , Nanopartículas Metálicas , Adsorção , Ouro , Nanopartículas Metálicas/química , Têxteis
12.
Methods Mol Biol ; 2505: 181-190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35732945

RESUMO

Decades of research on the medicinal plant Catharanthus roseus have led to the complete elucidation of the 29-step pathway for the biosynthesis of the anticancer drug vinblastine from geraniol and tryptophan precursors. Several approaches have been used to identify the enzymes involved in this iconic and remarkably complex pathway. This chapter describes the use of the classic ethyl methanesulfonate (EMS) mutagenesis to create a selfed M2 mutant population, which can be rapidly screened to select mutants with altered monoterpenoid indole alkaloid (MIA) biosynthesis with a simple, high-throughput thin-layer chromatography (TLC)-based screening strategy. This TLC-based MIA screening has led to the discovery and characterization of three enzymes responsible for vinblastine biosynthesis.


Assuntos
Catharanthus , Alcaloides de Triptamina e Secologanina , Catharanthus/genética , Catharanthus/metabolismo , Cromatografia em Camada Fina , Metanossulfonato de Etila , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Vimblastina
13.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35631349

RESUMO

Prostate Specific Membrane Antigen (PSMA) is a highly relevant target in nuclear medicine due to its overexpression in prostate cancer. The 68Ga/177Lu-PSMA-1 combination is a theranostic agent for the detection and treatment of tumors overexpressing the PSMA target. Specifically, 177Lu-PSMA-1 is used in the treatment of castration-resistant prostate cancer that is ineffective or intolerant to the latest generation of chemotherapy and/or hormone therapy. This radiopharmaceutical is manufactured in a radiopharmaceutical synthesizing unit and must pass a quality control where the radiochemical purity (RCP) is assessed prior to release of the batch. RCP evaluation is performed by high-performance liquid chromatography (HPLC) and thin-layer chromatography (TLC). Since there is no monograph for 177Lu-PSMA-1 in the European Pharmacopoeia, we validate the analytical methods according to the EANM recommendations adapted from ICH Q2. Specificity, linearity, accuracy, precision, intermediate precision, limit of quantification (LOQ) and robustness were described for HPLC and TLC in this study. The results obtained demonstrated the robustness and reliability of the HPLC and TLC analytical methods for the evaluation of the RCP of 177Lu-PSMA-1.

14.
Zhongguo Zhong Yao Za Zhi ; 46(17): 4417-4423, 2021 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-34581045

RESUMO

In view of the current inadequate standards for Gleditsiae Spina in the Chinese Pharmacopoeia, this study put forward some new items of the quality standards of Gleditsiae Spina. Thin-layer chromatography(TLC) was performed for identification with the reference substance of taxifolin and the reference material of Gleditsiae Spina as the control. According to the general principles of the Chinese Pharmacopoeia(2020 edition, Vol. 4), the moisture, total ash content, and alcohol-soluble extract of medicinal materials and decoction pieces of Gleditsiae Spina were determined. The content determination method for medicinal materials and decoction pieces of Gleditsiae Spina was established using high-performance liquid chromatography(HPLC), with taxifolin as the quality control index. Based on the determination results of 30 batches of samples of Gleditsiae Spina from different habitats, the draft quality standards of Gleditsiae Spina were developed, which provided suggestions for the revision of the quality standards of Gleditsiae Spina in the Chinese Pharmacopoeia.


Assuntos
Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão , Controle de Qualidade , Padrões de Referência
15.
Microbiology (Reading) ; 167(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34297654

RESUMO

Cellulosomes are highly complex cell-bound multi-enzymatic nanomachines used by anaerobes to break down plant carbohydrates. The genome sequence of Ruminococcus flavefaciens revealed a remarkably diverse cellulosome composed of more than 200 cellulosomal enzymes. Here we provide a detailed biochemical characterization of a highly elaborate R. flavefaciens cellulosomal enzyme containing an N-terminal dockerin module, which anchors the enzyme into the multi-enzyme complex through binding of cohesins located in non-catalytic cell-bound scaffoldins, and three tandemly repeated family 16 glycoside hydrolase (GH16) catalytic domains. The DNA sequence encoding the three homologous catalytic domains was cloned and hyper-expressed in Escherichia coli BL21 (DE3) cells. SDS-PAGE analysis of purified His6 tag containing RfGH16_21 showed a single soluble protein of molecular size ~89 kDa, which was in agreement with the theoretical size, 89.3 kDa. The enzyme RfGH16_21 exhibited activity over a wide pH range (pH 5.0-8.0) and a broad temperature range (50-70 °C), displaying maximum activity at an optimum pH of 7.0 and optimum temperature of 55 °C. Substrate specificity analysis of RfGH16_21 revealed maximum activity against barley ß-d-glucan (257 U mg-1) followed by lichenan (247 U mg-1), but did not show significant activity towards other tested polysaccharides, suggesting that it is specifically a ß-1,3-1,4-endoglucanase. TLC analysis revealed that RfGH16_21 hydrolyses barley ß-d-glucan to cellotriose, cellotetraose and a higher degree of polymerization of gluco-oligosaccharides indicating an endo-acting catalytic mechanism. This study revealed a fairly high, active and thermostable bacterial endo-glucanase which may find considerable biotechnological potentials.


Assuntos
Proteínas de Bactérias/química , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Ruminococcus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática , Glucanos/metabolismo , Glicosídeo Hidrolases/genética , Concentração de Íons de Hidrogênio , Família Multigênica , Domínios Proteicos , Ruminococcus/química , Ruminococcus/genética , Especificidade por Substrato , Temperatura
16.
Asian Pac J Cancer Prev ; 22(S1): 73-79, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33576215

RESUMO

OBJECTIVE: Aims of this study were to (1) compare anti-proliferative activity between aqueous and ethanol Kaempferia parviflora (KP) extracts in both cancer (Human urinary bladder cancer cell, T24) and normal cell lines (Human umbilical vein endothelial cell, HUVEC). (2) confirm selective cytotoxicity of ethanol KP extract to normal and different cancer cell lines (3) investigate its cellular mechanism through p53 and SIRT1 gene expression. METHODS: Phytochemical difference between aqueous and ethanol extract was determined by thin layer chromatography (TLC). Screening for cytotoxic activity in human cell lines was performed by cell viability assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reagent. P53 and SIRT1 gene expression were quantified using RT-PCR. RESULTS: Results from the cell viability assay were shown as follows: (1) ethanol extract possessed higher toxicity to cancerous cells than aqueous extract (2) ethanol extract exhibited higher cytotoxicity to cancerous cells than normal cells (3) ethanol extract also showed cytotoxicity, with different levels, to three prostate cancer cell lines varying in aggressiveness. (4) ethanol KP extract induced cell death in T24 via p53 gene expression and prolonged cell survival in HUVEC through SIRT1 gene expression. CONCLUSION: These findings implied that ethanol KP extract might possibly be an alternative for cancer adjuvant therapy through the mechanism of selective p53 and SIRT1 gene expression.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias/patologia , Extratos Vegetais/farmacologia , Zingiberaceae/química , Apoptose , Proliferação de Células , Humanos , Neoplasias/tratamento farmacológico , Células Tumorais Cultivadas
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 252: 119490, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33524815

RESUMO

The objective of this study was to establish a novel method for the determination of N-methylaniline (NMA) based on azo coupling reaction in infant pacifiers prepared with food contact silicone materials by combining thin layer chromatography (TLC) with surface-enhanced resonance Raman scattering (SERRS). TLC was used to separate the azo reaction products to confirm the component spot of azo compound, then the spot of azo compound mixed with silver sol on the TLC plate was qualitatively detected by SERRS. The limit of detection (LOD) of the method is as low as 0.50 ppm for NMA. The influence of sample matrix about the TLC-SERRS detection of NMA was investigated by experiment of simulated positive sample, and the NMA in infant pacifiers exposed to silica gel products was detected. The method of TLC-SERRS for the determination of NMA in infant pacifiers prepared with food contact silicone materials was established, and the real samples were detected. Compared with the methods ever reported, the method has the advantages of high sensitivity, specificity and low cost. It provides a new reference method for establishing a safety system for food contact silicone materials.


Assuntos
Compostos de Anilina , Prata , Cromatografia em Camada Fina , Humanos , Análise Espectral Raman
18.
Biotechnol Biofuels ; 13(1): 184, 2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33292503

RESUMO

BACKGROUND: Synthetic biology efforts often require high-throughput screening tools for enzyme engineering campaigns. While innovations in chromatographic and mass spectrometry-based techniques provide relevant structural information associated with enzyme activity, these approaches can require cost-intensive instrumentation and technical expertise not broadly available. Moreover, complex workflows and analysis time can significantly impact throughput. To this end, we develop an automated, 96-well screening platform based on thin layer chromatography (TLC) and use it to monitor in vitro activity of a geranylgeranyl reductase isolated from Sulfolobus acidocaldarius (SaGGR). RESULTS: Unreduced SaGGR products are oxidized to their corresponding epoxide and applied to thin layer silica plates by acoustic printing. These derivatives are chromatographically separated based on the extent of epoxidation and are covalently ligated to a chromophore, allowing detection of enzyme variants with unique product distributions or enhanced reductase activity. Herein, we employ this workflow to examine farnesol reduction using a codon-saturation mutagenesis library at the Leu377 site of SaGGR. We show this TLC-based screen can distinguish between fourfold differences in enzyme activity for select mutants and validated those results by GC-MS. CONCLUSIONS: With appropriate quantitation methods, this workflow can be used to screen polyprenyl reductase activity and can be readily adapted to analyze broader catalyst libraries whose products are amenable to TLC analysis.

19.
EJNMMI Res ; 10(1): 141, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33226509

RESUMO

BACKGROUND: In molecular imaging with dynamic PET, the binding and dissociation of a targeted tracer is characterized by kinetics modeling which requires the arterial concentration of the tracer to be measured accurately. Once in the body the radiolabeled parent tracer may be subjected to hydrolysis, demethylation/dealkylation and other biochemical processes, resulting in the production and accumulation of different metabolites in blood which can be labeled with the same PET radionuclide as the parent. Since these radio-metabolites cannot be distinguished by PET scanning from the parent tracer, their contribution to the arterial concentration curve has to be removed for the accurate estimation of kinetic parameters from kinetic analysis of dynamic PET. High-performance liquid chromatography has been used to separate and measure radio-metabolites in blood plasma; however, the method is labor intensive and remains a challenge to implement for each individual patient. The purpose of this study is to develop an alternate technique based on thin layer chromatography (TLC) and a sensitive commercial autoradiography system (Beaver, Ai4R, Nantes, France) to measure radio-metabolites in blood plasma of two targeted tracers-[18F]FAZA and [18F]FEPPA, for imaging hypoxia and inflammation, respectively. RESULTS: Radioactivity as low as 17 Bq in 2 µL of pig's plasma can be detected on the TLC plate using autoradiography. Peaks corresponding to the parent tracer and radio-metabolites could be distinguished in the line profile through each sample (n = 8) in the autoradiographic image. Significant intersubject and intra-subject variability in radio-metabolites production could be observed with both tracers. For [18F]FEPPA, 50% of plasma activity was from radio-metabolites as early as 5-min post injection, while for [18F]FAZA, significant metabolites did not appear until 50-min post. Simulation study investigating the effect of radio-metabolite in the estimation of kinetic parameters indicated that 32-400% parameter error can result without radio-metabolites correction. CONCLUSION: TLC coupled with autoradiography is a good alternative to high-performance liquid chromatography for radio-metabolite correction. The advantages of requiring only small blood samples (~ 100 µL) and of analyzing multiple samples simultaneously, make the method suitable for individual dynamic PET studies.

20.
Trop Life Sci Res ; 31(1): 19-43, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32963709

RESUMO

Basal stem rot (BSR) is a devastating disease to Malaysian oil palm. Current techniques employed for BSR disease detection on oil palm are laborious, time consuming, costly, and subjected to accuracy limitations. An ergosterol detection method was developed, whereby it correlated well with the degree of infection in oil palm. This current study was designed to study the relationship between Ganoderma biomass, ergosterol concentration, BSR disease progress and to validate the efficiency of microwave assisted extraction (MAE) method for extraction of ergosterol compound. In addition, testing on the sensitivity of thin layer chromatography (TLC) analysis for detection of ergosterol was also the aim of this study. The optimised procedure involved extracting a small amount of Ganoderma-infected oil palm root tissues suspended in low volumes of solvent followed by irradiation in a conventional microwave oven at 70°C and medium high power for 30 s, resulting in simultaneous extraction and saponification. Based on the results obtained, MAE method may be effective in extracting low to high yields of ergosterol from infected oil palm roots demonstrating disease scale 2, 3 and 4. Positive relationship was observed between ergosterol content and inoculation period starting day 3 in the inoculated oil palm seedlings and hour 6 in germinated seeds. TLC analysis demonstrated a good correlation with high performance liquid chromatography (HPLC) quantification. Therefore, a semi-quantitative TLC analysis may be applied for handling a large amount of samples during onset field survey.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA