Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894741

RESUMO

PsbS is one of the key photoprotective proteins, ensuring the tolerance of the photosynthetic apparatus (PSA) of a plant to abrupt changes in irradiance. Being a component of photosystem II, it provides the formation of quenching centers for excited states of chlorophyll in the photosynthetic antenna with an excess of light energy. The signal for "turning on" the photoprotective function of the protein is an excessive decrease in pH in the thylakoid lumen occurring when all the absorbed light energy (stored in the form of transmembrane proton potential) cannot be used for carbon assimilation. Hence, lumen-exposed protonatable amino acid residues that could serve as pH sensors are the essential components of PsbS-dependent photoprotection, and their pKa values are necessary to describe it. Previously, calculations of the lumen-exposed protonatable residue pKa values in PsbS from spinach were described in the literature. However, it has recently become clear that PsbS, although typical of higher plants and charophytes, can also provide photoprotection in green algae. Namely, the stress-induced expression of PsbS was recently shown for two green microalgae species: Chlamydomonas reinhardtii and Lobosphaera incisa. Therefore, we determined the amino acid sequence and modeled the three-dimensional structure of the PsbS from L. incisa, as well as calculated the pKa values of its lumen-exposed protonatable residues. Despite significant differences in amino acid sequence, proteins from L. incisa and Spinacia oleracea have similar three-dimensional structures. Along with the other differences, one of the two pH-sensing glutamates in PsbS from S. oleracea (namely, Glu-173) has no analogue in L. incisa protein. Moreover, there are only four glutamate residues in the lumenal region of the L. incisa protein, while there are eight glutamates in S. oleracea. However, our calculations show that, despite the relative deficiency in protonatable residues, at least two residues of L. incisa PsbS can be considered probable pH sensors: Glu-87 and Lys-196.


Assuntos
Clorófitas , Microalgas , Sequência de Aminoácidos , Microalgas/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Clorófitas/metabolismo , Concentração de Íons de Hidrogênio , Glutamatos , Complexos de Proteínas Captadores de Luz/metabolismo
2.
Bio Protoc ; 13(15): e4756, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37575389

RESUMO

The chloroplast lumen contains at least 80 proteins whose function and regulation are not yet fully understood. Isolating the chloroplast lumen enables the characterization of the lumenal proteins. The lumen can be isolated in several ways through thylakoid disruption using a Yeda press or sonication, or through thylakoid solubilization using a detergent. Here, we present a simple procedure to isolate thylakoid lumen by sonication using leaves of the plant Arabidopsis thaliana. The step-by-step procedure is as follows: thylakoids are isolated from chloroplasts, loosely associated thylakoid surface proteins from the stroma are removed, and the lumen fraction is collected in the supernatant following sonication and centrifugation. Compared to other procedures, this method is easy to implement and saves time, plant material, and cost. Lumenal proteins are obtained in high quantity and purity; however, some stromal membrane-associated proteins are released to the lumen fraction, so this method could be further adapted if needed by decreasing sonication power and/or time.

3.
Ecotoxicol Environ Saf ; 263: 115388, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37611478

RESUMO

Globally, many low to medium yielding peanut fields have the potential for further yield improvement. Low phosphorus (P) limitation is one of the significant factors curtailing Arachis hypogaea productivity in many regions. In order to demonstrate the effects of gamma-aminobutyric acid (GABA) on peanuts growing under P deficiency, we used a pot-based experiment to examine the effects of exogenous GABA on alleviating P deficiency-induced physiological changes and growth inhibition in peanuts. The key physiological parameters examined were foliar gas exchange, photochemical efficiency, proton motive force, reactive oxygen species (ROS), and adenosine triphosphate (ATP) synthase activity of peanuts under cultivation with low P (LP, 0.5 mM P) and control conditions. During low P, the cyclic electron flow (CEF) maintained the high proton gradient (∆pH) induced by low ATP synthetic activity. Applying GABA during low P conditions stimulated CEF and reduced the concomitant ROS generation and thereby protecting the foliar photosystem II (PSII) from photoinhibition. Specifically, GABA enhanced the rate of electronic transmission of PSII (ETRII) by pausing the photoprotection mechanisms including non-photochemical quenching (NPQ) and ∆pH regulation. Thus, GABA was shown to be effective in restoring peanut growth when encountering P deficiency. Exogenous GABA alleviated two symptoms (increased root-shoot ratio and photoinhibition) of P-deficient peanuts. This is possibly the first report of using exogenous GABA to restore photosynthesis and growth under low P availability. Therefore, foliar applications of GABA could be a simple, safe and effective approach to overcome low yield imposed by limited P resources (low P in soils or P-fertilizers are unavailable) for sustainable peanut cultivation and especially in low to medium yielding fields.


Assuntos
Arachis , Fotossíntese , Espécies Reativas de Oxigênio , Trifosfato de Adenosina , Fósforo/farmacologia , Ácido gama-Aminobutírico/farmacologia
4.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269663

RESUMO

In oxygenic photosynthetic organisms, D1 protein, a core subunit of photosystem II (PSII), displays a rapid turnover in the light, in which D1 proteins are distinctively damaged and immediately removed from the PSII. In parallel, as a repair process, D1 proteins are synthesized and simultaneously assembled into the PSII. On this flow, the D1 protein is synthesized as a precursor with a carboxyl-terminal extension, and the D1 processing is defined as a step for proteolytic removal of the extension by a specific protease, CtpA. The D1 processing plays a crucial role in appearance of water-oxidizing capacity of PSII, because the main chain carboxyl group at carboxyl-terminus of the D1 protein, exposed by the D1 processing, ligates a manganese and a calcium atom in the Mn4CaO5-cluster, a special equipment for water-oxidizing chemistry of PSII. This review focuses on the D1 processing and discusses it from four angles: (i) Discovery of the D1 processing and recognition of its importance: (ii) Enzyme involved in the D1 processing: (iii) Efforts for understanding significance of the D1 processing: (iv) Remaining mysteries in the D1 processing. Through the review, I summarize the current status of our knowledge on and around the D1 processing.


Assuntos
Complexo de Proteína do Fotossistema II , Tilacoides , Endopeptidases/metabolismo , Manganês/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo , Água/química
5.
J Integr Plant Biol ; 64(4): 915-929, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35199452

RESUMO

In plant chloroplasts, photosystem II (PSII) complexes, together with light-harvesting complex II (LHCII), form various PSII-LHCII supercomplexes (SCs). This process likely involves immunophilins, but the underlying regulatory mechanisms are unclear. Here, by comparing Arabidopsis thaliana mutants lacking the chloroplast lumen-localized immunophilin CYCLOPHILIN28 (CYP28) to wild-type and transgenic complemented lines, we determined that CYP28 regulates the assembly and accumulation of PSII-LHCII SCs. Compared to the wild type, cyp28 plants showed accelerated leaf growth, earlier flowering time, and enhanced accumulation of high molecular weight PSII-LHCII SCs under normal light conditions. The lack of CYP28 also significantly affected the electron transport rate. Blue native-polyacrylamide gel electrophoresis analysis revealed more Lhcb6 and less Lhcb4 in M-LHCII-Lhcb4-Lhcb6 complexes in cyp28 versus wild-type plants. Peptidyl-prolyl cis/trans isomerase (PPIase) activity assays revealed that CYP28 exhibits weak PPIase activity and that its K113 and E187 residues are critical for this activity. Mutant analysis suggested that CYP28 may regulate PSII-LHCII SC accumulation by altering the configuration of Lhcb6 via its PPIase activity. Furthermore, the Lhcb6-P139 residue is critical for PSII-LHCII SC assembly and accumulation. Therefore, our findings suggest that CYP28 likely regulates PSII-LHCII SC assembly and accumulation by altering the configuration of P139 of Lhcb6 via its PPIase activity.


Assuntos
Arabidopsis , Arabidopsis/genética , Imunofilinas/análise , Complexos de Proteínas Captadores de Luz/análise , Complexos de Proteínas Captadores de Luz/química , Peptidilprolil Isomerase/análise , Complexo de Proteína do Fotossistema II/análise , Complexo de Proteína do Fotossistema II/química , Plantas , Tilacoides
6.
J Plant Physiol ; 264: 153487, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34358944

RESUMO

AtCYP38, a thylakoid lumen localized immunophilin, is found to be essential for photosystem II assembly and maintenance, but how AtCYP38 functions in chloroplast remains unknown. Based on previous functional studies and its crystal structure, we hypothesize that AtCYP38 should function via binding its targets or cofactors in the thylakoid lumen. To identify potential interacting proteins of AtCYP38, we first adopted ATTED-II and STRING web-tools, and found 12 proteins functionally related to AtCYP38. We then screened a yeast two-hybrid library including an Arabidopsis genome wide cDNA with different domain of AtCYP38, and five thylakoid lumen-localized targets were identified. In order to specifically search interacting proteins of AtCYP38 in the thylakoid lumen, we generated a yeast two-hybrid mini library including the thylakoid lumenal proteins and lumenal fractions of thylakoid membrane proteins, and we obtained six thylakoid membrane proteins and nine thylakoid lumenal proteins as interacting proteins of AtCYP38. The interactions between AtCYP38 and several potential targets were further confirmed via pull-down and co-immunoprecipitation assays. Together, a couple of new potential candidate interacting proteins of AtCYP38 were identified, and the results will lay a foundation for unveiling the regulatory mechanisms in photosynthesis by AtCYP38.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Ciclofilinas/metabolismo , Proteínas de Arabidopsis/fisiologia , Ciclofilinas/fisiologia , Imunoprecipitação , Complexo de Proteína do Fotossistema II/metabolismo , Domínios e Motivos de Interação entre Proteínas , Técnicas do Sistema de Duplo-Híbrido
7.
Int J Mol Sci ; 22(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34360890

RESUMO

The thylakoid lumen houses proteins that are vital for photosynthetic electron transport, including water-splitting at photosystem (PS) II and shuttling of electrons from cytochrome b6f to PSI. Other lumen proteins maintain photosynthetic activity through biogenesis and turnover of PSII complexes. Although all lumen proteins are soluble, these known details have highlighted interactions of some lumen proteins with thylakoid membranes or thylakoid-intrinsic proteins. Meanwhile, the functional details of most lumen proteins, as well as their distribution between the soluble and membrane-associated lumen fractions, remain unknown. The current study isolated the soluble free lumen (FL) and membrane-associated lumen (MAL) fractions from Arabidopsis thaliana, and used gel- and mass spectrometry-based proteomics methods to analyze the contents of each proteome. These results identified 60 lumenal proteins, and clearly distinguished the difference between the FL and MAL proteomes. The most abundant proteins in the FL fraction were involved in PSII assembly and repair, while the MAL proteome was enriched in proteins that support the oxygen-evolving complex (OEC). Novel proteins, including a new PsbP domain-containing isoform, as well as several novel post-translational modifications and N-termini, are reported, and bi-dimensional separation of the lumen proteome identified several protein oligomers in the thylakoid lumen.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membranas Intracelulares/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Proteoma , Tilacoides/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Eletroforese em Gel Bidimensional/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Espectrometria de Massas/métodos , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/genética , Filogenia , Processamento de Proteína Pós-Traducional , Proteômica/métodos
8.
Plant Mol Biol ; 105(4-5): 513-523, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33393067

RESUMO

KEY MESSAGE: The thylakoid transit peptide of tobacco oxygen-evolving enhancer protein contains a minimal ten amino acid sequences for thylakoid lumen transports. This ten amino acids do not contain twin-arginine, which is required for typical chloroplast lumen translocation. Chloroplasts are intracellular organelles responsible for photosynthesis to produce organic carbon for all organisms. Numerous proteins must be transported from the cytosol to chloroplasts to support photosynthesis. This transport is facilitated by chloroplast transit peptides (TPs). Four chloroplast thylakoid lumen TPs were isolated from Nicotiana tabacum and were functionally analyzed as thylakoid lumen TPs. Typical chloroplast stroma-transit peptides and thylakoid lumen transit peptides (tTPs) are found in N. tabacum transit peptides (NtTPs) and the functions of these peptides are confirmed with TP-GFP fusion proteins under fluorescence microscopy and chloroplast fractionation, followed by Western blot analysis. During the functional analysis of tTPs, we uncovered the minimum 10 amino acid sequence is sufficient for thylakoid lumen transport. These ten amino acids can efficiently translocate GFP protein, even if they do not contain the twin-arginine residues required for the twin-arginine translocation (Tat) pathway, which is a typical thylakoid lumen transport. Further, thylakoid lumen transporting processes through the Tat pathway was examined by analyzing tTP sequence functions and we demonstrate that the importance of hydrophobic core for the tTP cleavage and target protein translocation.


Assuntos
Aminoácidos/metabolismo , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Nicotiana/metabolismo , Oxigênio/metabolismo , Tilacoides/metabolismo , Sequência de Aminoácidos , Aminoácidos/genética , Proteínas de Cloroplastos/genética , Cloroplastos/genética , Elementos Facilitadores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Membranas Intracelulares/metabolismo , Microscopia Confocal , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sinais Direcionadores de Proteínas/genética , Transporte Proteico , Homologia de Sequência de Aminoácidos , Tilacoides/genética , Nicotiana/classificação , Nicotiana/genética
9.
Photosynth Res ; 147(2): 177-195, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33280076

RESUMO

Cyanobacteria possess unique intracellular organization. Many proteomic studies have examined different features of cyanobacteria to learn about the intracellular structures and their respective functions. While these studies have made great progress in understanding cyanobacterial physiology, the conventional fractionation methods used to purify cellular structures have limitations; specifically, certain regions of cells cannot be purified with existing fractionation methods. Proximity-based proteomics techniques were developed to overcome the limitations of biochemical fractionation for proteomics. Proximity-based proteomics relies on spatiotemporal protein labeling followed by mass spectrometry of the labeled proteins to determine the proteome of the region of interest. We performed proximity-based proteomics in the cyanobacterium Synechococcus sp. PCC 7002 with the APEX2 enzyme, an engineered ascorbate peroxidase. We determined the proteome of the thylakoid lumen, a region of the cell that has remained challenging to study with existing methods, using a translational fusion between APEX2 and PsbU, a lumenal subunit of photosystem II. Our results demonstrate the power of APEX2 as a tool to study the cell biology of intracellular features and processes, including photosystem II assembly in cyanobacteria, with enhanced spatiotemporal resolution.


Assuntos
Ascorbato Peroxidases/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteoma , Proteômica/métodos , Synechococcus/fisiologia , Ascorbato Peroxidases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Espectrometria de Massas , Fotossíntese , Complexo de Proteína do Fotossistema II/genética , Synechococcus/genética , Tilacoides/metabolismo
10.
Plant Direct ; 4(11): e00280, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33195966

RESUMO

The performance of the photosynthesis machinery in plants, including light harvesting, electron transport, and protein repair, is controlled by structural changes in the thylakoid membrane system inside the chloroplasts. In particular, the structure of the stacked grana area of thylakoid membranes is highly dynamic, changing in response to different environmental cues such as light intensity. For example, the aqueous thylakoid lumen enclosed by thylakoid membranes in grana has been documented to swell in the presence of light. However, light-induced alteration of the stromal gap in the stacked grana (partition gap) and of the unstacked stroma lamellae has not been well characterized. Light-induced changes in the entire thylakoid membrane system, including the lumen in both stacked and unstacked domains as well as the partition gap, are presented here, and the functional implications are discussed. This structural analysis was made possible by development of a robust semi-automated image analysis method combined with optimized plant tissue fixation techniques for transmission electron microscopy generating quantitative structural results for the analysis of thylakoid ultrastructure. SIGNIFICANCE STATEMENT: A methodical pipeline ranging from optimized leaf tissue preparation for electron microscopy to quantitative image analysis was established. This methodical development was employed to study details of light-induced changes in the plant thylakoid ultrastructure. It was found that the lumen of the entire thylakoid system (stacked and unstacked domains) undergoes light-induced swelling, whereas adjacent membranes on the stroma side in stacked grana thylakoid approach each other.

11.
Plant Cell Physiol ; 61(7): 1252-1261, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32333781

RESUMO

Angiosperms have three PsbQ-like (PQL) proteins in addition to the PsbQ subunit of the oxygen-evolving complex of photosystem II. Previous studies have shown that two PQL proteins, PnsL2 and PnsL3, are subunits of the chloroplast NADH dehydrogenase-like (NDH) complex involved in the photosystem I (PSI) cyclic electron flow. In addition, another PsbQ homolog, PQL3, is required for the NDH activity; however, the molecular function of PQL3 has not been elucidated. Here, we show that PQL3 is an assembly factor, particularly for the accumulation of subcomplex B (SubB) of the chloroplast NDH. In the pql3 mutant of Arabidopsis thaliana, the amounts of NDH subunits in SubB, PnsB1 and PsnB4, were decreased, causing a severe reduction in the NDH-PSI supercomplex. Analysis using blue native polyacrylamide gel electrophoresis suggested that the incorporation of PnsL3 into SubB was affected in the pql3 mutant. Unlike other PsbQ homologs, PQL3 was weakly associated with thylakoid membranes and was only partially protected from thermolysin digestion. Consistent with the function as an assembly factor, PQL3 accumulated independently in other NDH mutants, such as pnsl1-3. Furthermore, PQL3 accumulated in young leaves in a manner similar to the accumulation of CRR3, an assembly factor for SubB. These results suggest that PQL3 has developed a distinct function as an assembly factor for the NDH complex during evolution of the PsbQ protein family in angiosperms.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Cloroplastos/enzimologia , NADH Desidrogenase/metabolismo , Complexo de Proteína do Fotossistema II/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Filogenia , Folhas de Planta/metabolismo , Tilacoides/metabolismo
12.
New Phytol ; 221(3): 1230-1246, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30230547

RESUMO

Contents Summary 1230 I. Introduction 1230 II. Formation and isomerization of disulfides in the ER and the Golgi apparatus 1231 III. The disulfide relay in the mitochondrial intermembrane space: why are plants different? 1236 IV. Disulfide bond formation on luminal proteins in thylakoids 1240 V. Conclusion 1242 Acknowledgements 1242 References 1242 SUMMARY: Disulfide bonds are post-translational modifications crucial for the structure and function of thousands of proteins. Their formation and isomerization, referred to as oxidative folding, require specific protein machineries found in oxidizing subcellular compartments, namely the endoplasmic reticulum and the associated endomembrane system, the intermembrane space of mitochondria and the thylakoid lumen of chloroplasts. At least one protein component is required for transferring electrons from substrate proteins to an acceptor that is usually molecular oxygen. For oxidation reactions, incoming reduced substrates are oxidized by thiol-oxidoreductase proteins (or domains in case of chimeric proteins), which are usually themselves oxidized by a single thiol oxidase, the enzyme generating disulfide bonds de novo. By contrast, the description of the molecular actors and pathways involved in proofreading and isomerization of misfolded proteins, which require a tightly controlled redox balance, lags behind. Herein we provide a general overview of the knowledge acquired on the systems responsible for oxidative protein folding in photosynthetic organisms, highlighting their particularities compared to other eukaryotes. Current research challenges are discussed including the importance and specificity of these oxidation systems in the context of the existence of reducing systems in the same compartments.


Assuntos
Plantas/metabolismo , Dobramento de Proteína , Pesquisa , Dissulfetos/metabolismo , Membranas Mitocondriais/metabolismo , Oxirredução
13.
Proc Natl Acad Sci U S A ; 114(38): E8110-E8117, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28874535

RESUMO

Despite our increasingly sophisticated understanding of mechanisms ensuring efficient photosynthesis under laboratory-controlled light conditions, less is known about the regulation of photosynthesis under fluctuating light. This is important because-in nature-photosynthetic organisms experience rapid and extreme changes in sunlight, potentially causing deleterious effects on photosynthetic efficiency and productivity. Here we report that the chloroplast thylakoid lumenal protein MAINTENANCE OF PHOTOSYSTEM II UNDER HIGH LIGHT 2 (MPH2; encoded by At4g02530) is required for growth acclimation of Arabidopsis thaliana plants under controlled photoinhibitory light and fluctuating light environments. Evidence is presented that mph2 mutant light stress susceptibility results from a defect in photosystem II (PSII) repair, and our results are consistent with the hypothesis that MPH2 is involved in disassembling monomeric complexes during regeneration of dimeric functional PSII supercomplexes. Moreover, mph2-and previously characterized PSII repair-defective mutants-exhibited reduced growth under fluctuating light conditions, while PSII photoprotection-impaired mutants did not. These findings suggest that repair is not only required for PSII maintenance under static high-irradiance light conditions but is also a regulatory mechanism facilitating photosynthetic adaptation under fluctuating light environments. This work has implications for improvement of agricultural plant productivity through engineering PSII repair.


Assuntos
Aclimatação/fisiologia , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Luz , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Mutação , Complexo de Proteína do Fotossistema II/genética , Tilacoides/genética
14.
Front Plant Sci ; 8: 1313, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28798763

RESUMO

Cytochromes c are hemoproteins, with the prosthetic group covalently linked to the apoprotein, which function as electron carriers. A class of cytochromes c is defined by a CXXCH heme-binding motif where the cysteines form thioether bonds with the vinyl groups of heme. Plastids are known to contain up to three cytochromes c. The membrane-bound cytochrome f and soluble cytochrome c6 operate in photosynthesis while the activity of soluble cytochrome c6A remains unknown. Conversion of apo- to holocytochrome c occurs in the thylakoid lumen and requires the independent transport of apocytochrome and heme across the thylakoid membrane followed by the stereospecific attachment of ferroheme via thioether linkages. Attachment of heme to apoforms of plastid cytochromes c is dependent upon the products of the CCS (for cytochrome csynthesis) genes, first uncovered via genetic analysis of photosynthetic deficient mutants in the green alga Chlamydomonas reinhardtii. The CCS pathway also occurs in cyanobacteria and several bacteria. CcsA and CCS1, the signature components of the CCS pathway are polytopic membrane proteins proposed to operate in the delivery of heme from the stroma to the lumen, and also in the catalysis of the heme ligation reaction. CCDA, CCS4, and CCS5 are components of trans-thylakoid pathways that deliver reducing equivalents in order to maintain the heme-binding cysteines in a reduced form prior to thioether bond formation. While only four CCS components are needed in bacteria, at least eight components are required for plastid cytochrome c assembly, suggesting the biochemistry of thioether formation is more nuanced in the plastid system.

15.
Biochem Biophys Res Commun ; 486(1): 1-5, 2017 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-27940360

RESUMO

The ΔpH-dependent/Tat pathway is unique for using only the proton motive force for driving proteins transport across the thylakoid membrane in chloroplasts. 9-aminoacridine fluorescence quenching is widely used to monitor the ΔpH developed across the thylakoid membrane in the light. However, this method suffers from limited sensitivity to low ΔpH values and to spurious fluorescence signals due to membrane binding. In order to develop a more sensitive method for monitoring the real pH of the thylakoid lumen without these problems we transformed Arabidopsis thaliana with a ratiometric pH-sensitive GFP variant (termed pHluorin) targeted to the lumen by the prOE17 transit peptide. Positive transgenic plants displayed localization of pHluorin in the chloroplast by confocal microscopy, and fractionation experiments revealed that it is in the lumen. The pHluorin signal was the strongest in very young plants and diminished as the plants matured. The pHluorin released from the lumen displayed the expected fluorescence intensity changes in response to pH titration. The fluorescence signal in isolated chloroplasts responded to illumination in a manner consistent with light-dependent lumen acidification. Future experiments will exploit the use of this new pH-indicating probe of the thylakoid lumen to examine the influence of the thylakoid ΔpH on ATP synthesis and protein transport.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Tilacoides/metabolismo , Arabidopsis/química , Arabidopsis/genética , Cloroplastos/química , Cloroplastos/genética , Fluorescência , Proteínas de Fluorescência Verde/genética , Concentração de Íons de Hidrogênio , Luz , Microscopia Confocal/métodos , Peptídeos/genética , Peptídeos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos da radiação , Espectrometria de Fluorescência/métodos , Tilacoides/química , Tilacoides/genética , Fatores de Tempo
16.
Front Plant Sci ; 7: 1135, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27555848

RESUMO

In one of the final stages of cyanobacterial Photosystem II (PS II) assembly, binding of up to four extrinsic proteins to PS II stabilizes the oxygen-evolving complex (OEC). Growth of cyanobacterial mutants deficient in certain combinations of these thylakoid-lumen-associated polypeptides is sensitive to changes in environmental pH, despite the physical separation of the membrane-embedded PS II complex from the external environment. In this perspective we discuss the effect of environmental pH on OEC function and photoautotrophic growth in cyanobacteria with reference to pH-sensitive PS II mutants lacking extrinsic proteins. We consider the possibilities that, compared to pH 10.0, pH 7.5 increases susceptibility to PS II-generated reactive oxygen species (ROS) causing photoinhibition and reducing PS II assembly in some mutants, and that perturbations to channels in the lumenal regions of PS II might alter the accessibility of water to the active site as well as egress of oxygen and protons to the thylakoid lumen. Reduced levels of PS II in these mutants, and reduced OEC activity arising from the disruption of substrate/product channels, could reduce the trans-thylakoid pH gradient (ΔpH), leading to the impairment of photosynthesis. Growth of some PS II mutants at pH 7.5 can be rescued by elevating CO2 levels, suggesting that the pH-sensitive phenotype might primarily be an indirect result of back-pressure in the electron transport chain that results in heightened production of ROS by the impaired photosystem.

17.
Front Plant Sci ; 7: 405, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27064270

RESUMO

Chloroplasts play an important role in the cellular sensing of abiotic and biotic stress. Signals originating from photosynthetic light reactions, in the form of redox and pH changes, accumulation of reactive oxygen and electrophile species or stromal metabolites are of key importance in chloroplast retrograde signaling. These signals initiate plant acclimation responses to both abiotic and biotic stresses. To reveal the molecular responses activated by rapid fluctuations in growth light intensity, gene expression analysis was performed with Arabidopsis thaliana wild type and the tlp18.3 mutant plants, the latter showing a stunted growth phenotype under fluctuating light conditions (Biochem. J, 406, 415-425). Expression pattern of genes encoding components of the photosynthetic electron transfer chain did not differ between fluctuating and constant light conditions, neither in wild type nor in tlp18.3 plants, and the composition of the thylakoid membrane protein complexes likewise remained unchanged. Nevertheless, the fluctuating light conditions repressed in wild-type plants a broad spectrum of genes involved in immune responses, which likely resulted from shade-avoidance responses and their intermixing with hormonal signaling. On the contrary, in the tlp18.3 mutant plants there was an imperfect repression of defense-related transcripts upon growth under fluctuating light, possibly by signals originating from minor malfunction of the photosystem II (PSII) repair cycle, which directly or indirectly modulated the transcript abundances of genes related to light perception via phytochromes. Consequently, a strong allocation of resources to defense reactions in the tlp18.3 mutant plants presumably results in the stunted growth phenotype under fluctuating light.

18.
J Plant Physiol ; 192: 28-37, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26812087

RESUMO

Higher plants need to balance the efficiency of light energy absorption and dissipative photo-protection when exposed to fluctuations in light quantity and quality. This aim is partially realized through redox regulation within the chloroplast, which occurs in all chloroplast compartments except the envelope intermembrane space. In contrast to the chloroplast stroma, less attention has been paid to the thylakoid lumen, an inner, continuous space enclosed by the thylakoid membrane in which redox regulation is also essential for photosystem biogenesis and function. This sub-organelle compartment contains at least 80 lumenal proteins, more than 30 of which are known to contain disulfide bonds. Thioredoxins (Trx) in the chloroplast stroma are photo-reduced in the light, transferring reducing power to the proteins in the thylakoid membrane and ultimately the lumen through a trans-thylakoid membrane-reduced, equivalent pathway. The discovery of lumenal thiol oxidoreductase highlights the importance of the redox regulation network in the lumen for controlling disulfide bond formation, which is responsible for protein activity and folding and even plays a role in photo-protection. In addition, many lumenal members involved in photosystem assembly and non-photochemical quenching are likely required for reduction and/or oxidation to maintain their proper efficiency upon changes in light intensity. In light of recent findings, this review summarizes the multiple redox processes that occur in the thylakoid lumen in great detail, highlighting the essential auxiliary roles of lumenal proteins under fluctuating light conditions.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Oxirredutases/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Cloroplastos/efeitos da radiação , Luz , Oxirredução , Tiorredoxinas/metabolismo , Tilacoides/metabolismo , Tilacoides/efeitos da radiação
19.
Protoplasma ; 253(2): 249-58, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25963286

RESUMO

Immunophilins occur in almost all living organisms. They are ubiquitously expressed proteins including cyclophilins, FK506/rapamycin-binding proteins, and parvulins. Their functional significance in vascular plants is mostly related to plant developmental processes, signalling, and regulation of photosynthesis. Enzymatically active immunophilins catalyse isomerization of proline imidic peptide bonds and assist in rapid folding of nascent proline-containing polypeptides. They also participate in protein trafficking and assembly of supramolecular protein complexes. Complex immunophilins possess various additional functional domains associated with a multitude of molecular interactions. A considerable number of immunophilins act as auxiliary and/or regulatory proteins in highly specialized cellular compartments, such as lumen of thylakoids. In this review, we present a comprehensive overview of so far identified chloroplast immunophilins that assist in specific assembly/repair processes necessary for the maintenance of efficient photosynthetic energy conversion.


Assuntos
Cloroplastos/enzimologia , Imunofilinas/fisiologia , Proteínas de Plantas/fisiologia , Cloroplastos/metabolismo , Fotossíntese , Plantas/enzimologia
20.
Plant J ; 80(4): 592-603, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25182596

RESUMO

Thylakoids are the photosynthetic membranes in chloroplasts and cyanobacteria. The aqueous phase inside the thylakoid known as the thylakoid lumen plays an essential role in the photosynthetic electron transport. The presence and significance of thiol-disulfide exchange in this compartment have been recognized but remain poorly understood. All proteins found free in the thylakoid lumen and some proteins associated to the thylakoid membrane require an N-terminal targeting signal, which is removed in the lumen by a membrane-bound serine protease called thylakoidal processing peptidase (TPP). TPP is homologous to Escherichia coli type I signal peptidase (SPI) called LepB. Genetic data indicate that plastidic SPI 1 (Plsp1) is the main TPP in Arabidopsis thaliana (Arabidopsis) although biochemical evidence had been lacking. Here we demonstrate catalytic activity of bacterially produced Arabidopsis Plsp1. Recombinant Plsp1 showed processing activity against various TPP substrates at a level comparable to that of LepB. Plsp1 and LepB were also similar in the pH optima, sensitivity to arylomycin variants and a preference for the residue at -3 to the cleavage site within a substrate. Plsp1 orthologs found in angiosperms contain two unique Cys residues located in the lumen. Results of processing assays suggested that these residues were redox active and formation of a disulfide bond between them was necessary for the activity of recombinant Arabidopsis Plsp1. Furthermore, Plsp1 in Arabidopsis and pea thylakoids migrated faster under non-reducing conditions than under reducing conditions on SDS-PAGE. These results underpin the notion that Plsp1 is a redox-dependent signal peptidase in the thylakoid lumen.


Assuntos
Proteínas de Arabidopsis/metabolismo , Serina Endopeptidases/metabolismo , Tilacoides/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/genética , Cisteína/metabolismo , Dissulfetos/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Oligopeptídeos/farmacologia , Oxirredução , Pisum sativum/genética , Pisum sativum/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Precursores de Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA