Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39154654

RESUMO

The exploration of deep space significantly increases the probability of spacecraft failures due to surface electrostatic discharge, which imposes higher vacuum insulation protection requirements on polyimide, the external insulation material of spacecrafts. To address this challenge, this study proposes using silane coupling agent KH550 for organic grafting treatment of Cr2O3 nanoparticles, which are then used to dope and modify polyimide to enhance the vacuum surface insulation of polyimide films. The KH550 grafting improves the interface strength between the fillers and the matrix, allowing the fillers to be uniformly dispersed in the matrix. Compared to pure polyimide films, the prepared PI-Cr2O3@KH550 composite films exhibit significantly enhanced vacuum surface flashover voltage, improved surface/volume resistivity, and dielectric properties. The results demonstrate that polyimide composite films with 0.8% by mass of Cr2O3@KH550 show the most notable performance improvement, with the DC flashover voltage and impulse flashover voltage in vacuum increasing by 20.7% and 27.8%, respectively. The doping of chromium oxide nanoparticles introduces more deep traps into the polyimide films and reduce the surface resistivity. The higher deep trap density inhibits charge migration, thereby alleviating secondary electron emission and surface electric field distortion. Simultaneously, the lower surface resistivity facilitates dissipating surface charges and improves the surface insulation. These findings are of significant reference value for promoting the enhancement of aerospace insulation performance.

2.
Small Methods ; 8(3): e2301001, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009524

RESUMO

Near-infrared persistent luminescence (NIR PersL) materials provide great potential in the fields of night vision, biological imaging, and information encryption. However, among various crystal structures, Cr3+ -doped gallium garnets show inferior PersL property, which turns out to be the bottleneck of their versatile applications. The rational design and facile preparation of high-performance NIR PersL materials are crucial for the emerging applications. In this work, a series of Gd3 Mgx Gex Ga5-2x O12 :Cr3+ (x = 0, 0.25, 0.5, 0.75, 1) is investigated by microwave-assisted solid-state (MASS) approach. Furthermore, by employing chemical composition co-substitution, PersL performance is further improved and the optimum working temperature is adjusted to the lower temperature at 10 °C. Trap level distribution of Gd3 Mg0.5 Ge0.5 Ga4 O12 :Cr3+ phosphor is revealed based on the temperature and fading-time dependent PersL and thermoluminescence property. Further study demonstrates the reduction of the bandgap and the trap distribution forwards at shallow-lying trap energy levels. The synergistic effect, from both energy-band manipulation and trap-level optimization, facilitates NIR PersL in Cr3+ -doped gadolinium gallium garnets. These findings confirm the applicability of MASS-based bandgap and defect level engineering for improving the PersL properties in non/inferior-PersL materials. This burgeoning MASS method may facilitate a wide range of PersL materials for various emerging applications.

3.
Materials (Basel) ; 17(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38203912

RESUMO

Polymeric dielectrics exhibit remarkable dielectric characteristics and wide applicability, rendering them extensively employed within the domain of electrical insulation. Nevertheless, the electrical strength has always been a bottleneck, preventing its further utilization. Nanocomposite materials can effectively improve insulation strength, but uniform doping of nanofillers in engineering applications is a challenge. Consequently, a nanocomposite interfacial coating was meticulously designed to interpose between the electrode and the polymer, which can significantly improve DC breakdown performance. Subsequently, the effects of filler concentration and coating duration on DC breakdown performance, high field conductivity, and trap distribution characteristics were analyzed. The results indicate that the composite coating introduces deep traps between the electrode-polymer interface, which enhances the carrier confinement, resulting in reduced conductivity and enhanced DC breakdown strength. The incorporation of a composite coating at the interface between the electrode and polymer presents novel avenues for enhancing the dielectric insulation of polymers.

4.
Polymers (Basel) ; 14(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080680

RESUMO

The operating safety of spacecraft in space environments is closely related to the surface discharging phenomenon of dielectrics such as polyimide (PI) film in solar arrays; moreover, carrier traps in the dielectric can affect its insulation performance. Therefore, to improve the vacuum surface flashover characteristics of PI film by nano modification and reveal the effect of trap distribution on the flashover of PI composite film, first, the original PI and nano-ZnO/PI composite films with different additive amounts (0.5, 1, 2, and 3 wt.%) were prepared by in situ polymerization and their performance was evaluated by the physicochemical properties characterized by methods such as thermogravimetric analysis; second, the surface traps of the original and nanocomposite films were measured and calculated by surface potential decay method, and the carrier mobility was also obtained; finally, the vacuum direct current (DC) surface flashover characteristics and bulk resistivity of all the film samples were measured and analyzed. The experiment results showed that with the increase in the amount of nano-ZnO, both the shallow and deep trap density increased significantly, while the trap energy varied slightly, and the surface flashover voltage also increased obviously. Based on the multi-core model, the increases in the shallow and deep trap density after the introduction of nano-ZnO into the PI matrix was analyzed from the microscopic perspective of the interface. Based on the comparative analysis of the trap distribution and surface flashover voltage characteristics, a bilayer model of vacuum DC surface flashover development was proposed. In the bilayer model, deep traps and shallow traps play a dominant role in the vacuum-solid interface and the inner surface of the dielectric, respectively, and increasing the trap density could effectively inhibit secondary electron multiplication on the surface and accelerate charge dissipation inside the film. Consequently, nano-ZnO can purposefully control the trap distribution, and then improve the flashover characteristics of nano-ZnO/PI composite films, which provides a new approach for improving the spacecraft material safety.

5.
Nanomaterials (Basel) ; 12(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35683664

RESUMO

A machine-learning (ML) technique was used to optimize the energetic-trap distributions of nano-scaled charge trap nitride (CTN) in 3D NAND Flash to widen the threshold voltage (Vth) window, which is crucial for NAND operation. The energetic-trap distribution is a critical material property of the CTN that affects the Vth window between the erase and program Vth. An artificial neural network (ANN) was used to model the relationship between the energetic-trap distributions as an input parameter and the Vth window as an output parameter. A well-trained ANN was used with the gradient-descent method to determine the specific inputs that maximize the outputs. The trap densities (NTD and NTA) and their standard deviations (σTD and σTA) were found to most strongly impact the Vth window. As they increased, the Vth window increased because of the availability of a larger number of trap sites. Finally, when the ML-optimized energetic-trap distributions were simulated, the Vth window increased by 49% compared with the experimental value under the same bias condition. Therefore, the developed ML technique can be applied to optimize cell transistor processes by determining the material properties of the CTN in 3D NAND Flash.

6.
Nanomaterials (Basel) ; 11(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34578516

RESUMO

In the direct current electric field, the surface of epoxy resin (EP) insulating material is prone to charge accumulation, which leads to electric field distortion and damages the overall insulation of the equipment. Nano-doping is an effective method to improve the surface insulation strength and DC flashover voltage of epoxy resin composites. In this study, pure bismuth ferrite nanoparticles (BFO), as well as BFO nanofillers, which were doped by La element, Cr element as well as co-doped by La + Cr element, were prepared by the sol-gel method. Epoxy composites with various filler concentrations were prepared by blending nano-fillers with epoxy resin. The morphology and crystal structure of the filler were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) tests. The effects of different filler types and filler mass fraction on the surface flashover voltage, charge dissipation rate, and trap characteristics of epoxy resin composites were studied. The results showed that element doping with bismuth ferrite nanofillers could further increase the flash voltage of the composites. The flashover voltage of La + Cr elements co-doped composites with the filler mass fraction of 4 wt% was 45.2% higher than that of pure epoxy resin. Through data comparison, it is found that the surface charge dissipation rate is not the only determinant of the flashover voltage. Appropriately reducing the surface charge dissipation rate of epoxy resin composites can increase the flashover voltage. Finally, combining with the distribution characteristics of the traps on the surface of the materials to explain the mechanism, it is found that the doping of La element and Cr element can increase the energy level depth and density of the deep traps of the composite materials, which can effectively improve the flashover voltage along the surface of the epoxy resin.

7.
Materials (Basel) ; 13(18)2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32899561

RESUMO

The decrease in electrical properties caused by the toughening of polypropylene (PP) is a difficult problem for the modification of PP used for cable insulation. In this research, an isotactic PP, a cross-linked polyethylene (XLPE) and two impact PP copolymers (IPCs) with an ethylene-propylene rubber phase content of 15 and 30% were prepared to assess the possibility of IPCs to be used as cable insulating material. The tensile properties and breakdown strength were evaluated, meanwhile, the rubber phase content dependence of the crystalline structure, morphology and trap distribution were also investigated. Results show that IPCs with a 15% rubber phase content (IPC15) can achieve the simultaneous improvement of elongation at break and breakdown strength compared with isotactic PP, which can be attributed to the special crystalline structure. According to the results of differential scanning calorimetry (DSC) and FTIR, it is proposed that the lamella thickness of IPC15 is maximal and some ethylene segments exist in PP crystals of IPC15 as crystalline structure defects, which is responsible for this enhanced breakdown strength. The morphology results reveal that rubber microspheres are found to coexist with spherulites, which can promote the relative sliding among lamellas under external force and further results in the increase in the elongation at break.

8.
Molecules ; 25(13)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640527

RESUMO

Surface charge accumulation on epoxy insulators is one of the most serious problems threatening the operation safety of the direct current gas-insulated transmission line (GIL), and can be efficiently inhibited by the surface modification technology. This paper investigated the mechanisms of fluorination modulated surface charge behaviors of epoxy resin through quantum chemical calculation (QCC) analysis of the molecular structure. The results show that after fluorination, the surface charge dissipation process of the epoxy sample is accelerated by the introduced shallow trap sites, which is further clarified by the carrier mobility model. The electron distribution probability of the highest occupied molecular orbitals (HOMO) under positive charging and the lowest unoccupied molecular orbitals (LUMO) under negative charging shows distinctive patterns. It is illustrated that electrons are likely to aggregate locally around benzenes for the positively charged molecular structure, while electrons tend to distribute all along the epoxy chain under negatively charging. The calculated results verify that fluorination can modulate surface charge behaviors of epoxy resin through redesigning its molecular structure, trap distribution and charging patterns.


Assuntos
Resinas Epóxi/química , Halogenação , Benzeno/química , Simulação por Computador , Elétrons , Modelos Moleculares , Estrutura Molecular , Teoria Quântica , Eletricidade Estática
9.
Nanomaterials (Basel) ; 8(3)2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29538281

RESUMO

In recent years, many research groups have synthesized ultra-thin silver nanowires (AgNWs) with diameters below 30 nm by employing Cl- and Br- simultaneously in the polyol process. However, the yield of AgNWs in this method was low, due to the production of Ag nanoparticles (AgNPs) as an unwanted byproduct, especially in the case of high Br- concentration. Here, we investigated the roles of Cl- and Br- in the preparation of AgNWs and then synthesized high aspect ratio (up to 2100) AgNWs in high yield (>85% AgNWs) using a Cl- and Br- co-mediated method. We found that multiply-twinned particles (MTPs) with different critical sizes were formed and grew into AgNWs, accompanied by a small and large amount of AgNPs for the NaCl and NaBr additives, respectively. For the first time, we propose that the growth of AgNWs of different diameters and yields can be understood based on the electron trap distribution (ETD) of the silver halide crystals. For the case of Cl- and Br- co-additives, a mixed silver halide crystal of AgBr1-xClx was formed, rather than the AgBr/AgCl mixture reported previously. In this type of crystal, the ETD is uniform, which is beneficial for the synthesis of AgNWs with small diameter (30~40 nm) and high aspect ratio. AgNW transparent electrodes were prepared in air by rod coating. A sheet resistance of 48 Ω/sq and transmittance of 95% at 550 nm were obtained without any post-treatment.

10.
Polymers (Basel) ; 10(5)2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-30966534

RESUMO

Space charges tend to accumulate on the surface and at the interface of ethylene⁻propylene⁻diene terpolymer (EPDM), serving as high voltage direct current (HVDC) cable accessory insulation, which likely induces electrical field distortion and dielectric breakdown. Direct fluorination is an effective method to modify the surface characteristics of the EPDM without altering the bulk properties too much. In this paper, the surface morphology, hydrophobic properties, relative permittivity, and DC conductivity of the EPDM before and after fluorination treatment were tested. Furthermore, the surface and interface charge behaviors in the HVDC cable accessory were investigated by the pulsed electroacoustic (PEA) method, and explained from the point of view of trap distribution. The results show that fluorination helps the EPDM polymer obtain lower surface energy and relative permittivity, which is beneficial to the interface match in composite insulation systems. The lowest degree of space charge accumulation occurs in EPDM with 30 min of fluorination. After analyzing the results of the 3D potentials and the density of states (DOS) behaviors in EPDM before and after fluorination, it can be found that fluorination treatment introduces shallower electron traps, and the special electrostatic potential after fluorination can significantly suppress the space charge accumulation at the interface in the HVDC cable accessory.

11.
Polymers (Basel) ; 9(10)2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-30965834

RESUMO

Silicone rubber (SiR) is used as an insulating material for cables installed in a nuclear power plant. Gamma rays irradiated SiR sheets for various periods at temperatures of 145 and 185 °C, and the resultant changes were analyzed by examining complex permittivity spectra and surface potential decay characteristics. Three different processes, namely, instantaneous polarization, electrode polarization due to the accumulation of ions to form double charge layers at dielectric/electrode interfaces, and DC conduction caused by directional hopping of ions, contribute to the complex permittivity. By fitting the spectra to theoretical equations, we can obtain the dielectric constant at high frequencies, concentration and diffusion coefficient of ions and DC conductivity for the pristine and degraded samples. The instantaneous polarization becomes active with an increase of dose and ageing temperature. The thermal expansion coefficient estimated from the temperature dependence of dielectric constant at high frequencies becomes smaller with an increase in dose, which is in good agreement with the experimental results of the swelling ratio. Additionally, trap distributions are calculated from surface potential decay measurements and analyzed to explain the variation in conductivity. Trap energy increases firstly, and then decreases with an increase in dose, leading to a similar change in DC conductivity. It is concluded that generations of both oxidative products and mobile ions, as well as the occurrence of chain scission and crosslinking are simultaneously induced by gamma rays.

12.
J Nanosci Nanotechnol ; 17(4): 2628-632, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29664250

RESUMO

We investigate the electrical characteristics according to changing temperature on trap distribution in the energy gap of grain boundary (GB) and interface trap density (D(it)) between polycrystalline-silicon (poly-Si) channel and tunnel oxide in Vertical NAND (VNAND) flash cell with poly-Si channel. We confirmed that there are two factors changing GB potential barrier height such as trap distribution in GB and D(it) using technology computer-aided design (TCAD) simulation. Also, we found that the electrical characteristics according to changing temperature are significantly dependent on height and position of GB potential barrier in VNAND flash cell with poly-Si channel. We expect that it is required to develop more accurate extraction method for trap distribution in each GB and D(it) for better understanding temperature dependence of electrical characteristics in VNAND Flash cell.

13.
Beilstein J Nanotechnol ; 7: 1368-1376, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826511

RESUMO

A simple to implement model is presented to extract interface trap density of graphene field effect transistors. The presence of interface trap states detrimentally affects the device drain current-gate voltage relationship Ids-Vgs. At the moment, there is no analytical method available to extract the interface trap distribution of metal-oxide-graphene field effect transistor (MOGFET) devices. The model presented here extracts the interface trap distribution of MOGFET devices making use of available experimental capacitance-gate voltage Ctot-Vgs data and a basic set of equations used to define the device physics of MOGFET devices. The model was used to extract the interface trap distribution of 2 experimental devices. Device parameters calculated using the extracted interface trap distribution from the model, including surface potential, interface trap charge and interface trap capacitance compared very well with their respective experimental counterparts. The model enables accurate calculation of the surface potential affected by trap charge. Other models ignore the effect of trap charge and only calculate the ideal surface potential. Such ideal surface potential when used in a surface potential based drain current model will result in an inaccurate prediction of the drain current. Accurate calculation of surface potential that can later be used in drain current model is highlighted as a major advantage of the model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA