RESUMO
The main bioactive components of agarwood, derived from Aquilaria sinensis, include sesquiterpenes, 2-(2-phenethyl) chromone derivatives, aromatic compounds, and fatty acids, which typically exert anti-inflammatory, antioxidant, immune-modulating, hypoglycemic, and antitumor pharmacological effects in the form of essential oils. Agarwood tree leaves, rich in flavonoids, 2-(2-phenethyl) chromone compounds, and flavonoid compounds, also exhibit significant anti-inflammatory, antioxidant, and immune-modulating effects. These properties are particularly relevant to the treatment of periodontitis, given that inflammatory responses, oxidative stress, and immune dysregulation are key pathological mechanisms of the disease, highlighting the substantial potential of agarwood and agarwood tree leaves in this therapeutic area. However, the low solubility and poor bioavailability of essential oils present challenges that necessitate the development of improved active formulations. In this review, we will introduce the bioactive components, extraction methods, pharmacological actions, and clinical applications of agarwood and agarwood tree leaves, analyzing its prospects for the treatment of periodontitis.
RESUMO
The dyeing process of textile materials is inherently intricate, influenced by a myriad of factors, including dye concentration, dyeing time, pH level, temperature, type of dye, fiber composition, mechanical agitation, salt concentration, mordants, fixatives, water quality, dyeing method, and pre-treatment processes. The intricacy of achieving optimal settings during dyeing poses a significant challenge. In response, this study introduces a novel algorithmic approach that integrates response surface methodology (RSM), artificial neural network (ANN), and genetic algorithm (GA) techniques for the precise fine-tuning of concentration, time, pH, and temperature. The primary focus is on quantifying color strength, represented as K/S, as the response variable in the dyeing process of polyamide 6 and woolen fabric, utilizing plum-tree leaves as a sustainable dye source. Results indicate that ANN (R2 ~ 1) performs much better than RSM (R2 > 0.92). The optimization results, employing ANN-GA integration, indicate that a concentration of 100 wt.%, time of 86.06 min, pH level of 8.28, and a temperature of 100 °C yield a K/S value of 10.21 for polyamide 6 fabric. Similarly, a concentration of 55.85 wt.%, time of 120 min, pH level of 5, and temperature of 100 °C yield a K/S value of 7.65 for woolen fabric. This proposed methodology not only paves the way for sustainable textile dyeing but also facilitates the optimization of diverse dyeing processes for textile materials.
RESUMO
Microplastics (MPs) are omnipresent in the environment and they are linked to ecosystem and human health problems. The atmospheric transport of MPs and the role of tree leaves in MP atmospheric deposition has not been adequately studied. MP concentrations on the leaves of different tree species in urban regions of the Netherlands and Portugal, along with related MP deposition, were investigated in this study. We collected leaves from cedar, eucalyptus, oak, pine and willow trees, together with monthly deposition of particles under the trees and in the open space in Coimbra (Portugal). In Wageningen (the Netherlands), we collected leaves from a fir and a holly tree at different heights above the ground and with dry and wet weather conditions. MPs were extracted through density separation and quantified under a microscope. Polymer types were identified using µ-FTIR. The results showed a higher number of MP particles on the needle-shaped leaves from fir (2.52 ± 2.14 particles·cm-2) and pine (0.5 ± 0.13 particles·cm-2) and significantly lower numbers of MPs per cm2 of leaf area on the bigger leaves from eucalyptus (0.038 ± 0.003 particles·cm-2) and cedar (0.037 ± 0.002 particles·cm-2). All tree leaves seemed to filter airborne MPs, especially the smallest particles. A non-significantly higher number of particles on leaves was detected on lower tree branches and after dry periods. The deposition of MPs under trees was generally higher than in the open space. Our results indicated that part of the MPs retained by the tree leaves floats down to lower branches and to the soil surface. We also saw that different tree species had different capacities to retain particles on their leaves over time. To control the transport of MPs through the atmosphere, it is essential to consider the role of different vegetation types in filtering small particles, especially in cities.
Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Microplásticos , Folhas de Planta , Árvores , Folhas de Planta/química , Poluentes Atmosféricos/análise , Portugal , Microplásticos/análise , Países Baixos , CidadesRESUMO
Similar to soils, tree stems emit and consume nitrous oxide (N2O) from the atmosphere. Although tree leaves dominate tree surface area, they have been completely excluded from field N2O flux measurements and therefore their role in forest N2O exchange remains unknown. We explored the contribution of leaf fluxes to forest N2O exchange. We determined the N2O exchange of mature European beech (Fagus sylvatica) stems and shoots (i.e., terminal branches) and of adjacent forest floor, in a typical temperate upland forest in Germany. The beech stems, and particularly the shoots, acted as net N2O sinks (-0.254 ± 0.827 µg N2O m-2 stem area h-1 and -4.54 ± 1.53 µg N2O m-2 leaf area h-1, respectively), while the forest floor was a net source (2.41 ± 1.08 µg N2O m-2 soil area h-1). The unstudied tree shoots were identified as a significant contributor to the net ecosystem N2O exchange. Moreover, we revealed for the first time that tree leaves act as substantial N2O sinks. Although this is the first study of its kind, it is of global importance for the proper design of future flux studies in forest ecosystems worldwide. Our results demonstrate that excluding tree leaves from forest N2O flux measurements can lead to misinterpretation of tree and forest N2O exchange, and thus global forest greenhouse gas flux inventories.
Assuntos
Poluentes Atmosféricos , Fagus , Óxido Nitroso , Óxido Nitroso/análise , Óxido Nitroso/metabolismo , Fagus/metabolismo , Alemanha , Poluentes Atmosféricos/análise , Florestas , Monitoramento Ambiental , Brotos de Planta/metabolismo , Folhas de Planta/metabolismoRESUMO
The study focused on isolating indigenous Qatari lactic acid bacteria (LAB) from various challenged date palm tree leaf silages to construct a comprehensive strain collection, useful to study the diversity of these strains following their adaptation to the uncommon silage. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) was employed for strain identification and differentiation. The diversity of LAB populations and strains was assessed through principal component analysis (PCA) and dendrogram analyses. A total of 88 LAB isolates were obtained from silages of fresh palm leaves, silage of mixed leaves and dairy feed, along with fresh palm tree leaves, and dairy feed, adapted to local harsh environments. These isolates were categorized according to the new classification of 2020, belonging to genera of Pediococcus, Lactiplantibacillus plantarum, Lacticaseibacillus paracasei, Companilactobacillus farciminis, Limosilactobacillus oris, Limosilactobacillus vaginalis, Lactiplantibacillus pentosus and Lactobacillus johnsonii. Pediococcus was the most prevalent genus, falling mostly within the species Pediococcus lolii. MALDI-TOF MS protein profiles, PCA, and dendrogram analyses successfully grouped the LAB isolates into five distinctive clusters based on the protein's similarities. The high diversity of the indigenous LAB in spontaneous palm leaf silages demonstrated their adaptation and mutualistic interactions, forming robust consortia that ensure the quality of the silage. The straightforward, quick, and accurate identification of LAB in this silage using MALDI-TOF MS presents a valuable approach for formulating LAB consortia for silaging harsh agricultural by-products.
RESUMO
The construction industry's rapid growth poses challenges tied to raw material depletion and increased greenhouse gas emissions. To address this, alternative materials like agricultural residues are gaining prominence due to their potential to reduce carbon emissions and waste generation. In this context this research optimizes the use of banana leaves ash as a partial cement substitution, focusing on durability, and identifying the ideal cement-to-ash ratio for sustainable concrete. For this purpose, concrete mixes were prepared with BLA replacing cement partially in different proportions i.e. (0 %, 5 %, 10 %, 15 %, & 20 %) and were analyzed for their physical, mechanical and Durability (Acid and Sulphate resistance) properties. Compressive strength, acid resistance and sulphate resistance testing continued for 90 days with the intervals of 7, 28 and 90 days. The results revealed that up to 10 % incorporation of BLA improved compressive strength by 10 %, while higher BLA proportions (up to 20 %) displayed superior performance in durability tests as compared to the conventional mix. The results reveal the potentials of banana leave ash to refine the concrete matrix by formation of addition C-S-H gel which leads towards a better performance specially in terms of durability aspect. Hence, banana leaf ash (BLA) is an efficient concrete ingredient, particularly up to 10 % of the mix. Beyond this threshold, it's still suitable for applications where extreme strength isn't the primary concern, because there may be a slight reduction in compressive strength.
RESUMO
Olive leaves are consumed as an extract or as a whole herbal powder with several potential therapeutic benefits attributed to polyphenols, tocopherol's isomers, and flavonoids, among others. This study assessed the potential variance in the functional features presented by olive leaves from three different Portuguese cultivars-Cobrançosa, Madural, and Verdeal-randomly mix-cultivated in the geographical area of Vale de Salgueiros. Inorganic analysis determined their mineral profiles while an organic analysis measured their total phenolic and flavonoid content, and scanned their phenolic and tocopherol and fatty acid composition. The extracts' biological activity was tested by determining their antimicrobial and antioxidant power as well as their ability to inhibit acetylcholinesterase, butyrylcholinesterase, MAO-A/B, and angiotensin-I-converting enzyme. The inorganic profiles showed them to be an inexpensive source able to address different mineral deficiencies. All cultivars appear to have potential for use as possible antioxidants and future alternative antibiotics against some multidrug-resistant microorganisms, with caution regarding the arsenic content in the Verdeal cultivar. Madural's extract displayed properties to be considered a natural multitarget treatment for Alzheimer's and Parkinson's diseases, depression, and cardiometabolic and dual activity for blood pressure modulation. This work indicates that randomly cultivating different cultivars significantly modifies the leaves' composition while keeping their multifaceted therapeutic value.
RESUMO
We report on a cross-species proton-relaxometry study in ex vivo tree leaves using nuclear magnetic resonance (NMR) at 7µT. Apart from the intrinsic interest of probing nuclear-spin relaxation in biological tissues at magnetic fields below Earth field, our setup enables comparative analysis of plant water dynamics without the use of expensive commercial spectrometers. In this work, we focus on leaves from common Eurasian evergreen and deciduous tree families: Pinaceae (pine, spruce), Taxaceae (yew), Betulaceae (hazel), Prunus (cherry), and Fagaceae (beech, oak). Using a nondestructive protocol, we measure their effective proton T 2 relaxation times as well as track the evolution of water content associated with leaf dehydration. Newly developed "gradiometric quadrature" detection and data-processing techniques are applied in order to increase the signal-to-noise ratio (SNR) of the relatively weak measured signals. We find that while measured relaxation times do not vary significantly among tree genera, they tend to increase as leaves dehydrate. Such experimental modalities may have particular relevance for future drought-stress research in ecology, agriculture, and space exploration.
RESUMO
Agri-food industries generate a large amount of waste that offers great revalorization opportunities within the circular economy framework. In recent years, new methodologies for the extraction of compounds with more eco-friendly solvents have been developed, such as the case of natural deep eutectic solvents (NADES). In this study, a methodology for extracting phenolic compounds from olive tree leaves using NADES has been optimized. The conditions established as the optimal rely on a solvent composed of choline chloride and glycerol at a molar ratio of 1:5 with 30% water. The extraction was carried out at 80 °C for 2 h with constant agitation. The extracts obtained have been analyzed by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) in MRM mode. The comparison with conventional ethanol/water extraction has shown that NADES, a more environmentally friendly alternative, has improved extraction efficiency. The main polyphenols identified in the NADES extract were Luteolin-7-O-glucoside, Oleuropein, 3-Hydroxytyrosol, Rutin, and Luteolin at the concentrations of 262, 173, 129, 34, and 29 mg kg-1 fresh weight, respectively.
RESUMO
The atmospheric deposition of copper (Cu) and cadmium (Cd) was monitored in eight sites around a Cu smelter with similar distance to verify whether tree leaf and ring can be used as bio-indicators to track spatial pollution record. Results showed that total atmospheric deposition of Cu (103-1215 mg/m2/year) and Cd (3.57-11.2 mg/m2/year) were 4.73-66.6 and 3.15-12.2 times higher than those in background site (164 mg/m2/year and 0.93 mg/m2/year). The frequencies of wind directions significantly influenced the atmospheric deposition of Cu and Cd, and the highest atmospheric deposition of Cu and Cd were at the prevalent northeastern wind (JN), and low frequency south (WJ) and north (SW) winds for the lowest deposition fluxes. Since the bioavailability of Cd was higher than that of Cu, the atmospheric deposition of Cd was more easily adsorbed by tree leaf and ring, resulting in only significant relation between atmospheric Cd deposition and Cinnamomum camphora leaves and tree ring Cd. Although tree rings cannot correctly record the atmospheric Cu and Cd deposition, higher concentrations in the indigenous tree rings than the transplanted tree rings suggested that tree rings can reflect to some extent the variations of atmospheric deposition. Generally, spatial pollution of atmospheric deposition of heavy metals cannot reflect the distribution of soil total and available metals around the smelter, and only camphor leaf and tree ring can bio-indicate Cd deposition. A major implication of these findings is that leaf and tree ring can serve for biomonitoring purposes to assess the spatial distribution of atmospheric deposition metal with high bioavailability around a pollution source with similar distance.
Assuntos
Metais Pesados , Poluentes do Solo , Cobre , Cádmio , Cânfora , Monitoramento Ambiental/métodos , Metais Pesados/análise , Solo , Folhas de Planta/química , Poluentes do Solo/análise , ChinaRESUMO
In this study, leaves of the evergreen holm oak Quercus ilex were used to assess airborne contamination of potentially toxic elements (PTEs) at five towns located on the slopes of the Mt. Amiata (central Italy), an area with a long history of mining and, more recently, an important district for the industrial exploitation of geothermal energy. PTE composition and covariance of washed and unwashed Q. ilex leaves of three different ages (6, 12 and 24 month-old) were used to identify atmospheric inputs of PTEs at residential areas, evaluate long-term adsorption and retention of PTEs by the leaves, thus providing an indication of potential human exposure. Moreover, the determination of foliar concentrations of major elements (C, N, S and P) allowed an assessment of the nutritional status of the investigated urban tree stands which excluded the existence of stress condition caused by air pollution or other disturbances. Results indicated that overall Pb, Cu, and Cd concentration were low in the investigated urban sites, if compared with similar studies conducted in larger Italian cities, denoting a low contribution of vehicular traffic to the atmospheric pathway. The five urban settlements were characterized by a specific profile of elements (Al, Ba, Hg and Sb) enriched in unwashed leaves, resulting from the distinct geochemical characteristics of the area and from diffuse (i.e., urban activity) and point sources of PTEs emission (i.e., brownfields, geothermal power plants). The latter sources primarily govern the distribution of Hg, whose contamination was found to be very localized close to a major abandoned mining area. Our data provided quantitative evidence of the spectrum of PTEs potentially impacting resident population and may prove useful in support of follow-up instrumental monitoring campaigns of air quality, as well as for human health and ecological risk assessments.
Assuntos
Poluição do Ar , Mercúrio , Metais Pesados , Poluentes do Solo , Humanos , Lactente , Pré-Escolar , Metais Pesados/análise , Cidades , Árvores , Monitoramento Ambiental/métodos , Poluentes do Solo/análise , Medição de Risco , Solo/químicaRESUMO
Forward osmosis (FO) technology for desalination has been extensively studied due to its immense benefits over conventionally used reverse osmosis. However, there are some challenges in this process such as a high reverse solute flux (RSF), low water flux, and poor chlorine resistance that must be properly addressed. These challenges in the FO process can be resolved through proper membrane design. This study describes the fabrication of thin-film composite (TFC) membranes with polyethersulfone solution blown-spun (SBS) nanofiber support and an incorporated selective layer of graphene quantum dots (GQDs). This is the first study to sustainably develop GQDs from banyan tree leaves for water treatment and to examine the chlorine resistance of a TFC FO membrane with SBS nanofiber support. Successful GQD formation was confirmed with different characterizations. The performance of the GQD-TFC-FO membrane was studied in terms of flux, long-term stability, and chlorine resistance. It was observed that the membrane with 0.05 wt.% of B-GQDs exhibited increased surface smoothness, hydrophilicity, water flux, salt rejection, and chlorine resistance, along with a low RSF and reduced solute flux compared with that of neat TFC membranes. The improvement can be attributed to the presence of GQDs in the polyamide layer and the utilization of SBS nanofibrous support in the TFC membrane. A simulation study was also carried out to validate the experimental data. The developed membrane has great potential in desalination and water treatment applications.
RESUMO
In this study, polyphenols from olive leaves (Domat var.) were compared by shaking water bath and ultrasound-assisted extraction to compare the polyphenol contents and antioxidant activity in olive leaves. The effects of the extraction time on the antioxidant activity of olive leaves will be analyzed depending not only on the extraction method but also on the extraction time, due to the extraction yield, antioxidant activity, as well as the type of polyphenols recovered.Objective: To obtain high antioxidant results and to determine the phenolic compounds contained in olive leaf (Domat var.) by LC-MS/MS after ultrasonic water bath and shaking water bath extraction comparison in a shorter time instead of 2 h.Conclusions: The phenolic compounds contained in olive leaf by ultrasound-assisted extraction were higher than water bath extraction. We said that there is no significant difference between the extraction time and TPC and TFC. There was also no relationship between extraction time and DPPH and ABTS EC50 values (p < 0.05), which means that 15 min of sonication can be performed instead of 120 min.
Assuntos
Olea , Antioxidantes/farmacologia , Cromatografia Líquida , Olea/química , Extratos Vegetais/química , Folhas de Planta , Polifenóis/análise , Polifenóis/química , Polifenóis/farmacologia , Espectrometria de Massas em Tandem , ÁguaRESUMO
Urban trees, especially their leaves, have the potential to capture atmospheric particulate matter (PM) and improve air quality. However, the amount of PM deposited on leaf surfaces detected by different methods varies greatly, and quantitative understanding of the relationship between PM retention capacity and various microstructures of leaf surfaces is still limited. In this study, three measurement methods, including the leaf washing (LW) method, aerosol regeneration (AR) method, and scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDX) method, were used to determine the PM retention capacity of leaf surfaces of three coniferous species. Additionally, we analyzed the leaf traits and elemental composition of PM on leaves collected from different sites. The results showed that Pinus tabulaeformis and Abies holophylla were more efficient species in capturing PM than Juniperus chinensis, but different measurement methods could affect the detected results of PM accumulation on leaf surfaces. The concentrations of trace elements accumulated on leaf surfaces differed considerably between different sites. The greatest accumulation of elements that occurred on the leaf surface was at the Shenfu Highway site exposed to high PM pollution levels and the smallest accumulation at the Dongling park site. The stomatal density and contact angle were highly correlated with the PM retention capacity of leaf surfaces of the tested species (Pearson coefficient: r = 0.87, p < 0.01 and r = - 0.70, p < 0.05), while the roughness and groove width were not significantly correlated (Pearson coefficient: r = 0.16 and r = - 0.03). This study suggests that a methodological standardization for measuring PM is urgently required and this could contribute to selecting greening tree species with high air purification capacity.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Traqueófitas , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Folhas de Planta/química , Árvores/químicaRESUMO
Cellulases are used in various industries, acting efficiently and sustainably in the degradation of cellulose contained in different raw materials and recovering high value products. It is the third largest group of enzymes consumed industrially, as they are required in processes linked to the food, biofuel, textile, cleaning products, among others. However, the main disadvantage in the use of commercial cellulases is the high cost. In this context, the objective of this work was to determine conditions for obtaining more efficient and economical cellulases. For this, the efficiency in obtaining the extracellular cellulases endoglucanase (CMCase) and exoglucanase (FPase) by a fungus Aspergillus niger was investigated using an urban lignocellulosic waste as substrate characterized by tree leaves collected from squares and avenues in urban areas. As urban lignocellulosic waste is an innovative raw material, its chemical composition was determined. This substrate contains 20.36% cellulose and induced the production of cellulases in all fermentation methods, proving to be a promising and sustainable source. The influence of the nutrient medium on CMCase and FPase activities was evaluated for three different sequential fermentation (SF) configurations. Medium 2 provided an increase of up to 100 U/L of CMCase and FPase in relation to medium 1. The interactive effect of pH and moisture content on CMCase e FPase production under SF was studied in a central composite design (CCD). Also, different fermentation methods (solid state, submerged and sequential) were evaluated. The use of SF increased the enzymatic activities of both cellulases by 140% compared to other conventional methods and also stood out in the production of proteins (270.05 µg/mL) and reducing sugars (1.19 mg/mL). The desirability function determined the optimal activities of CMCase and FPase as 413.49 U/L and 230.68 U/L, respectively, obtained from the optimal variables of pH 5.5 and 75% moisture content under SF. The effect of pH and moisture content on the activity of each cellulase was analyzed using the Pareto chart and response surface methodology (RSM). These results revealed favorable strategies for cellulase production, such as the use of urban lignocellulosic waste, SF and ideal operational conditions.
Assuntos
Celulase , Celulases , Aspergillus niger/metabolismo , Celulases/metabolismo , Fermentação , LigninaRESUMO
The nutritional value of some tree leaves (grape, common fig, barberry, sweet cherry, apricot, peach, and oleaster) was investigated by in vitro and common laboratory methods. Also, thirty Baluchi male lambs were randomly divided into five groups, including one control group (alfalfa) and four experimental groups, which received diets containing different leaves (barberry, apricot, peach, and grape). The crude protein content ranged from 128 for the sweet cherry to 164 g/kg DM for grape. Common fig and barberry had the greatest and lowest calcium (29.3 vs. 11.5 g/kg DM), respectively (p < 0.001). The greatest total volatile fatty acids, dry matter and organic matter digestibilities, as well as potential gas production, were observed in barberry leaves (p < 0.001). Apricot had the greatest acid-base buffering capacity (245 mEq × 10-3) (p < 0.001). Lambs fed with barberry had a greater average daily gain (179 g/day, p = 0.013). The results of in vitro and in vivo indicated that barberry leaves had a greater nutritional value among the studied leaves. It is concluded that alfalfa can be replaced with barberry, apricot, peach, and grape leaves up to 250 g/kg DM in diet without deleterious effects on performance, nutrient digestibility, blood metabolites, and hematology.
Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Ovinos , Animais , Ração Animal/análise , Digestão , Árvores , Frutas , Carneiro Doméstico , Dieta/veterinária , Valor Nutritivo , Medicago sativa , Folhas de PlantaRESUMO
The historical air pollution with halogenated flame retardants (HFRs) in Germany was assessed by investigating tree leaf and shoot samples which have been archived in the German environmental specimen bank. Samples covered the period from 1985 to 2016. 43 HFRs comprising polybrominated diphenyl ethers as well as emerging brominated and chlorinated compounds such as Dechlorane Plus, DBDPE, or DPTE, were analysed in 115 samples from ten sub sites originating from six areas characterised by different land uses, including urban as well as a background site. HFRs were observed in each sample showing the widespread distribution of HFRs in Germany in tree leaves and shoots as bioindicators of past and present atmospheric pollution. Analytes observed at elevated concentrations were BDE 209, DBDPE and DPTE. Observed HFR-levels differed between analytes as well as sampling locations, particularly prior to the year 2000. They were typically highest at conurbation areas. Concentrations at the background site often belonged to the lowest ones observed, however, lowest values were not exclusively found there. The quantification frequencies appeared to decrease from the past to most recent samples. With few exceptions, atmospheric pollution of both, legacy and emerging HFRs, decreased significantly.
Assuntos
Retardadores de Chama , Monitoramento Ambiental , Poluição Ambiental , Retardadores de Chama/análise , Éteres Difenil Halogenados/análise , Folhas de Planta/química , ÁrvoresRESUMO
The aim of this study was to analyze eight selected species of leaves, used in the traditional medicine of the Northeast region of Brazil obtained from several fruit trees (grageru, soursop, jambolanum, passion fruit, insulin, nogueira, pedra ume kaá and stévia), regarding their polyphenols contents and antioxidant activity. Condensed and hydrolysable tannins, phenolics and flavonoids contents were determined and the antioxidant activities measured by ABTS, FRAP and ORAC assays. Organic acids were analyzed by HPLC-DAD system. Phenolic compounds of aqueous and ethanolic extracts were determined by UHPLC-DAD-MS. The results revealed high contents of total phenolics (13.34 ± 0.19 - 127.65 ± 0.21 mg.g-1 of GAE:QE (2:1) of sample) and flavonoids (12.30 ± 0.42 - 71.79 ± 0.00 mg.g-1 QE of sample). The ABTS results exhibited extraordinary activity in the extracts (74.48 ± 6.23 - 1487.33 ± 2.67 µmol Trolox.g-1 of sample). Acids quinic, tartaric, citric, gallic, chlorogenic, p-coumaric, ferulic and vanillic along with naringenin, rutin, vanillin, catechin, epicatechin, kaempferol were the most important compounds. Thus, these leaves extracts may be considered as sources of phenolics compounds having a high potential as natural antioxidants. In addition, the polyphenols present in these leaves have many beneficial effects and can also be used in medicinal and nutraceuticals products with enhanced bioactivities.
Assuntos
Antioxidantes , Árvores , Brasil , Frutas , Medicina Tradicional , Compostos Fitoquímicos , Extratos Vegetais , Folhas de PlantaRESUMO
Aiming to assess the efficiency of white clove (WC) as an alternative nitrogen source for composting and to facilitate the utilization of orchard waste, WC as compared with chicken manure (CM) was aerobically composted with apple tree leaves (ATL) in initial C/N ratios of 25(R25), 30(R30) and 35(R35). The results show that WC facilitated the rapid and harmless treatment of ATL with the compost temperature above 55°C for more than 3 days. After composting, for all final products, organic matter content was 69.9%-72.9%, electrical conductivity (EC) 1.48-2.31â msâ cm-1, germination index (GI) more than 80% and C/N ratios less than 20. Among all treatments, the product from R30 was most nutrient-rich. Compared with CM, WC facilitated the harmless treatment of ATL and required less time for high quality compost production. It is concluded that WC is an excellent replacement for animal manure as a nitrogen source in field composting of orchard waste in areas with limited transportation. WC and ATL can produce high quality organic fertilizer and initial C/N ratio of 30 is recommended.
Assuntos
Compostagem , Malus , Animais , Esterco , Medicago , Nitrogênio/análise , SoloRESUMO
Zinc is an essential trace element and a vital microelement for human health. Zinc can be toxic when exposures exceed physiological needs. Toxic effects in humans are most evident from inhalation exposure to high concentrations of Zn compounds. Urban air pollution can be especially dangerous due to the Zn content in airborne dust. Tree leaves can absorb significant levels of zinc. In this study, leaf deposition of Zn was investigated in Chelyabinsk, Russia. Russian zinc production plant and metallurgical plant are located in Chelyabinsk. Extremely high concentrations of Zn (316-4000 mg kg-1) were found in the leaves of birch trees. It is well known that traffic also is Zn source in an urban environment. Trees, growing at the different distances from zinc production and metallurgical plants and road to identify the contribution of each source (road or industry), were studied. Through SEM analysis, the prevalence of small particulates (PM10 and less), containing Zn, illustrated leaf Zn deposition from the air by passing root accumulation. It was shown that emission of zinc production plant and the metallurgical plant is the main source of leaf Zn deposition in Chelyabinsk.