Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Reprod Biol Endocrinol ; 21(1): 6, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653830

RESUMO

BACKGROUND: Human embryos express the prolactin (PRL) receptor at the morula and blastocyst stages. Treatment with PRL from cleavage to the blastocyst stage improves blastocyst outgrowth on fibronectin-coated dishes. However, whether post-warming PRL treatment of blastocysts cultured without PRL could improve outgrowth competence remains unknown. Furthermore, the optimal time for post-warming PRL treatment remains to be ascertained. This study investigated the effects of PRL treatment during recovery culture on human blastocyst outgrowth and its related genes. METHODS: In total, 374 discarded vitrified blastocysts were randomly allocated to two groups, to be cultured with (n = 208) or without PRL (control; n = 166) for 120 min for recovery, and then plated on fibronectin-coated dishes. The expression level of PRL-interacting genes, blastocyst adhesion rate, outgrowth area, distance of trophoblast migration, and outgrowth degeneration were examined. RESULTS: The mRNA expression of ezrin, radixin, and moesin, which regulate cell adhesion and invasion by controlling actin reorganization during epithelial-to-mesenchymal transition (EMT), was stimulated by PRL treatment for 120 min. The expression of EMT-related genes, transforming growth factor ß1, snail1, and twist1 was also promoted following treatment with PRL for 120 min. PRL-treated blastocysts also exhibited augmented expression of cadherin 2 and transcriptional repression of cadherin 1. Higher mRNA expression of integrin-based focal adhesion-related genes, ITGA5 and ITGB1, was observed after treatment with PRL for 120 min than in the non- and shorter-treatment groups. PRL treatment for 120 min did not alter the rate of blastocyst adhesion to fibronectin-coated dishes 96 h after the outgrowth culture assay. However, multiple linear regression analysis revealed that the outgrowth area was significantly increased in PRL-treated blastocysts. The migration distance of trophoblast cells was significantly increased and degeneration rate was significantly decreased after PRL treatment. Furthermore, a more beneficial effect of PRL treatment on blastocyst outgrowth was observed when the blastocysts were vitrified on day 5 than when they were vitrified on day 6. CONCLUSIONS: Post-warming culture of human vitrified blastocysts with PRL for 120 min promoted trophoblast outgrowth in vitrified human blastocysts. Furthermore, PRL treatment may reduce outgrowth degeneration by increasing resistance to apoptosis during trophoblast migration.


Assuntos
Prolactina , Trofoblastos , Humanos , Trofoblastos/metabolismo , Prolactina/farmacologia , Prolactina/metabolismo , Fibronectinas/genética , Fibronectinas/farmacologia , Fibronectinas/metabolismo , Blastocisto/fisiologia , RNA Mensageiro/metabolismo , Criopreservação , Vitrificação
2.
Toxicol Appl Pharmacol ; 461: 116383, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36682589

RESUMO

A deep interaction between the endometrium and the invading trophoblast occurs during implantation in humans, with the acquisition of uterine receptivity to the invading embryo promoted by an elevation of pro-inflammatory cytokines in the endometrium, and the invasiveness of decidualizing endometrial stromal cells, augmented by trophoblast-derived signals. Considering that usage of angiotensin II type 1 (AT1) receptor blockers, among other renin-angiotensin system (RAS) antagonists, is associated with adverse pregnancy outcomes, here we aim to analyse the involvement of AT1 receptor in the reciprocal dialogue occurring between endometrial stroma and trophoblast cells. In human endometrial stromal cells (T-HESC) pre-incubated with a decidualization cocktail, angiotensin (Ang) II increased protein expression of prolactin and FOXO1, markers of endometrial decidualization, while promoting nuclear translocation of FOXO1. In addition, Ang II treatment increased CXCL8, and matrix metalloprotease (MMP)-2 levels in T-HESC. Incubation with the AT1 receptor blocker losartan or with an NFAT signalling inhibitor, decreased Ang II-induced secretion of prolactin, CXCL8, and MMP-2 in T-HESC. In a wound healing assay, conditioned medium (CM) obtained from Ang II-treated T-HESC, but not CM from losartan-pre-incubated T-HESC, increased migration of HTR-8/SVneo trophoblasts, effect that was inhibited in the presence of a CXCL8-neutralizing antibody. An increased secretion of CXCL8 and MMP-2 was observed after treatment of T-HESC with CM obtained from HTR-8/SVneo cells, which was not observed in T-HESC pre-incubated with losartan or with the NFAT inhibitor. This study evidenced a reciprocal RAS-coded messaging between trophoblast and ESC which is affected by the AT1 receptor blocker losartan.


Assuntos
Losartan , Trofoblastos , Gravidez , Feminino , Humanos , Trofoblastos/metabolismo , Losartan/farmacologia , Angiotensina II/toxicidade , Receptor Tipo 1 de Angiotensina/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Prolactina/metabolismo , Endométrio/metabolismo , Células Estromais/metabolismo
3.
Cells ; 11(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36139458

RESUMO

It was postulated that 3D cell culture models more accurately reflect the complex tissue physiology and morphology in comparison to 2D cell monolayers. Currently, there is a shortage of well-characterized and easily maintainable high-throughput experimental models of the human placenta. Here, we characterized three different 3D cultures (e.g., spheroids) derived from trophoblast cell lines and studied their functionality in comparison to primary fetal trophoblasts and placental tissue. The spheroid growth rates of JEG3, BeWo and HTR8/SVneo cell lines were similar among each other and were significantly larger in comparison to primary trophoblast spheroids. All spheroids exhibited migratory properties and shortest distances were registered for JEG3 spheroids. Even though all spheroids displayed invasive capabilities, only the invasive features of HTR8/SVneo spheroids resulted in specific branching. This was in agreement with the invasive properties of the spheroids obtained from primary trophoblasts. Human chorionic gonadotropin production was highest in JEG3 spheroids and only increased when stimulated with cAMP and forskolin in BeWo, but not HTR8/SVneo spheroids. The gene expression analysis confirmed that 3D trophoblast cell cultures and especially HTR8/SVneo spheroids showed considerable similarities with the gene expression profile of primary placental tissue. This study offers a broad characterization of 3D trophoblast spheroids that, in turn, can help in selecting the best model depending on the scientific question that needs to be answered.


Assuntos
Placenta , Trofoblastos , Linhagem Celular Tumoral , Gonadotropina Coriônica/metabolismo , Gonadotropina Coriônica/farmacologia , Colforsina/farmacologia , Feminino , Humanos , Placenta/metabolismo , Gravidez , Trofoblastos/metabolismo
4.
F S Sci ; 3(1): 84-94, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35559998

RESUMO

OBJECTIVE: To explore the regulatory role of soluble CD146 (sCD146) and its interaction with galectin-1 (Gal1) in placenta-mediated complications of pregnancy. DESIGN: Prospective pilot and experimental studies. SETTING: University-affiliated hospital and academic research laboratory. PATIENT(S): One hundred fifteen women divided into three groups: 30 healthy, nonpregnant women, 50 women with normal pregnancies, and 35 with placenta-mediated pregnancy complications. INTERVENTION(S): Wound-healing experiments were conducted to study trophoblast migration. MAIN OUTCOME MEASURE(S): Quantification of sCD146 and Gal1 by enzyme-linked immunosorbent assay. Analysis of trophoblast migration by wound closure. RESULT(S): Concomitant detection of sCD146 and Gal1 showed lower sCD146 and higher Gal1 concentrations in women with normal pregnancies compared with nonpregnant women. In addition, follow-up of these women revealed a decrease in sCD146 associated with an increase in Gal1 throughout pregnancy. In contrast, in women with preeclampsia, we found significantly higher sCD146 concentrations compared with women with normal pregnancies and no modification of Gal1. We emphasize the opposing effects of sCD146 and Gal, since, unlike Gal1, sCD146 inhibits trophoblast migration. Moreover, the migratory effect of Gal1 was abrogated with the use of an anti-CD146 blocking antibody or the use of small interfering RNA to silence VEGFR2 expression. This suggests that trophoblast migration is mediated though the interaction of Gal1 with CD146, further activating the VEGFR2 signaling pathway. Significantly, sCD146 blocked the migratory effects of Gal1 on trophoblasts and inhibited its secretion, suggesting that sCD146 acts as a ligand trap. CONCLUSION(S): Soluble CD146 could be proposed as a biomarker in preeclampsia and a potential therapeutic target. CLINICAL TRIAL REGISTRATION NUMBER: NCT 01736826.


Assuntos
Pré-Eclâmpsia , Trofoblastos , Antígeno CD146/metabolismo , Feminino , Galectina 1 , Humanos , Gravidez , Estudos Prospectivos , Trofoblastos/metabolismo
5.
Food Chem Toxicol ; 165: 113128, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35569596

RESUMO

Ti3C2 MXene, as a novel nanomaterial, has attracted great attention due to its promising properties in biomedical applications. However, the potential effects of Ti3C2 MXene on trophoblast functions have not been investigated. Here, we found that Ti3C2 MXene exposure weakened the extension ability of villus explants in vitro. We employed human trophoblast HTR-8/SVneo cells to reveal the underlying molecular mechanisms by which Ti3C2 MXene exposure affected trophoblast functions. Results showed that Ti3C2 MXene entered cells and mostly deposited in the cytoplasm, inhibiting cell migration and invasion abilities. Furthermore, we found that Ti3C2 MXene exposure elevated autophagy through the inhibition of the PI3K/AKT/mTOR pathway. Meanwhile, the application of an autophagy inhibitor (3-MA) prevented autophagy and restored cell viability, resulting in the recovery of cell migration and invasion abilities. These indicated that the cellular dysfunction induced by Ti3C2 MXene may be mediated by autophagy activation. Our results indicated that autophagy is a key factor in eliciting HTR-8/SVneo dysfunction after Ti3C2 MXene exposure, which could therefore damage placental development. Autophagy inhibition is a potential therapeutic strategy for alleviating the placental toxicity of nanoparticles.


Assuntos
Titânio , Trofoblastos , Autofagia , Feminino , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Placenta/metabolismo , Gravidez , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Titânio/farmacologia
6.
Viruses ; 14(2)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35215985

RESUMO

Human cytomegalovirus (HCMV) encodes four homologs of G protein coupled receptors (vGPCRs), of which two, designated UL33 and US28, signal constitutively. UL33 and US28 are also conserved with chemokine receptors: US28 binds numerous chemokine classes, including the membrane bound chemokine, fractalkine; whereas UL33 remains an orphan receptor. There is emerging data that UL33 and US28 each contribute to HCMV associated disease, although no studies to date have reported their potential contribution to aberrant placental physiology that has been detected with HCMV congenital infection. We investigated the signaling repertoire of UL33 and US28 and their potential to enable trophoblast mobilization in vitro. Results demonstrate the constitutive activation of CREB by each vGPCR in ACIM-88 and HTR-8SVneo trophoblasts; constitutive NF-kB activation was detected for US28 only. Constitutive signaling by each vGPCR enabled trophoblast migration. For US28, fractalkine exhibited inverse agonist activity and dampened trophoblast migration. UL33 stimulated expression of both p38 mitogen activated (MAP) and Jun N-terminal (JNK) kinases; while p38 MAP kinase stimulated CREB, JNK was inhibitory, suggesting that UL33 dependent CREB activation was regulated by p38/JNK crosstalk. Given that chemokines and their receptors are important for placental development, these data point to the potential of HCMV UL33 and US28 to interfere with trophoblast responses which are important for normal placental development.


Assuntos
Citomegalovirus/metabolismo , Receptores de Quimiocinas/metabolismo , Transdução de Sinais , Trofoblastos/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Quimiocina CX3CL1/metabolismo , Citomegalovirus/fisiologia , Humanos , NF-kappa B/metabolismo , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo
7.
Genes (Basel) ; 13(1)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35052470

RESUMO

Adverse exposures during pregnancy have been shown to contribute to susceptibility for chronic diseases in offspring. Maternal diabetes during pregnancy is associated with higher risk of pregnancy complications, structural birth defects, and cardiometabolic health impairments later in life. We showed previously in a mouse model that the placenta is smaller in diabetic pregnancies, with reduced size of the junctional zone and labyrinth. In addition, cell migration is impaired, resulting in ectopic accumulation of spongiotrophoblasts within the labyrinth. The present study had the goal to identify the mechanisms underlying the growth defects and trophoblast migration abnormalities. Based upon gene expression assays of 47 candidate genes, we were able to attribute the reduced growth of diabetic placenta to alterations in the Insulin growth factor and Serotonin signaling pathways, and provide evidence for Prostaglandin signaling deficiencies as the possible cause for abnormal trophoblast migration. Furthermore, our results reinforce the notion that the exposure to maternal diabetes has particularly pronounced effects on gene expression at midgestation time points. An implication of these findings is that mechanisms underlying developmental programming act early in pregnancy, during placenta morphogenesis, and before the conceptus switches from histiotrophic to hemotrophic nutrition.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Diabetes Gestacional/fisiopatologia , Dieta , Regulação da Expressão Gênica , Fenômenos Fisiológicos da Nutrição Materna , Placenta/patologia , Animais , Feminino , Perfilação da Expressão Gênica , Camundongos , Placenta/metabolismo , Gravidez
8.
Reprod Sci ; 29(1): 110-121, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34291416

RESUMO

Fragile X-related protein 1 (FXR1) is an RNA-binding protein that can regulate specific mRNA decay in cells. Our previous study showed that FXR1 expression was significantly decreased in trophoblasts from patients with unexplained recurrent spontaneous abortion (RSA); however, the role of FXR1 in trophoblast function during early placenta development has not been fully elucidated. In this study, we found that knockdown of FXR1 using siRNA effectively inhibited the migration of HTR-8 cells and extravillous trophoblast (EVT) outgrowth in an ex vivo extravillous explant culture model. Furthermore, through analysis of a panel of cytokines, we found that the GDF-15 protein was upregulated after knockdown of FXR1 in HTR-8/SVneo cells. This was further confirmed by western blotting and immunofluorescence in HTR-8/SVneo cells and an extravillous explant. Our data also showed that FXR1 expression was downregulated and GDF-15 was upregulated in chorionic villous tissues from RSA patients compared with those from healthy controls (HCs). Further, immunohistochemistry showed a strong expression of GDF-15 in chorionic villous tissue in the RSA group, which was mainly distributed in villous trophoblasts (CTBs) and syncytiotrophoblasts (STBs). Moreover, knockdown of GDF-15 enhanced the migration of HTR-8 cells, while overexpression of GDF-15 using plasmid or treatment with recombinant human GDF-15 protein inhibited trophoblast migration. Importantly, RNA-binding protein immunoprecipitation showed that FXR1 directly bound to the 3'-UTR of GDF-15 mRNA to promote GDF-15 mRNA decay. Together, our data provide new insight into the function of FXR1 in human placenta via regulation of GDF-15 expression in trophoblasts and suggest a possible pathological process involved in RSA.


Assuntos
Movimento Celular/fisiologia , Regulação para Baixo , Fator 15 de Diferenciação de Crescimento/metabolismo , Proteínas de Ligação a RNA/metabolismo , Trofoblastos/metabolismo , Adulto , Linhagem Celular , Feminino , Fator 15 de Diferenciação de Crescimento/genética , Humanos , Placenta/metabolismo , Gravidez , Primeiro Trimestre da Gravidez/metabolismo , Proteínas de Ligação a RNA/genética
9.
Front Cell Dev Biol ; 9: 652607, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055782

RESUMO

The mechanisms contributing to excessive fibronectin in preeclampsia, a pregnancy-related disorder, remain unknown. Herein, we investigated the role of JMJD6, an O2- and Fe2+-dependent enzyme, in mediating placental fibronectin processing and function. MALDI-TOF identified fibronectin as a novel target of JMJD6-mediated lysyl hydroxylation, preceding fibronectin glycosylation, deposition, and degradation. In preeclamptic placentae, fibronectin accumulated primarily in lysosomes of the mesenchyme. Using primary placental mesenchymal cells (pMSCs), we found that fibronectin fibril formation and turnover were markedly impeded in preeclamptic pMSCs, partly due to impaired lysosomal degradation. JMJD6 knockdown in control pMSCs recapitulated the preeclamptic FN phenotype. Importantly, preeclamptic pMSCs had less total and labile Fe2+ and Hinokitiol treatment rescued fibronectin assembly and promoted lysosomal degradation. Time-lapse imaging demonstrated that defective ECM deposition by preeclamptic pMSCs impeded HTR-8/SVneo cell migration, which was rescued upon Hinokitiol exposure. Our findings reveal new Fe2+-dependent mechanisms controlling fibronectin homeostasis/function in the placenta that go awry in preeclampsia.

10.
Life Sci ; 261: 118351, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32858039

RESUMO

AIMS: Numerous studies suggest that excessive maternal inflammation and defective extravillous trophoblast (EVT) invasion could contribute to the development of preeclampsia (PE), but the underlying mechanism remains unclear. Some evidence suggests that CyPA is elevated in PE. This research aims to investigate the effect of recombinant human CyPA on trophoblast migration and invasion both in vitro and in vivo. MATERIALS AND METHODS: We detected the expression and localization of CyPA in human placenta and explored the effects of CyPA on cell migration and invasion on HTR8/SVneo cell. Additionally, the expression levels of matrix metalloproteinase (MMP)-2/9 and molecules in the p38/ERK/JNK signaling pathway were detected. We established a mouse model by injecting pregnant mice with recombinant human CyPA and measured blood pressure, albumin/creatinine ratio, fetal and placenta weight of mice. Moreover, we examined the placental histology and MMP-2/9 and p38/ERK/JNK expression. KEY FINDINGS: Our results showed that CyPA inhibited the migration and invasion of HTR8/SVneo cells in a dose-dependent manner, decreasing the expression of matrix metalloproteinase (MMP)-2/9 and molecules in the p38/ERK/JNK signaling pathway. Silencing CyPA could reverse the above effects. Moreover, CyPA could induce PE-like features in pregnant mice and disrupt the structure of the mouse placenta by reducing the junctional zone area. CyPA attenuated the trophoblast invasiveness in mice placenta by downregulating MMP-2/9 expression and p38/ERK/JNK pathway activity. SIGNIFICANCE: We proposed that CyPA could inhibit trophoblast migration and invasion both in vitro and in vivo, which was involved in PE development.


Assuntos
Movimento Celular , Ciclofilina A/metabolismo , Sistema de Sinalização das MAP Quinases , Pré-Eclâmpsia/enzimologia , Pré-Eclâmpsia/patologia , Trofoblastos/enzimologia , Trofoblastos/patologia , Adulto , Animais , Regulação para Baixo/genética , Feminino , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Rim/patologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Placenta/enzimologia , Placenta/patologia , Gravidez , Resultado da Gravidez
11.
Placenta ; 90: 18-26, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-32056547

RESUMO

INTRODUCTION: Studies have reported that villous cytotrophoblasts (CTBs) undergo a partial epithelial to mesenchymal transition (EMT) when differentiating into extravillous cytotrophoblasts (EVTs). Epithelial splicing-regulatory protein 1 (ESRP1), an alternative splicing regulator, has been demonstrated to play important roles in the EMT process. Nevertheless, the roles of ESRP1 in the placentation remain undefined. METHODS: ESRP1 expression in placental tissues throughout pregnancy was determined by immunohistochemistry and western blotting. The effect of ESRP1 knockdown by using small-interfering RNAs (siRNAs) on the phenotype of trophoblast cell line (HTR-8/SVneo) and villous explants was evaluated. RESULTS: ESRP1 was localized within the CTBs, trophoblast columns, and EVTs located in the decidua. ESRP1 expression was changed during pregnancy, with the highest expression level in term placentae. ESRP1 knockdown significantly increased the migration and invasion of HTR-8/SVneo cells, as well as the outgrowth of EVTs from villous explants, without affecting cell proliferation. This enhanced effect was associated with the increased expression of N-cadherin, vimentin and CD44. DISCUSSION: Our results suggested an important role for ESRP1 in regulating trophoblast migration and invasion during placentation.


Assuntos
Movimento Celular/fisiologia , Endométrio/metabolismo , Placenta/metabolismo , Proteínas de Ligação a RNA/metabolismo , Trofoblastos/metabolismo , Proliferação de Células/fisiologia , Feminino , Humanos , Gravidez , RNA Interferente Pequeno , Proteínas de Ligação a RNA/genética
12.
J Biochem Mol Toxicol ; 34(4): e22454, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31981282

RESUMO

Dysfunction of trophoblast metastasis into the endometrium is the main cause of pre-eclampsia (PE); however, the factors affecting this process are still unclear. In this study, we found that endoplasmic reticulum protein 29 (ERp29), one molecular chaperone of the endoplasmic reticulum, was aberrantly upregulated in the placenta of pre-eclamptic patients compared with healthy controls. Then, an in vitro study using human extravillous trophoblast HTR-8/SVneo cells showed that ERp29 upregulation could inhibit the migratory and invasive ability of HTR-8/SVneo cells, while ERp29 downregulation had the opposite effect. Mechanical experiments confirmed that ERp29 blocked trophoblast metastasis via inhibiting the process of epithelial-mesenchymal transition and affecting the Wnt/ß-catenin signaling pathway. In conclusion, this study revealed the important role of ERp29 in trophoblast metastasis and improved the mechanical understanding of PE occurrence.


Assuntos
Movimento Celular , Transição Epitelial-Mesenquimal/fisiologia , Proteínas de Choque Térmico/fisiologia , Pré-Eclâmpsia/etiologia , Trofoblastos/metabolismo , Adulto , Linhagem Celular , Feminino , Proteínas de Choque Térmico/biossíntese , Humanos , Metaloproteinases da Matriz/metabolismo , Placenta/metabolismo , Placenta/patologia , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Gravidez , Trofoblastos/transplante , Regulação para Cima , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Adulto Jovem , beta Catenina/metabolismo
13.
Placenta ; 89: 33-41, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675488

RESUMO

INTRODUCTION: Embryo implantation depends on trophoblast cells migration and invasion. Abnormal function of trophoblast cells could result in many pregnancy complications. Secreted protein acidic and rich in cysteine like-1 (SPARCL1) has been reported to inhibit cell migration and tumor invasion. This study aimed to explore the role of SPARCL1 in trophoblast functions. METHODS: Villous specimens were obtained from 31 women with spontaneous abortion and 31 women with normal early pregnancy to determine the expression of SPARCL1. HTR8/SVneo cells and JAR cells were transfected with pIRES2-EGFP-SPARCL1 vectors and control vectors. The proliferation assay and scratch-wound assay were performed. Quantitative polymerase chain reaction (qPCR) and western blotting were performed to assess epithelial mesenchymal transition (EMT)-related molecules including MMP2, MMP3, N-cadherin, E-cadherin and vimentin. Extracellular signal-regulated kinase (ERK) phosphorylation activity and AP-1 expression in HTR8/SVneo cells following multi-scratching were detected using above assays. RESULTS: The mRNA and protein levels of SPARCL1 were significantly higher in the abortion group than in the normal pregnancy group. After transfection, there was no difference of cell viability between the SPARCL1-overexpression group and control vector group. However, the migration distance and area were reduced and the abundances of EMT related molecules were changed by SPARCL1 overexpression when compared with controls. Lower ERK phosphorylation activity and decreased Fos and Jun expressions were noted at high level of SPARCL1. CONCLUSION: Restrained migration and invasion were noted in trophoblast cells with SPARCL1 overexpression, which might affect embryo implantation and placenta development. It could be involved in the pathogenesis of spontaneous abortion.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Movimento Celular/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Proteínas da Matriz Extracelular/metabolismo , Fator de Transcrição AP-1/metabolismo , Trofoblastos/metabolismo , Aborto Espontâneo/genética , Aborto Espontâneo/metabolismo , Adulto , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular , Regulação para Baixo , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , Fosforilação , Placenta/citologia , Placenta/metabolismo , Gravidez , Primeiro Trimestre da Gravidez/genética , Primeiro Trimestre da Gravidez/metabolismo , Trofoblastos/citologia
14.
J Matern Fetal Neonatal Med ; 32(14): 2369-2375, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29466889

RESUMO

OBJECTIVE: Many studies have confirmed that N-acetylglucosaminyltransferase III (GnT-III) is correlated with tumor invasion and metastasis. However, the expression of GnT-III and its role in normal pregnancy and preeclampsia (PE) has not been reached. So the primary objective of this study is to determine GnT-III expression in normal pregnancy and whether its expression is vulnerable to oxidative stress in the trophoblast cells. METHODS: Human first trimester villous tissues from normal pregnancies and third trimester placentas from pregnancies with or without preeclampsia (PE) were used for the detection of GnT-III expression. Human first trimester extravillous trophoblast cell line (HTR8/SVneo) exposed to hypoxia/reoxygenation (H/R) condition was employed as an oxidative stress model in vitro to investigate the expression of GnT-III. RESULTS: GnT-III was strongly expressed in cytotrophoblast (CTBs), syncytiotrophoblast (STBs) and the trophoblast columns (TCs) of human placental villi, and decidual cells in the maternal decidua. The expression of GnT-III was decreased in PE placentas compared with the normal control placentas. In addition, GnT-III was found to have decreased expression in H/R-exposed HTR8/SVneo cells, and the invasive and migratory abilities of HTR8/SVneo cells were attenuated, too. CONCLUSIONS: These findings suggest that GnT-III is an important regulator at the maternal-fetal interface during early pregnancy. Excessive oxidative stress can decrease GnT-III expression in trophoblast and the decreased expression of GnT-III may be involved in the development of preeclampsia.


Assuntos
Hipóxia Celular , N-Acetilglucosaminiltransferases/metabolismo , Placenta , Pré-Eclâmpsia/metabolismo , Trofoblastos/metabolismo , Adulto , Western Blotting , Estudos de Casos e Controles , Linhagem Celular , Movimento Celular , Vilosidades Coriônicas/metabolismo , Regulação para Baixo , Feminino , Humanos , Estresse Oxidativo , Placenta/metabolismo , Placenta/patologia , Gravidez , Reação em Cadeia da Polimerase em Tempo Real
15.
Cell Adh Migr ; 12(3): 259-270, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29231798

RESUMO

INTRODUCTION: Trophoblast homing to maternal spiral arteries is mandatory for successful placentation. Cell-cell adhesion molecules regulate this process and adhesion molecule expression is altered in impaired placentation. We hypothesize that, similar to immune cell recruitment, trophoblast cell adherence and rolling are primarily mediated by adhesion molecules like, cadherins, immunoglobulins, selectins and their partnering ligands. Here, the interdependence of adhesion molecule expression in trophoblastic cell lines of diverse origin was investigated in relation to their interaction with endothelial cell networks on Matrigel® co-cultures and the effect of specific adhesion molecule knockdown analyzed. METHODS: Trophoblastic cells were labeled in red and co-cultured with green HUVEC networks on Matrigel®. Association was quantified after collection of fluorescence microscopy pictures using Wimasis® internet platform and software. Expression of adhesion molecules was analyzed by PCR and Western blot, immuno-fluorescence and flow cytometry. The impact of adhesion molecules on trophoblast-endothelial-cell interaction was investigated using siRNA technique. RESULTS: N-cadherin and CD162 were specifically expressed in the trophoblast cell line HTR-8/SVneo, which closely adhere to and actively migrate toward HUVEC networks on Matrigel®. Suppression of N-cadherin led to a significant alteration in trophoblast-endothelial cell interaction. Expression of VE-cadherin in closely interacting trophoblast cells was not confirmed in vitro. DISCUSSION: We identified N-cadherin to mediate specific interaction between HUVEC and the migrating trophoblast cells HTR-8/SVneo in a Matrigel® co-culture model. VE-cadherin contribution could not be confirmed in vitro. Our results support the hypothesis that impaired N-cadherin but not VE-cadherin expression is involved in trophoblast recruitment to the maternal endothelium.


Assuntos
Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Células Endoteliais/metabolismo , Endotélio/metabolismo , Trofoblastos/citologia , Comunicação Celular/fisiologia , Técnicas de Cultura de Células , Movimento Celular/fisiologia , Feminino , Humanos , Placentação/fisiologia , Gravidez
16.
Biol Reprod ; 95(5): 113, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27733378

RESUMO

Pregnancies resulting from fresh in vitro fertilization (IVF) cycles exposed to supraphysiologic estrogen levels have been associated with higher rates of low birth weight and small for gestational age babies. We identified GATA3, a transcription factor selectively expressed in the trophectoderm during the blastocyst stage of embryo development, in an upstream analysis of genes that were differentially methylated in chorionic villus samples between IVF and non-IVF infertility treatment pregnancies. In this study, we investigate the hypothesis that GATA3 is hormonally regulated and plays an important functional role in trophoblast migration, invasion, and placentation. We found that GATA3 expression was hormonally regulated by estradiol in HTR8/SVneo first trimester trophoblast cells; however, no change in expression was seen with progesterone treatment. Furthermore, GATA3 knockdown resulted in decreased HTR8/SVneo cell migration and invasion compared with controls. RNA sequencing of GATA3 knockdown cells demonstrated 96 differentially regulated genes compared with controls. Genes known to play an important role in cell-cell and cell-extracellular matrix interactions, cell invasion, and placentation were identified, including CTGF, CYR61, ADAMTS12, and TIMP3 Our results demonstrate estradiol down-regulates GATA3, and decreased GATA3 expression leads to impaired trophoblast cell migration and invasion, likely through regulation of downstream genes important in placentation. These results are consistent with clinical data suggesting that supraphysiologic estrogen levels seen in IVF pregnancies may play an important role in attenuated trophoblast migration, invasion, and impaired placentation. GATA3 appears to be an important regulator of placentation and may play a role in impaired outcomes associated with fresh IVF cycles.


Assuntos
Fator de Transcrição GATA3/metabolismo , Placenta/metabolismo , Placentação/fisiologia , Primeiro Trimestre da Gravidez/metabolismo , Trofoblastos/metabolismo , Linhagem Celular , Movimento Celular/fisiologia , Estradiol/farmacologia , Feminino , Fertilização in vitro , Fator de Transcrição GATA3/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Gravidez , Progesterona/farmacologia , RNA Interferente Pequeno , Trofoblastos/efeitos dos fármacos
17.
Cell Adh Migr ; 10(1-2): 88-110, 2016 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-26743330

RESUMO

Trophoblast migration and invasion through the decidua and maternal uterine spiral arteries are crucial events in placentation. During this process, invasive trophoblast replace vascular endothelial cells as the uterine arteries are remodeled to form more permissive vessels that facilitate adequate blood flow to the growing fetus. Placentation failures resulting from either extensive or shallow trophoblastic invasion can cause pregnancy complications such as preeclampsia, intrauterine growth restriction, placenta creta, gestational trophoblastic disease and even maternal or fetal death. Consequently, the use of experimental animal models such as rats and mice has led to great progress in recent years with regards to the identification of mechanisms and factors that control trophoblast migration kinetics. This review aims to perform a comparative analysis of placentation and the mechanisms and factors that coordinate intrauterine trophoblast migration in humans, rats and mice under physiological and pathological conditions.


Assuntos
Movimento Celular , Trofoblastos/citologia , Útero/citologia , Animais , Diferenciação Celular , Feminino , Humanos , Modelos Biológicos , Gravidez , Roedores , Estresse Fisiológico
18.
Cell Adh Migr ; 10(1-2): 77-87, 2016 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-26479000

RESUMO

When trophoblasts migrate and invade in vivo, they do so by interacting with a range of other cell types, extracellular matrix proteins, chemotactic factors and physical forces such as fluid shear stress. These factors combine to influence overall trophoblast migration and invasion into the decidua, which in turn determines the success of spiral artery remodelling, and pregnancy itself. Our understanding of these important but complex processes is limited by the simplified conditions in which we often study cell migration in vitro, and many discrepancies are observed between different in vitro models in the literature. On top of these experimental considerations, the migration of individual trophoblasts can vary widely. While time-lapse microscopy provides a wealth of information on trophoblast migration, manual tracking of individual cell migration is a time consuming task that ultimately restricts the numbers of cells quantified, and thus the ability to extract meaningful information from the data. However, the development of automated imaging algorithms is likely to aid our ability to accurately interpret trophoblast migration in vitro, and better allow us to relate these observations to in vivo scenarios. This commentary discusses the advantages and disadvantages of techniques commonly used to quantify trophoblast migration and invasion, both from a cell biology and a mathematical perspective, and examines how such techniques could be improved to help us relate trophoblast migration more accurately to in vivo function in the future.


Assuntos
Ensaios de Migração Celular/métodos , Movimento Celular , Trofoblastos/citologia , Linhagem Celular , Feminino , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Gravidez
19.
Placenta ; 36(11): 1291-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26349781

RESUMO

INTRODUCTION: The invasion and migration of trophoblast cells are essential steps of normal placentation and successful pregnancy. The process is well-regulated by many factors at the fetal-maternal surface. Inadequate invasion by trophoblast cells may lead to poor perfusion of the placenta or complications such as preeclampsia (PE). Accumulating evidence suggests that N-acetylglucosaminyltransferase V (MGAT5) is correlated with tumor invasion and metastasis. Our objective was to characterize MGAT5 expression and function during placental development. METHODS: The expression of MGAT5 in humans in placental tissue from the first trimester was determined by immunohistochemistry. To investigate whether MGAT5 regulates trophoblast invasion and migration, we investigated invasion/migration of the HTR8/SVneo trophoblast cells and used human villous explants. Cell proliferation and apoptosis were measured by CCK-8 assay and flow cytometry, respectively. The activity of matrix metalloproteinase (MMP) 2/9, and the expression of tissue inhibitors of metalloproteinases (TIMPs) 1/2 were determined by gelatin zymography and Western blot, respectively. RESULTS: MGAT5 was specifically localized within the cytotrophoblast, the syncytiotrophoblast and the trophoblast columns of human placental villi, decidual cells and some extravillous cells in the maternal decidua. MGAT5 shRNA significantly enhanced the invasion and migration capability of HTR8/SVneo cells, and increased villous explant outgrowth but did not affect proliferation and apoptosis of the trophoblast. The enhanced effect of MGAT5 shRNA on trophoblast cell invasion was associated with increased gelatinolytic activity of MMP2/9 and decreased expression of TIMP1/2. DISCUSSION AND CONCLUSION: Our data support a role for MGAT5 in the inhibition of human trophoblast cell invasion and migration during early pregnancy by direct or indirect regulation of MMP2/9 activity.


Assuntos
N-Acetilglucosaminiltransferases/metabolismo , Placentação , Trofoblastos/fisiologia , Linhagem Celular , Movimento Celular , Feminino , Técnicas de Silenciamento de Genes , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Gravidez , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/metabolismo
20.
Mol Hum Reprod ; 21(5): 435-51, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25667199

RESUMO

Epidermal growth factor-like domain 7 (Egfl7) is a gene that encodes a partially secreted protein and whose expression is largely restricted to the endothelia. We recently reported that EGFL7 is also expressed by trophoblast cells in mouse and human placentas. Here, we investigated the molecular pathways that are regulated by EGFL7 in trophoblast cells. Stable EGFL7 overexpression in a Jeg3 human choriocarcinoma cell line resulted in significantly increased cell migration and invasiveness, while cell proliferation was unaffected. Analysis of mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways showed that EGFL7 promotes Jeg3 cell motility by activating both pathways. We show that EGFL7 activates the epidermal growth factor receptor (EGFR) in Jeg3 cells, resulting in downstream activation of extracellular regulated kinases (ERKs). In addition, we provide evidence that EGFL7-triggered migration of Jeg3 cells involves activation of NOTCH signaling. EGFL7 and NOTCH1 are co-expressed in Jeg3 cells, and blocking of NOTCH activation abrogates enhanced migration of Jeg3 cells overexpressing EGFL7. We also demonstrate that signaling through EGFR and NOTCH converged to mediate EGFL7 effects. Reduction of endogenous EGFL7 expression in Jeg3 cells significantly decreased cell migration. We further confirmed that EGFL7 stimulates cell migration by using primary human first trimester trophoblast (PTB) cells overexpressing EGFL7. In conclusion, our data suggest that in trophoblast cells, EGFL7 regulates cell migration and invasion by activating multiple signaling pathways. Our results provide a possible explanation for the correlation between reduced expression of EGFL7 and inadequate trophoblast invasion observed in placentopathies.


Assuntos
Fatores de Crescimento Endotelial/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Receptor Notch1/agonistas , Transdução de Sinais , Trofoblastos/metabolismo , Regulação para Cima , Proteínas de Ligação ao Cálcio , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Família de Proteínas EGF , Fatores de Crescimento Endotelial/antagonistas & inibidores , Fatores de Crescimento Endotelial/genética , Inibidores Enzimáticos/farmacologia , Receptores ErbB/agonistas , Receptores ErbB/metabolismo , Feminino , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidores de Fosfoinositídeo-3 Quinase , Placentação/efeitos dos fármacos , Gravidez , Interferência de RNA , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/genética , Receptor Notch1/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos , Trofoblastos/citologia , Trofoblastos/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA