Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Ann Bot ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39417253

RESUMO

BACKGROUND AND AIMS: Ambophily, an intriguing pollination system in which plant species present adaptations to both biotic and abiotic pollination, has been scarcely reported. Most studies have been conducted with a single or few related species from wind-pollinated genera. We here assess for the first time the frequency of ambophily at the community-level. METHODS: We evaluated pollen carried by wind in 63 animal-pollinated species from a Brazilian campos de altitude. For those with pollen carried by wind, we evaluated the contribution of wind and animals to seed production with controlled pollination experiments, as well as floral traits and floral visitor assemblages. KEY RESULTS: Pollen of 23 species were carried by wind (~37%). Animals and wind contributed to the reproduction of seven species (~11%), including one pollinated by hummingbirds, large bees and wind. These seven ambophilous species presented unrestrictive floral morphologies and generalist pollination. CONCLUSIONS: We found a high frequency of ambophily in a single community (11%), which represented an increment of ~5% of species relative to all ambophilous species reported in the literature so far. Investigating pollen transport by wind in zoophilous species combined with controlled experiments helped detect ambophily in species that are usually ignored in wind-pollination studies. Our results showed that putative zoophilous species may actually be ambophilous, suggesting that the selective pressures towards ambophily also occur in zoophilous lineages.

2.
Front Microbiol ; 12: 735121, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34659163

RESUMO

Deforestation of native tropical forests has occurred extensively over several decades. The plantation of fast-growing trees, such as Acacia spp., is expanding rapidly in tropical regions, which can contribute to conserve the remaining native tropical forests. To better understand belowground biogeochemical cycles and the sustainable productivity of acacia plantations, we assessed the effects of vegetation (acacia plantations vs. native forests) and soil types (Oxisols vs. Ultisols) on soil properties, including the diversity and community structures of bacteria- and fungi-colonizing surface and subsurface roots and soil in the Central Highlands of Vietnam. The results in surface soil showed that pH was significantly higher in acacia than in native for Oxisols but not for Ultisols, while exchangeable Al was significantly lower in acacia than in native for Ultisols but not for Oxisols. Bacterial alpha diversity (especially within phylum Chloroflexi) was higher in acacia than in native only for Oxisols but not for Ultisols, which was the same statistical result as soil pH but not exchangeable Al. These results suggest that soil pH, but not exchangeable Al, can be the critical factor to determine bacterial diversity. Acacia tree roots supported greater proportions of copiotrophic bacteria, which may support lower contents of soil inorganic N, compared with native tree roots for both Oxisols and Ultisols. Acacia tree roots also supported greater proportions of plant pathogenic Mycoleptodiscus sp. but appeared to reduce the abundances and diversity of beneficial ECM fungi compared with native tree roots regardless of soil types. Such changes in fungal community structures may threaten the sustainable productivity of acacia plantations in the future.

3.
Oecologia ; 197(1): 243-257, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34370096

RESUMO

The diversity of endotherms and ectotherms may be differently affected by ambient temperature and net primary productivity (NPP). Additionally, little is known about how these drivers affect the diversity of guilds of different trophic levels. We assessed the relative role of temperature and NPP in multitrophic guilds of ectothermic (arthropods: ants, ground beetles, spiders, and harvestmen) and endothermic (large mammals) animals along a tropical elevational gradient. We sampled arthropods at eight elevation belts and large mammals at 14 elevation belts in Atlantic rainforest (ranging from 600 to 2450 m.a.s.l.) of Itatiaia National Park, Southeast Brazil. Overall arthropod species richness was more associated with temperature than overall large-mammal species richness, while the latter was more associated with NPP. When separated into trophic guilds, we found that the species richness associated with NPP increased across arthropod trophic levels from herbivores to predators. Conversely, although NPP influenced large-mammal herbivore species richness, its effects did not seem to accumulate across large-mammal trophic levels since the species richness of large-mammal omnivores was more associated with temperature and none of the variables we studied influenced large-mammal predators. We suggest that thermal physiological differences between ectotherms and endotherms are responsible for the way in which arthropods and large mammals interact with or are constrained by the environment. Furthermore, the inconsistency regarding the role of temperature and NPP on species richness across multitrophic guilds of ectotherms and endotherms could indicate that thermal physiological differences might also interfere with energy use and flux in the food web.


Assuntos
Artrópodes , Biodiversidade , Animais , Ecossistema , Herbivoria , Temperatura
4.
Oecologia, v. 197, p 243-257, set. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3921

RESUMO

The diversity of endotherms and ectotherms may be differently affected by ambient temperature and net primary productivity (NPP). Additionally, little is known about how these drivers affect the diversity of guilds of different trophic levels. We assessed the relative role of temperature and NPP in multitrophic guilds of ectothermic (arthropods: ants, ground beetles, spiders, and harvestmen) and endothermic (large mammals) animals along a tropical elevational gradient. We sampled arthropods at eight elevation belts and large mammals at 14 elevation belts in Atlantic rainforest (ranging from 600 to 2450 m.a.s.l.) of Itatiaia National Park, Southeast Brazil. Overall arthropod species richness was more associated with temperature than overall large-mammal species richness, while the latter was more associated with NPP. When separated into trophic guilds, we found that the species richness associated with NPP increased across arthropod trophic levels from herbivores to predators. Conversely, although NPP influenced large-mammal herbivore species richness, its effects did not seem to accumulate across large-mammal trophic levels since the species richness of large-mammal omnivores was more associated with temperature and none of the variables we studied influenced large-mammal predators. We suggest that thermal physiological differences between ectotherms and endotherms are responsible for the way in which arthropods and large mammals interact with or are constrained by the environment. Furthermore, the inconsistency regarding the role of temperature and NPP on species richness across multitrophic guilds of ectotherms and endotherms could indicate that thermal physiological differences might also interfere with energy use and flux in the food web.

5.
J Hered ; 111(4): 392-404, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32485737

RESUMO

Tropical mountains are cradles of biodiversity and endemism. Sundaland, tropical Southeast Asia, hosts 3 species of Rattus endemic to elevations above 2000 m with an apparent convergence in external morphology: Rattus korinchi and R. hoogerwerfi from Sumatra, and R. baluensis from Borneo. A fourth one, R. tiomanicus, is restricted to lowland elevations across the whole region. The origins of these endemics are little known due to the absence of a robust phylogenetic framework. We use complete mitochondrial genomes from the 3 high altitude Rattus, and several related species to determine their relationships, date divergences, reconstruct their history of colonization, and test for selection on the mitochondrial DNA. We show that mountain colonization happened independently in Borneo (<390 Kya) and Sumatra (~1.38 Mya), likely from lowland lineages. The origin of the Bornean endemic R. baluensis is very recent and its genetic diversity is nested within the diversity of R. tiomanicus. We found weak evidence of positive selection in the high-elevation lineages and attributed the greater nonsynonymous mutations on these branches (specially R. baluensis) to lesser purifying selection having acted on the terminal branches in the phylogeny.


Assuntos
Evolução Biológica , Genoma Mitocondrial , Filogenia , Ratos/genética , Altitude , Animais , Bornéu , DNA Mitocondrial/genética , Indonésia , Ratos/classificação , Seleção Genética
6.
Ecol Evol ; 9(10): 5720-5730, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31160993

RESUMO

AIM: We sought to determine the relationship of forest composition and alpha diversity (the species diversity of a local assemblage) to altitude, soil, and spatial factors over a 440-2,950 m a.s.l gradient. LOCATION: Altitudinal gradient on the Caribbean slope of the Talamanca Cordillera, Costa Rica. TAXON: Angiosperm and gymnosperm trees, palms, and tree ferns. METHODS: We measured and identified all stems ≥10 cm dbh in 32 0.25-ha undisturbed rain forest plots over the gradient. We determined compositional patterns using Non-Metric Multidimensional Scaling (NMS) ordination, and used linear regressions to explore the relationship between four alpha diversity metrics and altitude. With variation partitioning (VARPART), we determined the compositional variation explained by altitude, soil, and spatial variables quantified using Principle Components of Neighbor matrices. RESULTS: We identified 425 species. NMS axis 1 separated a lowland zone (440-1,120 m asl) from a transitional one dominated by holarctic Oreomunnea mexicana (1,400-1,600 m asl) and Quercus-dominated forests at altitudes >2,100 m asl. The lowland zone was separated into two clusters of plots on NMS axis 2, the first in the 430-620 m asl range and the second at 1,000-1,120 masl. Regressions showed that all alpha diversity metrics were strongly negatively related to altitude (R 2 > 0.78). Overall, adjusted R 2 from VARPART was 0.43, with 0.30, 0.21, and 0.17 for altitude, soil, and space respectively. The respective adjusted R 2 of individual matrices, on controlling for the other two, was 0.06, 0.05 and 0.09 (p < 0.001). MAIN CONCLUSIONS: There are two well-defined forest compositional zones on this gradient-lowlands 430-1,120 m asl and montane forests >2,150 m asl-with a transitional zone at 1,400-1,600 m asl, where lowland tropical and montane holarctic species are found together. Montane forests are very distinct in their composition and low alpha diversity. Vegetation and soil respond to altitude, and therefore temperature, as an integrated system, a model that goes beyond niche assembly as shown by the significant effect of space in the VARPART.

7.
Ecol Evol ; 9(8): 4495-4503, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31031922

RESUMO

The research about species richness pattern and elevational Rapoport's rule (ERR) have been carried out mostly in the temperate regions in the recent years and scarcely in the tropical mountains; meanwhile, it is unclear whether the ERR is consistent among different life-forms and phytogeographic affinities. Here, we compiled a database of plant species of Mount Kenya, a tropical mountain of East Africa, and divided these species into twelve groups depending on the life-form and phytogeographic affinity of each species. We inspected the species richness pattern of each group along the elevation gradient and also tested ERR of each group using Stevens' method. Our results showed that species richness of the total species showed a positively skewed (hump-shaped) pattern along the elevation gradient and different life-forms and phytogeographic affinities showed similar hump-shaped patterns as the total species. The average elevation range size of the total species and herbaceous species showed increasing patterns along the elevation gradient, while lycophytes and ferns, and woody species showed an obvious downward trend after peaking in the high elevation regions. We concluded that the widely distributed herbaceous species which also have broad elevation range sizes are more applicable to ERR, while the narrowly distributed woody species with small elevation range sizes occurring in the higher elevations could reverse ERR. Therefore, we concluded that the ERR is not consistent among different organisms in the same region.

8.
Front Plant Sci ; 10: 342, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30967890

RESUMO

Under drought conditions, even tropical rainforests might turn from carbon sinks to sources, and tree species composition might be altered by increased mortality. We monitored stem diameter variations of 40 tree individuals with stem diameters above 10 cm belonging to eleven different tree genera and three tree life forms with high-resolution dendrometers from July 2007 to November 2010 and additionally March 2015 to December 2017 in a tropical mountain rainforest in South Ecuador, a biodiversity hotspot with more than 300 different tree species belonging to different functional types. Although our study area receives around 2200 mm of annual rainfall, dry spells occur regularly during so-called "Veranillo del Niño" (VdN) periods in October-November. In climate change scenarios, droughts are expected with higher frequency and intensity as today. We selected dry intervals with a minimum of four consecutive days to examine how different tree species respond to drought stress, raising the question if some species are better adapted to a possible higher frequency and increasing duration of dry periods. We analyzed the averaged species-specific stem shrinkage rates and recovery times during and after dry periods. The two deciduous broadleaved species Cedrela montana and Handroanthus chrysanthus showed the biggest stem shrinkage of up to 2 mm after 10 consecutive dry days. A comparison of daily circumference changes over 600 consecutive days revealed different drought responses between the families concerning the percentage of days with stem shrinkage/increment, ranging from 27.5 to 72.5% for Graffenrieda emarginata to 45-55% for Podocarpus oleifolius under same climate conditions. Moreover, we found great difference of recovery times after longer-lasting (i.e., eight to ten days) VdN drought events between the two evergreen broadleaved species Vismia cavanillesiana and Tapirira guianensis. While Vismia replenished to pre-VdN stem circumference after only 5 days, Tapirira needed 52 days on average to restore its circumference. Hence, a higher frequency of droughts might increase inter-species competition and species-specific mortality and might finally alter the species composition of the ecosystem.

9.
Proc Natl Acad Sci U S A ; 115(47): 11982-11987, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30373825

RESUMO

Montane species worldwide are shifting upslope in response to recent temperature increases. These upslope shifts are predicted to lead to mountaintop extinctions of species that live only near mountain summits, but empirical examples of populations that have disappeared are sparse. We show that recent warming constitutes an "escalator to extinction" for birds on a remote Peruvian mountain-high-elevation species have declined in both range size and abundance, and several previously common mountaintop residents have disappeared from the local community. Our findings support projections that warming will likely drive widespread extirpations and extinctions of high-elevation taxa in the tropical Andes. Such climate change-driven mountaintop extirpations may be more likely in the tropics, where temperature seems to exert a stronger control on species' range limits than in the temperate zone. In contrast, we show that lowland bird species at our study site are expanding in range size as they shift their upper limits upslope and may thus benefit from climate change.


Assuntos
Distribuição Animal/fisiologia , Aves/fisiologia , Dinâmica Populacional/tendências , Altitude , Migração Animal/fisiologia , Animais , Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Extinção Biológica , Previsões , Comportamento de Retorno ao Território Vital , Peru , Temperatura , Clima Tropical
10.
PhytoKeys ; (62): 1-14, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27212877

RESUMO

Based on ongoing ecological research in mountain forests of Sulawesi, a new species, Elaeocarpus firdausii Brambach, Coode, Biagioni & Culmsee, sp. nov. is described and illustrated from mossy forests at > 2000 m and information provided on the species' distribution, ecology and pollen morphology. Elaeocarpus firdausii is similar to Elaeocarpus luteolignum Coode but differs from the latter in having glabrous terminal buds, leaves with black gland dots, 4-merous, larger flowers, and more numerous stamens.

11.
Rev. biol. trop ; Rev. biol. trop;64(1): 399-412, ene.-mar. 2016. tab, ilus
Artigo em Espanhol | LILACS | ID: biblio-843286

RESUMO

ResumenLas estimaciones de carbono en bosques tropicales, es muy importante para entender el papel de estos ecosistemas en el ciclo de este elemento. Este conocimiento permite apoyar y soportar las decisiones y la formulación de estrategias de mitigación y adaptación para reducir las emisiones de gases de efecto invernadero (GEI). Sin embargo, cuantificaciones detalladas de las existencias totales de carbono en los bosques montanos tropicales son limitadas, a pesar de su importancia científica y para el manejo de los ecosistemas (e.g. REDD+). Cuarenta y cuatro parcelas se establecieron en un paisaje heterogéneo compuesto por bosques maduros ubicados en el sur de los Andes colombianos. El objetivo fue identificar el papel de estos ecosistemas en el almacenamiento de carbono, evaluar la contribución de los reservorios analizados (biomasa aérea, biomasa subterránea y necromasa), y realizar contribuciones al enfoque de REDD+ en la escala de proyecto. En cada parcela se midieron todos los árboles, palmas y helechos con diámetro (D) ≥ 15 cm. En el caso de las palmas, se midió la altura de 40 % de los individuos, siguiendo el Protocolo Nacional de Colombia para estimar la biomasa y el carbono en los bosques naturales. Ecuaciones alométricas nacionales fueron utilizadas para estimar la biomasa aérea, y una ecuación general propuesta por el IPCC, fue utilizada para la estimación de la biomasa subterránea. La biomasa aérea de las palmas se estimó mediante un modelo local desarrollado para bosques montanos y premontanos. La necromasa se estimó para los árboles muertos en pie y los detritos gruesos. En este último caso, se midió la longitud y los diámetros de los extremos de las piezas. Las muestras para las estimaciones de densidad de madera, se recogieron en el campo y se analizaron en el laboratorio. El carbono promedio total se estimó en 545.9 ± 84.1 Mg/ ha (± SE). La biomasa aérea contribuyó con 72.5 %, la biomasa subterránea con 13.6 %, y la necromasa con 13.9 %. La principal conclusión de este estudio, es que los bosques montanos tropicales almacenan grandes cantidades de carbono, similares a las almacenadas por los bosques tropicales de tierras bajas. Además, se observó que la inclusión de otros compartimientos podría contribuir en más del 20 % de total del almacenamiento de carbono, lo que indica que las estimaciones que sólo incluyen la biomasa aérea, subestiman en gran medida las reservas de carbono en los ecosistemas forestales. Por tal razón, se sugiere incluir otros compartimientos en las estimaciones de carbono para iniciativas o proyectos REDD+.


AbstractCarbon estimations in tropical forests are very important to understand the role of these ecosystems in the carbon cycle, and to support decisions and the formulation of mitigation and adaptive strategies to reduce the greenhouse emission gases (GHG). Nevertheless, detailed ground-based quantifications of total carbon stocks in tropical montane forests are limited, despite their high value in science and ecosystem management (e.g. REDD+). The objective was to identify the role of these ecosystems as carbon stocks, to evaluate the contribution of the pools analyzed (aboveground biomass, belowground biomass and necromass), and to make contributions to the REDD+ approach from the project scale. For this study, we established 44 plots in a heterogeneous landscape composed by old-grown forests located in the Southern Colombian Andes. In each plot, all trees, palms and ferns with diameter (D) ≥ 15 cm were measured. In the case of palms, the height was measured for 40 % of the individuals, following the Colombia National Protocol to estimate biomass and carbon in natural forests. National allometric equations were used to estimate aboveground biomass, and a global equation proposed by IPCC was used for belowground biomass estimation; besides, palms' aboveground biomass was estimated using a local model. The necromass was estimated for dead standing trees and the gross debris. In the latter case, the length and diameters of the extremes in the pieces were measured. Samples for wood density estimations were collected in the field and analyzed in the laboratory. The mean total carbon stock was estimated as 545.9 ± 84.1 Mg/ha (± S.E.). The aboveground biomass contributed with 72.5 %, the belowground biomass with 13.6 %, and the necromass with 13.9 %. The main conclusion is that montane tropical forests store a huge amount of carbon, similar to low land tropical forests. In addition, the study found that the inclusion of other pools could contribute with more than 20 % to total carbon storage, indicating that estimates that only include the aboveground biomass, largely underestimate carbon stocks in tropical forest ecosystems. These results support the importance of including other carbon pools in REDD+ initiatives' estimations. Rev. Biol. Trop. 64 (1): 399-412. Epub 2016 March 01.


Assuntos
Carbono/análise , Florestas , Biomassa , Clima Tropical , Colômbia
12.
Oecologia ; 181(1): 225-33, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26801494

RESUMO

The usual positive inter-specific relationship between range size and abundance of local populations can have notable exceptions in Afrotropical montane areas, where range-restricted bird species are unusually abundant. We tested how the area occupied locally by passerines and their geographic range size relate to local abundances along a tropical elevational gradient of Mt Cameroon, West-Central Africa. Data on bird assemblages were collected at six forested elevations (350, 650, 1100, 1500, 1850 m, 2200 m a.s.l.) using a standardised point count at 16 locations per elevation. Elevational ranges of birds were compiled from published sources and their geographic range sizes were determined as the occupancy of 1° x 1° grid cells. The observed relationship between local abundance and geographic range size within the entire passerine assemblage on Mt Cameroon disagrees with the most frequently reported positive pattern. However, the patterns differ among elevations, with positive trends of the abundance-range size relationship in lowland changing to negative trends towards higher elevations. Interestingly, the total assemblage abundances do not differ much among elevations and population size estimates of species occupying different parts of the gradient remain relatively constant. These patterns are caused by relatively high abundances of montane species, which might be a result of long-term ecological specialization and/or competitive release in species-poor montane locations and possibly facilitated by an extinction filter. Our data suggest that montane species' abilities to maintain dense populations might compensate for less area available near mountain tops and help these populations to circumvent extinction.


Assuntos
Distribuição Animal , Biodiversidade , Passeriformes/fisiologia , Altitude , Animais , Camarões , Extinção Biológica , Florestas , Densidade Demográfica
13.
Rev. biol. trop ; Rev. biol. trop;63(1): 69-82, Jan.-Mar. 2015. ilus, tab
Artigo em Espanhol | LILACS | ID: lil-753777

RESUMO

The tropical montane forests in the Colombian Andean region are located above 1 500m, and have been heavily deforested. Despite the general presumption that productivity and hence carbon stocks in these ecosystems are low, studies in this regard are scarce. This study aimed to i) to estimate Above Ground Biomass (AGB) in forests located in the South of the Colombian Andean region, ii) to identify the carbon storage potential of tropical montane forests dominated by the black oak Colombobalanus excelsa and to identify the relationship between AGB and altitude, and iii) to analyze the role of tropical mountain forests in conservation mechanisms such as Payment for Environmental Services (PES) and Reducing Emissions from Deforestation and Degradation (REDD+). Twenty six 0.25ha plots were randomly distributed in the forests and all trees with D≥10cm were measured. The results provided important elements for understanding the role of tropical montane forests as carbon sinks. The information produced can be used in subnational initiatives, which seek to mitigate or reduce the effects of deforestation through management or conservation of these ecosystems, like REDD+ or PES. The AGB and carbon stocks results obtained were similar to those reported for lowland tropical forests. These could be explained by the dominance and abundance of C. excelsa, which accounted for over 81% of AGB/carbon. The error associated with the estimates of AGB/carbon was 10.58%. We found a negative and significant relationship between AGB and altitude, but the higher AGB values were in middle altitudes (≈1 700-1 800m), where the environmental conditions could be favorable to their growth. The carbon storage potential of these forests was higher. However, if the historical rate of the deforestation in the study area continues, the gross emissions of CO2e to the atmosphere could turn these forests in to an important emissions source. Nowadays, it is clear that tropical montane forests are vulnerable to deforestation, especially black Oak forests due to their commercial value. Given their high carbon storage potential, the presence of endemic species and the strategic functions of these ecosystems, we recommend that they should be considered relevant during REDD+, PES or any other conservation assessment. Rev. Biol. Trop. 63 (1): 69-82. Epub 2015 March 01.


Los bosques tropicales de montaña (BTM) en la región Andina de Colombia se encuentran por encima de 1 500m, y han sido fuertemente deforestados. A pesar de la presunción general de que la productividad y las reservas de carbono en estos ecosistemas son bajas, los estudios al respecto son escasos. Este estudio tuvo por objetivo i) estimar la biomasa aérea (BA) de los bosques localizados en el sur de la región Andina colombiana, ii) identificar el potencial de almacenamiento de carbono en bosques dominados por el roble negro Colombobalanus excelsa e identificar la relación entre la BA y la altitud, y iii) analizar su papel en mecanismos de conservación, como el Pago por Servicios Ambientales (PSA) y la Reducción de Emisiones por deforestación y Degradación (REDD+). Veintiséis parcelas de 0.25ha fueron distribuidas al azar, y se midieron todos los árboles con D≥10cm. Los resultados obtenidos de BA y carbono almacenado fueron similares a los reportados para bosques tropicales de tierras bajas. Esto se puede explicar por la abundancia y dominancia de C. excelsa, que contribuye con más del 81% de la BA/carbono; el error asociado a las estimaciones fue de 10.58%. Se encontró una relación negativa y significativa entre la BA y la altitud, pero los valores más altos de BA estuvieron en las altitudes medias (≈1 700-1 800m), donde las condiciones ambientales podrían ser favorables para su crecimiento. El potencial de almacenamiento de carbono de estos bosques fue alto. Los resultados permiten tener elementos importantes para entender el papel de los BTM como sumideros de carbono. Sin embargo, si la tasa histórica de deforestación en el área de estudio continúa, las emisiones brutas de CO2e a la atmósfera podrían convertirlos en una fuente de emisiones importante. Actualmente, los BTM son vulnerables a la deforestación, especialmente los bosques de roble negro debido a su valor comercial. Teniendo en cuenta el alto potencial de almacenamiento de carbono, la presencia de especies endémicas, y las funciones estratégicas que pueden desempeñar estos ecosistemas, se recomienda que sean considerados relevantes para REDD+, PSA u otra estrategia de conservación.


Assuntos
Biomassa , Carbono/metabolismo , Florestas , Colômbia , Clima Tropical
14.
Acta biol. colomb ; 12(2): 33-46, Jul.-Dec. 2007.
Artigo em Espanhol | LILACS | ID: lil-635006

RESUMO

Se determinó el porcentaje de retención de tres fracciones de materia orgánica particulada gruesa (MOPG) y el efecto de la magnitud del caudal sobre la retención de la materia orgánica particulada (MOP), durante un período de cinco meses en tres sectores de una quebrada tropical de montaña ubicada en los Cerros Orientales de Bogotá Colombia. La condición tropical del sistema, mostró un patrón de caudal constante aunque pudo diferenciarse un período de alta y baja descarga. Los resultados mostraron que el valor promedio del porcentaje de retención fue relativamente alto, presentándose una asociación negativa entre la magnitud del caudal y el porcentaje de retención de las fracciones MOPG, siendo más evidente en partículas pequeñas (rs=0,74; p.


Retention percentage of three fractions of coarse particulate organic matter (MOPG) and discharge effect over retention of particulate organic matter (MOP) were studied during five months in three sectors of a tropical mountain stream, at Eastern hills of Bogotá Colombia. The tropical condition of the system, showed a pattern of constant discharge although could be a different period from low and high discharge. Results showed as average value of retention percentage was high, with a negative association between flow magnitude and percentage of retention for each MOPG fraction, being more evident in small particles (rs=0.74, p.

15.
Rev. peru. biol. (Impr.) ; 12(2)ago. 2005.
Artigo em Espanhol | LILACS-Express | LILACS, LIPECS | ID: biblio-1522145

RESUMO

Existen muy pocos inventarios y descripciones sintaxonómicas de la vegetación de bosques montanos tropicales. Este trabajo presenta datos sobre los bosques del sur de Ecuador localizados en la Reserva Biológica San Francisco, límite norte del Parque Nacional Podocarpus. Se propone la siguiente clasificación junto con notas sobre los factores edáficos que contribuyen a su establecimiento. El «Bosque Montano Bajo» (1800-2150 m), formando el orden Alzateetalia verticillatae, muestra 2-3 estratos arbóreos muy diversos, con árboles de 20-35 m de altura, y es una clímax mosaico típico. Creciendo sobre Terric Haplosaprists y Aquic Dystrupepts, originado del material de derrumbes viejos, este tipo de bosque se extiende hasta los 2300 m sobre el nivel del mar en quebradas protegidas de viento. A altitudes de 2100-2650 m (menos de 2750 m) la estructura del bosque y la composición florística cambia totalmente. Esta vegetación, el «Bosque Montano Alto» forma el orden de Purdiaeaetalia nutantis y crece sobre Histic Petraquepts. Representando una vegetación monotípica con un solo estrato arbóreo de 5-10 m (15 m) de altura, completamente dominado por Purdiaea nutans (Cyrillaceae). El bosque ubicado a mayor altitud en el área, densamente enlazado con el páramo es el «Bosque Nublado Subalpino». Descritos como Clusio ellipticae-Weinmannietum cochensis aparecen más como una vegetación arbustiva casi impenetrable, y crecen sobre Humaquic Epiaquents. El límite del bosque es causado principalmente por los vientos fuertes de la región. Derrumbes e incendios naturales representan el «motor» de regeneración de los bosques. Se encontró carbón en la base de los niveles A de muchos perfiles de suelo. El análisis 14C precisó una edad de 710-980 ±50 años antes del presente. Esto indica que fuegos en la vegetación han contribuido a la dinámica de esta vegetación en el pasado y no es un fenómeno reciente. El diámetro basal de los árboles y el volumen total de madera por hectárea disminuyen rápidamente con la altitud a partir de los 2100 m y no pueden ser eficazmente utilizados para una explotación de madera sostenible.


Few floristic inventories and even less syntaxonomical vegetation descriptions of tropical mountain forests exist. The author presents a syntaxonomical treatment of the vegetation of Reserva Biológica of San Francisco at the northern limit of Podocarpus National Park, Ecuador, together with notes on the corresponding soil types. The Lower Montane Forest (1800-2150 m), grouped in the new order Alzateetalia verticillatae, has a very diverse tree layer 20-35 m tall, and are a typical mosaic-climax. It grows on Terric Haplosaprists and Aquic Dystrupepts, developed from old landslide material and extends up to elevations of 2300 m at the bottom of wind-protected riverine valleys. At altitudes from 2100-2650 m (2750 m), the forest structure and floristic composition change completely. The vegetation types belonging to this Upper Montane Forest form the newly described Purdiaeaetalia nutantis, growing on Histic Petraquepts. They represent a monotypic vegetation, with only one tree stratum, and stems between 5-10 m, rarely up to 15 m tall. The canopy is completely dominated by the twisted stems of Purdiaea nutans (Cyrillaceae). The Subalpine-elfin forest which closely resembles that of the the Bolivian Jalca forms the uppermost forest belt of the study area. Described as Clusio ellipticae-Weinmannietum cochensis, this forest more like an impenetrable bushland grows on Humaqueptic Epiaquents and is closely dovetailed with the adjacent páramo region. The timberline in the area is mainly induced by strong winds. Charcoal was found at the base of the A horizons of many soil profiles up to the top region and 14C dated to 710-980 +/-50 years BP. This indicates that vegetation fires occurred in the past, and are not only a recent phenomenon.

16.
Oecologia ; 114(2): 145-152, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28307926

RESUMO

The effects of temperature on photosynthesis of a rosette plant growing at ground level, Acaena cylindrostachya R. et P., and an herb that grows 20-50 cm above ground level, Senecio formosus H.B.K., were studied along an altitudinal gradient in the Venezuelan Andes. These species were chosen in order to determine - in the field and in the laboratory - how differences in leaf temperature, determined by plant form and microenvironmental conditions, affect their photosynthetic capacity. CO2 assimilation rates (A) for both species decreased with increasing altitude. For Acaena leaves at 2900 m, A reached maximum values above 9 µmol m-2 s-1, nearly twice as high as maximum A found at 3550 m (5.2) or at 4200 m (3.9). For Senecio leaves, maximum rates of CO2 uptake were 7.5, 5.8 and 3.6 µmol m-2 s-1 for plants at 2900, 3550 and 4200 m, respectively. Net photosynthesis-leaf temperature relations showed differences in optimum temperature for photosynthesis (A o.t.) for both species along the altitudinal gradient. Acaena showed similar A o.t. for the two lower altitudes, with 19.1°C at 2900 m and 19.6°C at 3550 m, while it increased to 21.7°C at 4200 m. Maximum A for this species at each altitude was similar, between 5.5 and 6.0 µmol m-2 s-1. For the taller Senecio, A o.t. was more closely related to air temperatures and decreased from 21.7°C at 2900 m, to 19.7°C at 3550 m and 15.5°C at 4200 m. In this species, maximum A was lower with increasing altitude (from 6.0 at 2900 m to 3.5 µmol m-2 s-1 at 4200 m). High temperature compensation points for Acaena were similar at the three altitudes, c. 35°C, but varied in Senecio from 37°C at 2900 m, to 39°C at 3550 m and 28°C at 4200 m. Our results show how photosynthetic characteristics change along the altitudinal gradient for two morphologically contrasting species influenced by soil or air temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA