RESUMO
Pediatric brain and spinal cancers are collectively the leading disease-related cause of death in children; thus, we urgently need curative therapeutic strategies for these tumors. To accelerate such discoveries, the Children's Brain Tumor Network (CBTN) and Pacific Pediatric Neuro-Oncology Consortium (PNOC) created a systematic process for tumor biobanking, model generation, and sequencing with immediate access to harmonized data. We leverage these data to establish OpenPBTA, an open collaborative project with over 40 scalable analysis modules that genomically characterize 1,074 pediatric brain tumors. Transcriptomic classification reveals universal TP53 dysregulation in mismatch repair-deficient hypermutant high-grade gliomas and TP53 loss as a significant marker for poor overall survival in ependymomas and H3 K28-mutant diffuse midline gliomas. Already being actively applied to other pediatric cancers and PNOC molecular tumor board decision-making, OpenPBTA is an invaluable resource to the pediatric oncology community.
RESUMO
Advanced solid cancers are complex assemblies of tumor, immune, and stromal cells characterized by high intratumoral variation. We use highly multiplexed tissue imaging, 3D reconstruction, spatial statistics, and machine learning to identify cell types and states underlying morphological features of known diagnostic and prognostic significance in colorectal cancer. Quantitation of these features in high-plex marker space reveals recurrent transitions from one tumor morphology to the next, some of which are coincident with long-range gradients in the expression of oncogenes and epigenetic regulators. At the tumor invasive margin, where tumor, normal, and immune cells compete, T cell suppression involves multiple cell types and 3D imaging shows that seemingly localized 2D features such as tertiary lymphoid structures are commonly interconnected and have graded molecular properties. Thus, while cancer genetics emphasizes the importance of discrete changes in tumor state, whole-specimen imaging reveals large-scale morphological and molecular gradients analogous to those in developing tissues.
Assuntos
Adenocarcinoma , Neoplasias Colorretais , Humanos , Adenocarcinoma/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Processamento de Imagem Assistida por Computador , Oncogenes , Microambiente TumoralRESUMO
Mechanisms of therapeutic resistance and vulnerability evolve in metastatic cancers as tumor cells and extrinsic microenvironmental influences change during treatment. To support the development of methods for identifying these mechanisms in individual people, here we present an omic and multidimensional spatial (OMS) atlas generated from four serial biopsies of an individual with metastatic breast cancer during 3.5 years of therapy. This resource links detailed, longitudinal clinical metadata that includes treatment times and doses, anatomic imaging, and blood-based response measurements to clinical and exploratory analyses, which includes comprehensive DNA, RNA, and protein profiles; images of multiplexed immunostaining; and 2- and 3-dimensional scanning electron micrographs. These data report aspects of heterogeneity and evolution of the cancer genome, signaling pathways, immune microenvironment, cellular composition and organization, and ultrastructure. We present illustrative examples of how integrative analyses of these data reveal potential mechanisms of response and resistance and suggest novel therapeutic vulnerabilities.
Assuntos
Neoplasias da Mama , Biópsia , Neoplasias da Mama/genética , Feminino , Humanos , Microambiente Tumoral/genéticaRESUMO
Meningioma is the most common benign intracranial tumor and is believed to arise from arachnoid cap cells of arachnoid granulations. We sought to develop a population-based atlas from pre-treatment MRIs to explore the distribution of intracranial meningiomas and to explore risk factors for development of intracranial meningiomas in different locations. All adults (≥ 18 years old) diagnosed with intracranial meningiomas and referred to the department of neurosurgery from a defined catchment region between 2006 and 2015 were eligible for inclusion. Pre-treatment T1 contrast-enhanced MRI-weighted brain scans were used for semi-automated tumor segmentation to develop the meningioma atlas. Patient variables used in the statistical analyses included age, gender, tumor locations, WHO grade and tumor volume. A total of 602 patients with intracranial meningiomas were identified for the development of the brain tumor atlas from a wide and defined catchment region. The spatial distribution of meningioma within the brain is not uniform, and there were more tumors in the frontal region, especially parasagittally, along the anterior part of the falx, and on the skull base of the frontal and middle cranial fossa. More than 2/3 meningioma patients were females (p < 0.001) who also were more likely to have multiple meningiomas (p < 0.01), while men more often have supratentorial meningiomas (p < 0.01). Tumor location was not associated with age or WHO grade. The distribution of meningioma exhibits an anterior to posterior gradient in the brain. Distribution of meningiomas in the general population is not dependent on histopathological WHO grade, but may be gender-related.
Assuntos
Neoplasias Meníngeas , Meningioma , Neoplasias Supratentoriais , Adolescente , Adulto , Feminino , Humanos , Masculino , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/epidemiologia , Neoplasias Meníngeas/cirurgia , Meningioma/diagnóstico , Meningioma/epidemiologia , Meningioma/cirurgia , Procedimentos Neurocirúrgicos , Estudos Retrospectivos , Neoplasias Supratentoriais/cirurgiaRESUMO
Small cell lung cancer (SCLC) is an aggressive malignancy that includes subtypes defined by differential expression of ASCL1, NEUROD1, and POU2F3 (SCLC-A, -N, and -P, respectively). To define the heterogeneity of tumors and their associated microenvironments across subtypes, we sequenced 155,098 transcriptomes from 21 human biospecimens, including 54,523 SCLC transcriptomes. We observe greater tumor diversity in SCLC than lung adenocarcinoma, driven by canonical, intermediate, and admixed subtypes. We discover a PLCG2-high SCLC phenotype with stem-like, pro-metastatic features that recurs across subtypes and predicts worse overall survival. SCLC exhibits greater immune sequestration and less immune infiltration than lung adenocarcinoma, and SCLC-N shows less immune infiltrate and greater T cell dysfunction than SCLC-A. We identify a profibrotic, immunosuppressive monocyte/macrophage population in SCLC tumors that is particularly associated with the recurrent, PLCG2-high subpopulation.
Assuntos
Perfilação da Expressão Gênica/métodos , Neoplasias Pulmonares/genética , Fosfolipase C gama/genética , Carcinoma de Pequenas Células do Pulmão/genética , Plasticidade Celular , Humanos , Metástase Neoplásica , Prognóstico , Análise de Sequência de RNA , Análise de Célula Única , Análise de SobrevidaRESUMO
Immune responses to cancer are highly variable, with mismatch repair-deficient (MMRd) tumors exhibiting more anti-tumor immunity than mismatch repair-proficient (MMRp) tumors. To understand the rules governing these varied responses, we transcriptionally profiled 371,223 cells from colorectal tumors and adjacent normal tissues of 28 MMRp and 34 MMRd individuals. Analysis of 88 cell subsets and their 204 associated gene expression programs revealed extensive transcriptional and spatial remodeling across tumors. To discover hubs of interacting malignant and immune cells, we identified expression programs in different cell types that co-varied across tumors from affected individuals and used spatial profiling to localize coordinated programs. We discovered a myeloid cell-attracting hub at the tumor-luminal interface associated with tissue damage and an MMRd-enriched immune hub within the tumor, with activated T cells together with malignant and myeloid cells expressing T cell-attracting chemokines. By identifying interacting cellular programs, we reveal the logic underlying spatially organized immune-malignant cell networks.
Assuntos
Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Proteínas Morfogenéticas Ósseas/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Compartimento Celular , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Estudos de Coortes , Neoplasias Colorretais/genética , Reparo de Erro de Pareamento de DNA/genética , Células Endoteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Imunidade , Inflamação/patologia , Monócitos/patologia , Células Mieloides/patologia , Neutrófilos/patologia , Células Estromais/metabolismo , Linfócitos T/metabolismo , Transcrição GênicaRESUMO
PURPOSE: Previous studies on the effect of tumor location on overall survival in glioblastoma have found conflicting results. Based on statistical maps, we sought to explore the effect of tumor location on overall survival in a population-based cohort of patients with glioblastoma and IDH wild-type astrocytoma WHO grade II-III with radiological necrosis. METHODS: Patients were divided into three groups based on overall survival: < 6 months, 6-24 months, and > 24 months. Statistical maps exploring differences in tumor location between these three groups were calculated from pre-treatment magnetic resonance imaging scans. Based on the results, multivariable Cox regression analyses were performed to explore the possible independent effect of centrally located tumors compared to known prognostic factors by use of distance from center of the third ventricle to contrast-enhancing tumor border in centimeters as a continuous variable. RESULTS: A total of 215 patients were included in the statistical maps. Central tumor location (corpus callosum, basal ganglia) was associated with overall survival < 6 months. There was also a reduced overall survival in patients with tumors in the left temporal lobe pole. Tumors in the dorsomedial right temporal lobe and the white matter region involving the left anterior paracentral gyrus/dorsal supplementary motor area/medial precentral gyrus were associated with overall survival > 24 months. Increased distance from center of the third ventricle to contrast-enhancing tumor border was a positive prognostic factor for survival in elderly patients, but less so in younger patients. CONCLUSIONS: Central tumor location was associated with worse prognosis. Distance from center of the third ventricle to contrast-enhancing tumor border may be a pragmatic prognostic factor in elderly patients.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/diagnóstico por imagem , Feminino , Glioblastoma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto JovemRESUMO
Crucial transitions in cancer-including tumor initiation, local expansion, metastasis, and therapeutic resistance-involve complex interactions between cells within the dynamic tumor ecosystem. Transformative single-cell genomics technologies and spatial multiplex in situ methods now provide an opportunity to interrogate this complexity at unprecedented resolution. The Human Tumor Atlas Network (HTAN), part of the National Cancer Institute (NCI) Cancer Moonshot Initiative, will establish a clinical, experimental, computational, and organizational framework to generate informative and accessible three-dimensional atlases of cancer transitions for a diverse set of tumor types. This effort complements both ongoing efforts to map healthy organs and previous large-scale cancer genomics approaches focused on bulk sequencing at a single point in time. Generating single-cell, multiparametric, longitudinal atlases and integrating them with clinical outcomes should help identify novel predictive biomarkers and features as well as therapeutically relevant cell types, cell states, and cellular interactions across transitions. The resulting tumor atlases should have a profound impact on our understanding of cancer biology and have the potential to improve cancer detection, prevention, and therapeutic discovery for better precision-medicine treatments of cancer patients and those at risk for cancer.