Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 677(Pt B): 637-646, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39159518

RESUMO

The growing demand for clean energy has heightened interest in sodium-ion batteries (SIBs) as promising candidates for large-scale energy storage. However, the sluggish reaction kinetics and significant volumetric changes in anode materials present challenges to the electrochemical performance of SIBs. This work introduces a hierarchical structure where WS2 is confined between an inner hard carbon core and an outer nitrogen-doped carbon shell, forming HC@WS2@NCs core-shell structures as anodes for SIBs. The inner hard carbon core and outer nitrogen-doped carbon shell anchor WS2, enhancing its structural integrity. The highly conductive carbon materials accelerate electron transport during charge/discharge, while the rationally constructed interfaces between carbon and WS2 regulate the interfacial energy barrier and electric field distribution, improving ion transport. This synergistic interaction results in superior electrochemical performance: the HC@WS2@NCs anode delivers a high capacity of 370 mAh g-1 at 0.2 A/g after 200 cycles and retains261 mAh g-1 at 2 A/g after 2000 cycles. In a full battery with a Na3V2(PO4)3 cathode, the Na3V2(PO4)3//HC@WS2@NC full-cell achieves an impressive initial capacity of 220 mAh g-1 at 1 A/g. This work provides a strategic approach for the systematic development of WS2-based anode materials for SIBs.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39374266

RESUMO

The efficient and clean exfoliation of single and/or few-layer nanosheets of WS2, a two-dimensional transition metal dichalcogenides, remains a significant challenge. In this study, a simple exfoliation method was proposed to produce ultrathin WS2 nanosheets by combining the liquid nitrogen exfoliation and nanodispersion techniques. This approach efficiently exfoliated WS2 into several layers of nanosheets via rapid temperature changes and mechanical stress without inducing defects or contamination. After five cycles of heating/liquid nitrogen and nanodispersion, the resulting WS2 nanosheets (WS2-5N ND) were confirmed to have been successfully exfoliated into 1-4 layers. When applied as a promoter in a thermocatalyst for the selective catalytic reduction of NOX using NH3, 2V3WS2/Ti (WS2-5N ND) exhibited excellent NOX conversion and N2 selectivity, along with excellent durability even in the presence of SO2. This result was greater than 2V3WS2/Ti (WS2-5N) subjected to only liquid nitrogen exfoliation, proving the importance of the simultaneous action of both methods. This method is expected to be an important contribution to ongoing research on high-performance WS2-based catalysts, thereby opening up potential opportunities for a wide range of applications.

3.
Nano Lett ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373895

RESUMO

Two-dimensional (2D) dichalcogenides are modern nanomaterials with unique physical and chemical properties. These materials possess band gaps in the infrared and visible regions of the electromagnetic spectrum that can be tuned by their molecular composition. Excitons generated as a result of such light-matter interactions are capable of catalyzing chemical reactions in molecular analytes present on the dichalcogenide surfaces. However, the photocatalytic properties of such nanomaterials remain poorly understood. In the current study, we utilize tip-enhanced Raman spectroscopy (TERS) to examine photocatalytic reduction of 4-nitrothiophenol (4-NTP) to p,p'-dimercaptoazobisbenzene (DMAB) on tungsten disulfide (WS2) nanoplates and WS2 coupled with palladium nanoparticles (WS2@PdNPs). Our results indicate that although both WS2 and WS2@Pd were capable of reducing 4-NTP into DMAB, the metallic hybrid demonstrated much greater yield and rates of DMAB formation compared to WS2 nanoplate. These results indicate that coupling of catalytic metals to dichalcogenides could be used to enhance their catalytic properties.

4.
ACS Nano ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39263972

RESUMO

The epitaxial growth of wafer-scale two-dimensional (2D) semiconducting transition metal dichalcogenides (STMDCs) single crystals is the key premise for their applications in next-generation electronics. Despite significant advancements, some fundamental factors affecting the epitaxy growth have not been fully uncovered, e.g., interface coupling strength, adlayer-substrate lattice matching, substrate step-edge-guiding effects, etc. Herein, we develop a model system to tackle these issues concurrently, and realize the epitaxial growth of wafer-scale monolayer tungsten disulfide (WS2) single crystals on the Au(111) substrate. This epitaxial system is featured with good adlayer-substrate lattice matching, obvious step-edge-guiding effect for the unidirectionally aligned nucleation/growth, and relatively weaker interfacial interaction than that of monolayer MoS2/Au(111), as evidenced by the evolution of a uniform Moiré pattern and an intrinsic band gap, according to on-site scanning tunneling microscopy/spectroscopy (STM/STS) characterizations and density functional theory calculations. Intriguingly, the unidirectionally aligned monolayer WS2 domains along the Au(111) steps can behave as ultrasensitive templates for surface-enhanced Raman scattering detection of organic molecules, due to the obvious charge transfer occurred at substrate step edges. This work should hereby deepen our understanding of the epitaxy mechanism of 2D STMDCs on single-crystal substrates, and propel their wafer-scale production and applications in various cutting-edge fields.

5.
Nanomaterials (Basel) ; 14(16)2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39195394

RESUMO

As a layered material with single/multi-atom thickness, two-dimensional transition metal sulfide WS2 has attracted extensive attention in the field of science for its excellent physical, chemical, optical, and electrical properties. The photoelectric properties of WS2 are even more promising than graphene. However, there are many existing preparation methods for WS2, but few reports on its direct growth on tungsten films. Therefore, this paper studies its preparation method and proposes an innovative two-dimensional material preparation method to grow large-sized WS2 with higher quality on metal film. In this experiment, it was found that the reaction temperature could regulate the growth direction of WS2. When the temperature was below 950 °C, the film showed horizontal growth, while when the temperature was above 1000 °C, the film showed vertical growth. At the same time, through Raman and band gap measurements, it is found that the different thicknesses of precursor film will lead to a difference in the number of layers of WS2. The number of layers of WS2 can be controlled by adjusting the thickness of the precursor.

6.
Nanotechnology ; 35(47)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39178889

RESUMO

Due to their unique properties, two-dimensional transition metal dichalcogenides (2D TMDCs) are considered for diverse applications in microelectronics, sensing, catalysis, to name a few. A common challenge in 2D TMDC research is the film's inherent instability i.e. spontaneous oxidation upon ambient exposure. The present study systematically explores the effect aging on the film composition and photoluminescent properties of monolayer WS2, synthetically grown by metal-organic chemical vapor deposition. The aging rate is investigated for different oxygen- (i.e. O2gas concentration and humidity) and light-controlled environments. Simple mitigation strategies that do not involve capping the 2D TMDC layer are discussed, and their effectiveness demonstrated by benchmarking the evolution in photoluminescence response against ambient exposed monolayer WS2. These results highlight the need to store 2D TMDCs in controlled environments to preserve the film quality and how future studies can account for the aging effect.

7.
ACS Nano ; 18(36): 25349-25358, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39179534

RESUMO

Quantum photonics promises significant advances in secure communications, metrology, sensing, and information processing/computation. Single-photon sources are fundamental to this endeavor. However, the lack of high-quality single photon sources remains a significant obstacle. We present here a paradigm for the control of single photon emitters (SPEs) and single photon purity by integrating monolayer WS2 with the organic ferroelectric polymer poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)). We demonstrate that the ferroelectric domains in the P(VDF-TrFE) film control the purity of single photon emission from the adjacent WS2. By switching the ferroelectric polarization, we reversibly tune the single photon purity between the semiclassical and quantum light regimes, with single photon purities as high as 94%. This demonstrates a method for modulating and encoding quantum photonic information, complementing more complex approaches. This multidimensional heterostructure introduces an approach for control of quantum emitters by combining the nonvolatile ferroic properties of a ferroelectric with the radiative properties of the zero-dimensional atomic-scale emitters embedded in the two-dimensional WS2 semiconductor monolayer.

8.
ACS Nano ; 18(34): 22965-22977, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39146081

RESUMO

In this work, we report an n-type metal-oxide-semiconductor (nMOS) inverter using chemical vapor deposition (CVD)-grown monolayer WS2 field-effect transistors (FETs). Our large-area CVD-grown monolayer WS2 FETs exhibit outstanding electrical properties including a high on/off ratio, small subthreshold swing, and excellent drain-induced barrier lowering. These are achieved by n-type doping using AlOx/Al2O3 and a double-gate structure employing high-k dielectric HfO2. Due to the superior subthreshold characteristics, monolayer WS2 FETs show high transconductance and high output resistance in the subthreshold regime, resulting in significantly higher intrinsic gain compared to conventional Si MOSFETs. Therefore, we successfully realize subthreshold operating monolayer WS2 nMOS inverters with extremely high gains of 564 and 2056 at supply voltage (VDD) of 1 and 2 V, respectively, and low power consumption of ∼2.3 pW·µm-1 at VDD = 1 V. In addition, the monolayer WS2 nMOS inverter is further expanded to the demonstration of logic circuits such as AND, OR, NAND, NOR logic gates, and SRAM. These findings suggest the potential of monolayer WS2 for high-gain and low-power logic circuits and validate the practical application in large areas.

9.
Adv Mater ; 36(36): e2400214, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39054935

RESUMO

Owing to their strong exciton effects and valley polarization properties, monolayer transition-metal dichalcogenides (1L TMDs) have unfolded the prospects of spin-polarized light-emitting devices. However, the wavefront control of exciton emission, which is critical to generate structured optical fields, remains elusive. In this work, the experimental demonstration of spin-locked vortex emission from monolayer Tungsten Disulfide (1L WS2) integrated with Silicon Nitride (SiNx) PhC slabs is presented. The symmetry-protected bound states in the continuum (BIC) in the SiNx PhC slabs engender azimuthal polarization field distribution in the momentum space with a topological singularity in the center of the Brillouin zone, which imposes the resonantly enhanced WS2 exciton emission with a spin-correlated spiral phase front by taking advantage of the winding topologies of resonances with the assistance of geometric phase scheme. As a result, exciton emission from 1L WS2 exhibits helical wavefront and doughnut-shaped intensity beam profile in the momentum space with topological charges locked to the spins of light. This strategy on spin-dependent excitonic vortex emission may offer the unparalleled capability of valley-polarized structured light generation for 1L TMDs.

10.
Bioelectrochemistry ; 160: 108780, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39018611

RESUMO

To advance cervical cancer diagnostics, we propose a state-of-the-art label-free electrochemical immunosensor designed for the simultaneous detection of multiple biomarker proteins (p16INK4a, p53, and Ki67). This immunosensor is constructed using a polyethyleneimine-coated gold nanoparticles/2D tungsten disulfide/graphene oxide (PEI-AuNPs/2D WS2/GO) composite-modified three-screen-printed carbon electrode (3SPCE) array. The 2D WS2/GO hybrid provides a large specific surface area for supporting well-dispersed PEI-AuNPs and adsorbed redox-active species, enhancing overall performance. The PEI-AuNPs-decorated 2D WS2/GO composite not only improves electrode conductivity but also increases the antibody loading capacity. Redox-active species, including Cd2+ ions, 2,3-diaminophenazine (DAP), and methylene blue (MB), serve as distinct signaling compounds to quantitatively detect the cervical cancer biomarkers p16INK4a, p53, and Ki67, respectively. Additionally, the immunosensor demonstrates the detection with high sensitivity, good storage stability, high selectivity, and acceptable reproducibility. This immunosensor demonstrates a good linear relationship with the logarithm of protein concentrations. Additionally, the immunosensor also demonstrates high sensitivity, good storage stability, high selectivity, and acceptable reproducibility. Our promising results and the successful application of the immunosensor in detecting three tumor markers in human serum highlight its potential for clinical diagnosis of cervical cancer.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Dissulfetos , Ouro , Grafite , Nanopartículas Metálicas , Nanocompostos , Oxirredução , Polietilenoimina , Neoplasias do Colo do Útero , Grafite/química , Humanos , Neoplasias do Colo do Útero/diagnóstico , Feminino , Nanopartículas Metálicas/química , Ouro/química , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/análise , Nanocompostos/química , Polietilenoimina/química , Técnicas Biossensoriais/métodos , Dissulfetos/química , Imunoensaio/métodos , Técnicas Eletroquímicas/métodos , Tungstênio/química , Limite de Detecção
11.
Polymers (Basel) ; 16(13)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39000808

RESUMO

This work proposes for the first time protecting-reflecting on both sides of plated mirrors and a solution to polycarbonate surface vulnerability to weathering and scratching using tungsten disulfide (WS2) by mechanical polishing. The ability of the dynamic chemical plating (DCP) technique to deposit Ag films at the nanometer scale on a polycarbonate (PC) substrate and its characteristics to be metallized is also shown. These deposits hold significant promise for concentrated solar power (CSP) applications. Complementarily, the application of WS2 as a reflective film for CSP by mechanical polishing on smooth polycarbonate surfaces is both novel and practical. This technique is innovative and scalable without needing reactants or electrical potential, making it highly applicable in real-world scenarios, including, potentially, on-site maintenance. The effects of surface morphology and adhesion, and the reflectivity parameters of the silver metallic surfaces were investigated. Wettability was investigated because it is important for polymeric surfaces in the activation and metal deposition immediately after redox reactions. The flame technique improved wettability by modifying the surface with carbonyl and carboxyl functional groups, with PC among the few industrial polymers that resisted such a part of the process. The change in the chemical composition, roughness, and wettability of the surfaces effectively improved the adhesion between the Ag film and the PC substrate. However, it did not significantly affect the adhesion between PC and WS2 and showed its possible implementation as a first surface mirror. Overall, this work provides a scalable, innovative method for improving the durability and reflectivity of polycarbonate-based mirrors, with significant implications for CSP applications.

12.
Small ; : e2403965, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994696

RESUMO

Nanotube and nanowire transistors hold great promises for future electronic and optoelectronic devices owing to their downscaling possibilities. In this work, a single multi-walled tungsten disulfide (WS2) nanotube is utilized as the channel of a back-gated field-effect transistor. The device exhibits a p-type behavior in ambient conditions, with a hole mobility µp ≈  1.4 cm2V-1s-1 and a subthreshold swing SS ≈ 10 V dec-1. Current-voltage characterization at different temperatures reveals that the device presents two slightly different asymmetric Schottky barriers at drain and source contacts. Self-powered photoconduction driven by the photovoltaic effect is demonstrated, and a photoresponsivity R ≈ 10 mAW-1 at 2 V drain bias and room temperature. Moreover, the transistor is tested for data storage applications. A two-state memory is reported, where positive and negative gate pulses drive the switching between two different current states, separated by a window of 130%. Finally, gate and light pulses are combined to demonstrate an optoelectronic memory with four well-separated states. The results herein presented are promising for data storage, Boolean logic, and neural network applications.

13.
Nano Lett ; 24(31): 9658-9665, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39052446

RESUMO

Dielectric phase gradient metasurfaces have emerged as promising candidates to shrink bulky optical elements to subwavelength thickness scale based on dielectric meta-atoms. These meta-atoms strongly interact with light, thus offering excellent phase manipulation of incident light. However, to fulfill 2π phase control using meta-atoms, the metasurface thickness, to date, is limited to the order of 102 nm. Here, we present the thickness scaling down of phase gradient metasurfaces to <λ/20 by using excitonic van der Waals metasurfaces. High-refractive-index enabled by exciton resonances and symmetry-breaking nanostructures in the patterned layered tungsten disulfide (WS2) corporately enable quasibound states in the continuum in WS2 metasurfaces, which consequently yield complete phase regulation of 2π with the thickness down to 35 nm. To illustrate the concept, we have experimentally demonstrated beam steering, focusing, and holographic display using WS2 metasurfaces. We envision our results unveiling new venues for ultimate thin phase gradient metasurfaces.

14.
Small ; 20(38): e2403321, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38837576

RESUMO

Transition metal derivatives exhibit high theoretical capacity, making them promising anode materials for sodium-ion batteries. Sulfides, known for their superior electrical conductivity compared to oxides, enhance charge transfer, leading to improved electrochemical performance. Here, a hierarchical WS2 micro-flower is synthesized by thermal sulfurization of WO3. Comprising interconnected thin nanosheets, this structure offers increased surface area, facilitating extensive internal surfaces for electrochemical redox reactions. The WS2 micro-flower demonstrates a specific capacity of ≈334 mAh g-1 at 15 mA g-1, nearly three times higher than its oxide counterpart. Further, it shows very stable performance as a high-temperature (65 °C) anode with ≈180 mAh g-1 reversible capacity at 100 mA g-1 current rate. Post-cycling analysis confirms unchanged morphology, highlighting the structural stability and robustness of WS2. DFT calculations show that the electronic bandgap in both WS2 and WO3 increases when going from the bulk to monolayers. Na adsorption calculations show that Na atoms bind strongly in WO3 with a higher energy diffusion barrier when compared to WS2, corroborating the experimental findings. This study presents a significant insight into electrode material selection for sodium-ion storage applications.

15.
Nanotechnology ; 35(39)2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38906122

RESUMO

In this study, we have investigated the thermal transport characteristics of single-layer tungsten disulfide, WS2nanoribbons (SLTDSNRs) using equilibrium molecular dynamics simulations with the help of Green-Kubo formulation. Using Stillinger-Weber (SW) inter-atomic potential, the calculated room temperature thermal conductivities of 15 nm × 4 nm pristine zigzag and armchair SLTDSNRs are 126 ± 10 W m-1K-1and 110 ± 6 W m-1K-1, respectively. We have explored the dependency of thermal conductivity on temperature, width, and length of the nanoribbon. The study shows that the thermal conductivity of the nanoribbon decreases with the increase in temperature, whereas the thermal conductivity increases with an increase in either the width or length of the ribbon. The thermal conductivity does not increase uniformly as the size of the ribbon changes. We have also observed that the thermal conductivity of SLTDSNRs depends on edge orientations; the zigzag nanoribbon has greater thermal conductivity than the armchair nanoribbon, regardless of temperature or dimension variations. Our study additionally delves into the tunable thermal properties of SLTDSNRs by incorporating defects, namely vacancies such as point vacancy, edge vacancy, and bi-vacancy. The thermal conductivities of nanoribbons with defects have been found to be considerably lower than their pristine counterparts, which aid in enhanced values for the thermoelectric figure of merit (zT). We have varied the vacancy concentration within a range of 0.1% to 0.9% and found that a point vacancy concentration of 0.1% leads to a 64% reduction in the thermal conductivity of SLTDSNRs. To elucidate these phenomena, we have calculated the phonon density of states for WS2under different aspects. The findings of our work provide important understandings of the prospective applications of WS2in nanoelectronic and thermoelectric devices by tailoring the thermal transport properties of WS2nanoribbons.

16.
Small ; : e2402217, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924273

RESUMO

As demand for higher integration density and smaller devices grows, silicon-based complementary metal-oxide-semiconductor (CMOS) devices will soon reach their ultimate limits. 2D transition metal dichalcogenides (TMDs) semiconductors, known for excellent electrical performance and stable atomic structure, are seen as promising materials for future integrated circuits. However, controlled and reliable doping of 2D TMDs, a key step for creating homogeneous CMOS logic components, remains a challenge. In this study, a continuous electrical polarity modulation of monolayer WS2 from intrinsic n-type to ambipolar, then to p-type, and ultimately to a quasi-metallic state is achieved simply by introducing controllable amounts of vanadium (V) atoms into the WS2 lattice as p-type dopants during chemical vapor deposition (CVD). The achievement of purely p-type field-effect transistors (FETs) is particularly noteworthy based on the 4.7 at% V-doped monolayer WS2, demonstrating a remarkable on/off current ratio of 105. Expanding on this triumph, the first initial prototype of ultrathin homogeneous CMOS inverters based on monolayer WS2 is being constructed. These outcomes validate the feasibility of constructing homogeneous CMOS devices through the atomic doping process of 2D materials, marking a significant milestone for the future development of integrated circuits.

17.
ACS Appl Mater Interfaces ; 16(22): 28435-28440, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38768216

RESUMO

The optical and photonic characteristics of monolayer transition metal dichalcogenides (TMDs) play a pivotal role in their functionality as solar cell materials, light-emitting diodes (LEDs), and other electro-optical applications. In this study, we reveal the impact of prolonged illumination on the luminescence properties and Raman spectra of monolayered MoS2 and WS2─a process known as "light soaking". We find a light-induced transition from the physisorption to the chemisorption of ambient O2 and H2O molecules. In parallel, we observe the activation and passivation of defect sites in the samples (depending on their initial defect density), which is attributed to the adsorbed ambient molecules and the resulting light-driven interactions with defect sites. Thus, we can control the active defect density of monolayered TMDs and shed light on the fundamental mechanisms underlying their luminescence properties. Therefore, this work clarifies the source of changes to the luminescence properties of TMDs and opens the path toward their integration into advanced applications that may be affected by light soaking, such as solar cells and energy devices.

18.
Small ; 20(30): e2312235, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38433104

RESUMO

Bombarding WS2 multilayered nanoparticles and nanotubes with focused ion beams of Ga+ ions at high doses, larger than 1016 cm-2, leads to drastic structural changes and melting of the material. At lower doses, when the damage is negligible or significantly smaller, the amount of implanted Ga is very small. A substantial increase in the amount of implanted Ga, and not appreciable structural damage, are observed in nanoparticles previously hydrogenated by a radio-frequency activated hydrogen plasma. Density functional calculations reveal that the implantation of Ga in the spaces between adjacent layers of pristine WS2 nanoparticles is difficult due to the presence of activation barriers. In contrast, in hydrogenated WS2, the hydrogen molecules are able to intercalate in between adjacent layers of the WS2 nanoparticles, giving rise to the expansion of the interlayer distances, that in practice leads to the vanishing of the activation barrier for Ga implantation. This facilitates the implantation of Ga atoms in the irradiation experiments.

19.
Heliyon ; 10(2): e24427, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293340

RESUMO

The discovery of graphene ignites a great deal of interest in the research and advancement of two-dimensional (2D) layered materials. Within it, semiconducting transition metal dichalcogenides (TMDCs) are highly regarded due to their exceptional electrical and optoelectronic properties. Tungsten disulfide (WS2) is a TMDC with intriguing properties, such as biocompatibility, tunable bandgap, and outstanding photoelectric characteristics. These features make it a potential candidate for chemical sensing, biosensing, and tumor therapy. Despite the numerous reviews on the synthesis and application of TMDCs in the biomedical field, no comprehensive study still summarizes and unifies the research trends of WS2 from synthesis to biomedical applications. Therefore, this review aims to present a complete and thorough analysis of the current research trends in WS2 across several biomedical domains, including biosensing and nanomedicine, covering antibacterial applications, tissue engineering, drug delivery, and anticancer treatments. Finally, this review also discusses the potential opportunities and obstacles associated with WS2 to deliver a new outlook for advancing its progress in biomedical research.

20.
Molecules ; 29(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276630

RESUMO

Thyroid transcription factor 1 (TTF1) is an important cancer-related biomarker for clinical diagnosis, especially for carcinomas of lung and thyroid origin. Herein, a novel label-free electrochemical immunosensor was prepared for TTF1 detection based on nanohybrids of ribbon-like tungsten disulfide-reduced graphene oxide (WS2-rGO) and gold nanoparticles (AuNPs). The proposed immunosensor employed H2O2 as the electrochemical probe because of the excellent peroxidase-like activity of ribbon-like WS2-rGO. The introduction of AuNPs not only enhanced the electrocatalytic activity of the immunosensor, but also provided immobilization sites for binding TTF1 antibodies. The electrochemical signals can be greatly amplified due to their excellent electrochemical performance, which realized the sensitive determination of TTF1 with a wide linear range of 0.025-50 ng mL-1 and a lower detection limit of 0.016 ng mL-1 (S/N = 3). Moreover, the immunosensor exhibited high selectivity, good reproducibility, and robust stability, as well as the ability to detect TTF1 in human serum with satisfactory results. These observed properties of the immunosensor enhance its potential practicability in clinical applications. This method can also be used for the detection of other tumor biomarkers by using the corresponding antigen-antibody complex.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Sulfetos , Compostos de Tungstênio , Humanos , Ouro/química , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Fator Nuclear 1 de Tireoide , Peróxido de Hidrogênio , Nanopartículas Metálicas/química , Imunoensaio/métodos , Grafite/química , Biomarcadores Tumorais , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA