RESUMO
Long-term hyperuricemia can induce kidney damage, clinically referred to as hyperuricemic nephropathy (HN), which is characterized by renal fibrosis, inflammation, and oxidative stress. However, currently used uric acid-lowering drugs are not capable of protecting the kidneys from damage. Therefore, uric acid-lowering drugs that can also protect the kidneys are urgently needed. In this study, we first discovered that salinomycin, an antibiotic, can regulate uric acid homeostasis and ameliorate kidney damage in mice with HN. Mechanistically, salinomycin inhibited serum and hepatic xanthine oxidase (XOD) activities and downregulated renal urate transporter 1 (URAT1) expression and transport activity, thus exerting uric acid-lowering effects in mice with HN. Furthermore, we found that salinomycin promoted p-NRF2 Ser40 expression, resulting in increased nuclear translocation of NRF2 and activation of NRF2. More importantly, salinomycin affected the gut microbiota and promoted the generation of short-chain fatty acids (SCFAs) in mice with HN. In conclusion, our results revealed that salinomycin maintains uric acid homeostasis and alleviates kidney injury in mice with HN by multiple mechanisms, suggesting that salinomycin might be a desirable candidate for HN treatment in the clinic.
Assuntos
Microbioma Gastrointestinal , Hiperuricemia , Fator 2 Relacionado a NF-E2 , Transportadores de Ânions Orgânicos , Piranos , Xantina Oxidase , Animais , Masculino , Camundongos , Microbioma Gastrointestinal/efeitos dos fármacos , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Rim/metabolismo , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Nefropatias/patologia , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Piranos/farmacologia , Piranos/uso terapêutico , Ácido Úrico/sangue , Ácido Úrico/metabolismo , Xantina Oxidase/metabolismo , Xantina Oxidase/antagonistas & inibidoresRESUMO
High serum urate levels are the major risk factor for gout. URAT1, the primary transporter for urate absorption in the kidneys, is well known as an anti-hyperuricemia drug target. However, the clinical application of URAT1-targeted drugs is limited because of their low specificity and severe side effects. The lack of structural information impedes elucidation of the transport mechanism and the development of new drugs. Here, we present the cryoelectron microscopy (cryo-EM) structures of human URAT1(R477S), its complex with urate, and its closely related homolog OAT4. URAT1(R477S) and OAT4 exhibit major facilitator superfamily (MFS) folds with outward- and inward-open conformations, respectively. Structural comparison reveals a 30° rotation between the N-terminal and C-terminal domains, supporting an alternating access mechanism. A conserved arginine (OAT4-Arg473/URAT1-Arg477) is found to be essential for chloride-mediated inhibition. The URAT1(R477S)-urate complex reveals the specificity of urate recognition. Taken together, our study promotes our understanding of the transport mechanism and substrate selection of URAT1.
Assuntos
Microscopia Crioeletrônica , Transportadores de Ânions Orgânicos , Proteínas de Transporte de Cátions Orgânicos , Ácido Úrico , Humanos , Ácido Úrico/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Transportadores de Ânions Orgânicos/química , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas de Transporte de Cátions Orgânicos/química , Especificidade por Substrato , Células HEK293 , Transporte Biológico , Modelos Moleculares , Transportadores de Ânions Orgânicos Sódio-IndependentesRESUMO
Hyperuricemia (HUA) is a common chronic metabolic disease caused by abnormal purine metabolism and uric acid excretion. Despite extensive research on HUA, no clear treatment has been found so far. Improving purine metabolism and promoting uric acid excretion is crucial for the effective treatment of HUA. In recent years, traditional Chinese medicine and traditional Chinese medicine prescriptions have shown good effects in treating HUA. This article summarizes the latest progress in treating HUA in rats and mice using traditional Chinese medicine and prescriptions, elaborates on the pathogenesis of HUA, explores the application of commonly used traditional Chinese medicine treatment methods and prescriptions, and discusses the previous pharmacological mechanisms. In general, our research indicates that traditional Chinese medicine can effectively relieve the symptoms related to elevated uric acid levels in HUA rats and mice. However, further exploration and research are needed to verify its efficacy, safety, and feasibility.
RESUMO
A T217M heterozygous mutation in the SLC22A12 gene caused renal hypouricemia; this patient with IgA nephropathy had no findings other than IgA nephropathy on renal biopsy. Hypouricemia was susceptible to oxidative stress, but IgA nephropathy in the patient with hypouricemia could be treated with steroid pulse therapy without adverse events.
RESUMO
The development of XOD/URAT1 dual target inhibitors has emerged as a promising therapeutic strategy for the management of hyperuricemia. Here, through virtual screening, we have identified digallic acid as a novel dual target inhibitor of XOD/URAT1 and subsequently evaluated its pharmacological properties, pharmacokinetics, and toxicities. Digallic acid inhibited URAT1 with an IC50 of 5.34 ± 0.65 µM, which is less potent than benzbromarone (2.01 ± 0.36 µM) but more potent than lesinurad (10.36 ± 1.23 µM). Docking and mutation analysis indicated that residues S35, F241 and R477 of URAT1 confer a high affinity for digallic acid. Digallic acid inhibited XOD with an IC50 of 1.04 ± 0.23 µM. Its metabolic product, gallic acid, inhibited XOD with an IC50 of 0.91 ± 0.14 µM. Enzyme kinetic studies indicated that both digallic acid and gallic acid act as mixed-type XOD inhibitors. It shares the same binding mode as digallic acid, and residues E802, R880, F914, T1010, N768 and F1009 contribute to their high affinity. The anion group (carboxyl) of digallic acid contribute significantly to its inhibition activity on both XOD and URAT1 as indicated by docking analysis. Remarkably, at a dosage of 10 mg/kg in vivo, digallic acid exhibited a stronger urate-lowering and uricosuric effect compared to the positive drug benzbromarone and lesinurad. Pharmacokinetic study indicated that digallic acid can be hydrolyzed into gallic acid in vivo and has a t1/2 of 0.77 ± 0.10 h. Further toxicity evaluation indicated that digallic acid exhibited no obvious renal toxicity, as reflected by CCK-8, biochemical analysis (CR and BUN) and HE examination. The findings of our study can provide valuable insights for the development of XOD/URAT1 dual target inhibitors, and digallic acid deserves further investigation as a potential anti-hyperuricemic drug.
Assuntos
Relação Dose-Resposta a Droga , Inibidores Enzimáticos , Hiperuricemia , Transportadores de Ânions Orgânicos , Proteínas de Transporte de Cátions Orgânicos , Hiperuricemia/tratamento farmacológico , Humanos , Animais , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Urato Oxidase/química , Descoberta de Drogas , Simulação de Acoplamento Molecular , Camundongos , Masculino , Ácido Gálico/química , Ácido Gálico/farmacologia , Ácido Gálico/análogos & derivados , Ratos Sprague-DawleyRESUMO
Uncontrolled hyperuricemia often leads to the development of hyperuricemic nephropathy (HN), characterized by excessive inflammation and oxidative stress. Piperine, a cinnamic acid alkaloid, possesses various pharmacological activities, such as antioxidant and anti-inflammatory effects. In this study, we intended to investigate the protective effects of piperine on adenine and potassium oxonate-induced HN mice and a uric-acid-induced injury model in renal tubular epithelial cells (mRTECs). We observed that treatment with piperine for 3 weeks significantly reduced serum uric acid levels and reversed kidney function impairment in mice with HN. Piperine (5 µM) alleviated uric acid-induced damage in mRTECs. Moreover, piperine inhibited transporter expression and dose-dependently inhibited the activity of both transporters. The results revealed that piperine regulated the AKT/mTOR signaling pathway both in vivo and in vitro. Overall, piperine inhibits URAT1/GLUT9 and ameliorates HN by inhibiting the AKT/mTOR pathway, making it a promising candidate for patients with HN.
Assuntos
Alcaloides , Benzodioxóis , Hiperuricemia , Piperidinas , Alcamidas Poli-Insaturadas , Humanos , Camundongos , Animais , Hiperuricemia/tratamento farmacológico , Ácido Úrico/metabolismo , Rim/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Serina-Treonina Quinases TOR/metabolismoRESUMO
The reabsorption of uric acid (UA) is mainly mediated by urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) in the kidneys. Dotinurad inhibits URAT1 but does not inhibit other UA transporters, such as GLUT9, ATP-binding cassette transporter G2 (ABCG2), and organic anion transporter 1/3 (OAT1/3). We found that dotinurad ameliorated the metabolic parameters and renal function in hyperuricemic patients. We consider the significance of the highly selective inhibition of URAT1 by dotinurad for metabolic syndrome, chronic kidney disease (CKD), and cardiovascular disease (CVD). The selective inhibition of URAT1 by dotinurad increases urinary UA in the proximal tubules, and this un-reabsorbed UA may compete with urinary glucose for GLUT9, reducing glucose reabsorption. The inhibition by dotinurad of UA entry via URAT1 into the liver and adipose tissues increased energy expenditure and decreased lipid synthesis and inflammation in rats. Such effects may improve metabolic parameters. CKD patients accumulate uremic toxins, including indoxyl sulfate (IS), in the body. ABCG2 regulates the renal and intestinal excretion of IS, which strongly affects CKD. OAT1/3 inhibitors suppress IS uptake into the kidneys, thereby increasing plasma IS, which produces oxidative stress and induces vascular endothelial dysfunction in CKD patients. The highly selective inhibition of URAT1 by dotinurad may be beneficial for metabolic syndrome, CKD, and CVD.
Assuntos
Benzotiazóis , Doenças Cardiovasculares , Síndrome Metabólica , Transportadores de Ânions Orgânicos , Insuficiência Renal Crônica , Humanos , Ratos , Animais , Doenças Cardiovasculares/tratamento farmacológico , Síndrome Metabólica/tratamento farmacológico , Uricosúricos/uso terapêutico , Ácido Úrico/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , GlucoseRESUMO
Hyperuricemia has become a global burden with the increasing prevalence and risk of associated metabolic disorders and cardiovascular diseases. Uricosurics act as a vital urate-lowering therapy by promoting uric acid excretion via the kidneys. However, potent and safe uricosurics are still in urgent demand for use in the clinic. In this study, we aimed to establish in vitro and in vivo models to aid the discovery of novel uricosurics, and to search for potent active compounds, especially targeting urate transporter 1 (URAT1), the major urate transporter in the kidney handling uric acid homeostasis. As a result, for preliminary screening, the in vitro URAT1 transport activity was assessed using a non-isotopic uric acid uptake assay in hURAT1-stably expressed HEK293 cells. The in vivo therapeutic effect was evaluated in a subacute hyperuricemic mouse model (sub-HUA) and further confirmed in a chronic hyperuricemic mouse model (Ch-HUA). By utilizing these models, compound CC18002 was obtained as a potent URAT1 inhibitor, with an IC50 value of 1.69 µM, and favorable uric acid-lowering effect in both sub-HUA and Ch-HUA mice, which was comparable to that of benzbromarone at the same dosage. Moreover, the activity of xanthine oxidoreductase, the key enzyme catalyzing uric acid synthesis, was not altered by CC18002 treatment. Taken together, we have developed a novel screening system, including a cell model targeting URAT1 and two kinds of mouse models, for the discovery of novel uricosurics. Utilizing this system, compound CC18002 was investigated as a candidate URAT1 inhibitor to treat hyperuricemia.
RESUMO
Uric acid (UA) is the final metabolite of purines in the liver that can cause hyperuricemia at high levels. The kidneys are the main excretory organs for UA. The excessive accumulation of UA in the kidneys causes the development of hyperuricemia that often leads to renal injury. Eupatilin (Eup) is a flavonoid natural product that possesses various pharmacological properties such as antioxidant, anti-cancer, and anti-inflammatory. We were interested in exploring the potential role of Eup in lowering UA and nephroprotective. We initially investigated the effects of Eup on xanthin oxidase (XOD) activity in vitro, followed by investigating its ability to lower UA levels, anti-inflammatory effects, nephroprotective effects, and the underlying mechanisms using hyperuricemia rats sustained at high UA level. The results showed that Eup had an inhibitory effect on XOD activity in vitro and significantly reduced serum UA, creatinine, BUN, IL-1ß and IL-6 levels in hyperuricemic rats, ameliorating inflammation, renal oxidative stress and pathological injury. Furthermore, Eup inhibited ADA and XOD enzyme activities in the liver and serum and modulated GLUT9, URAT1 and ABCG2 protein expression in the kidneys and ileum. Our findings provide a scientific basis for suggesting Eup as an option for a potential treatment for hyperuricemia.
Assuntos
Hiperuricemia , Ratos , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Xantina Oxidase , Rim , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Ácido Úrico/metabolismo , Anti-Inflamatórios/farmacologiaRESUMO
OBJECTIVE: The intestine is responsible for approximately one-third of uric acid (UA) excretion. The effect of commensal Enterococcus faecalis (E. faecalis), one of the most colonized bacteria in the gut, on UA excretion in the intestine remains to be investigated. The aim of this study was to evaluate the effect of commensal E. faecalis on UA metabolism and gut microbiota. METHODS: The 16S rRNA gene sequencing was used to examine the species of Enterococcus in mouse fecal content. E. faecalis strain was isolated from mouse feces and identified to be E. faecalis W5. The hyperuricemia (HUA) animal model was established with yeast-rich forage and 250 mg·kg-1 ·day-1 potassium oxonate. Oral administration of E. faecalis W5 was given for 20 days, serving as the Efa group. RESULTS: Disrupted intestinal barrier, activated proinflammatory response and low UA excretion in the intestine were found in HUA mice. After E. faecalis W5 treatment, the gut barrier was restored and serum UA level was decreased. Additionally, fecal and intestinal UA levels were elevated, intestinal urate transporter ABCG2 and purine metabolism were upregulated. Moreover, short-chain fatty acid levels were increased, and intestinal inflammation was ameliorated. CONCLUSIONS: Commensal E. faecalis W5 ameliorated HUA through reversing the impaired gut barrier, promoting intestinal UA secretion by regulating ABCG2 expression, and decreasing intestinal UA synthesis by regulating purine metabolism. The results may provide the potential for developing treatments for HUA through the intestine.
Assuntos
Microbioma Gastrointestinal , Hiperuricemia , Camundongos , Animais , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Enterococcus faecalis , RNA Ribossômico 16S , PurinasRESUMO
Gout represents a metabolic ailment resulting from the accumulation of monosodium urate crystals within joints, causing both inflammation and, harm to tissues. The primary contributor to gout's emergence is an elevated presence of serum urate, which is under the regulation of kidney and, gut urate transporters. Mitigating this risk factor is crucial for averting gout's onset. Several treatments rooted in TCM and related active compounds have demonstrated efficacy in managing gout, skillfully regulating serum uric acid (UA) levels and curbing inflammation's progression. This analysis compiles key foundational research concerning the molecular signaling pathways and UA transporters linked to gout, under the regulation of TCM. The focus includes individual botanical drug, active compounds, and TCM formulations, which have been consolidated and examined in this overview. The primary keywords chosen were "gout, hyperuricemia, gouty arthritis, traditional Chinese medicine, Chinese botanical drug, medicinal botanical drug, and natural plant". Various relevant literature published within the last 5 years were gathered from electronic databases, including PubMed, Web of Science, CNKI, and others. The findings revealed that TCM has the capacity to modulate various signaling pathways, including MAPK, NF-κB, PI3K/Akt, NLRP3 and JAK/STAT. Additionally, it impacts UA transporters like URAT1, GLUT9, ABCG2, as well as OATs and OCTs, thereby contributing to gout treatment. TCM helps maintain a balanced inflammatory interaction and facilitates UA excretion. This study enhances our understanding of TCM's anti-gout mechanisms and introduces novel perspectives for establishing the clinical significance and future prospects of TCM-based gout treatment.
RESUMO
INTRODUCTION: Dotinurad is a newer urate-lowering agent that selectively inhibits urate transporter 1 in the renal proximal tubule and increases urinary urate excretion. Currently, little is known about the clinical efficacies of dotinurad in patients with hyperuricemia and hypertension. The aim of this study was to assess the clinical effects of a selective urate reabsorption inhibitor dotinurad on serum uric acid (SUA) levels and relevant vascular markers in patients with hyperuricemia and treated hypertension. METHODS: This investigator-initiated, multicenter, prospective, single-arm, open-label, exploratory clinical trial in Japan enrolled patients with hyperuricemia and treated hypertension who received a 24-week dotinurad therapy (a starting dose at 0.5 mg once daily and up-titrated to 2 mg once daily). The primary endpoint was a percentage change in the SUA level from baseline to week 24. The secondary endpoints were cardiovascular and metabolic measurements, including changes in the cardio-ankle vascular index (CAVI) and derivatives of reactive oxygen metabolites (d-ROMs) concentration at week 24. RESULTS: Fifty patients (mean age 70.5 ± 11.0 years, with 76.0% being men, and mean SUA level 8.5 ± 1.2 mg/dL) were included in the analysis. The percentage change from baseline in the SUA level at week 24 was - 35.8% (95% confidence interval [CI] - 39.7% to - 32.0%, P < 0.001), with approximately three quarters of patients achieving an SUA level of ≤ 6.0 mg/dL at week 24. The proportional changes from baseline in the geometric mean of CAVI and d-ROMs at week 24 were 0.96 (95% CI 0.92 to 1.00, P = 0.044) and 0.96 (95% CI 0.92 to 1.00, P = 0.044), respectively. CONCLUSION: In addition to meaningful SUA-lowering effects, 24 weeks of dotinurad therapy may favorably affect arterial stiffness and oxidative stress markers, suggesting off-target vascular protection of dotinurad. Further research is expected to verify our findings and elucidate the entire off-target effects of dotinurad. Trial registration jRCTs021210013, registration date June 24, 2021.
Assuntos
Hipertensão , Hiperuricemia , Masculino , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Feminino , Hiperuricemia/tratamento farmacológico , Ácido Úrico , Estudos Prospectivos , Uricosúricos/uso terapêutico , Hipertensão/tratamento farmacológicoRESUMO
In combination with allopurinol, tranilast is used as an urate transporter 1 (URAT1) inhibitor for the treatment of hyperuricemia, but its structure-activity relationship concerning URAT1 inhibitory activity is rarely studied. In this paper, analogs 1-30 were designed and synthesized using scaffold hopping strategy on the basis of tranilast and the privileged scaffold indole. Then, URAT1 activity was evaluated using 14C-uric acid uptake assay with HEK293-URAT1 overexpressing cells. Compared with tranilast (inhibitory rate = 44.9% at 10 µM), most compounds displayed apparent inhibitory effects, ranging from 40.0% to 81.0% at 10 µM on URAT1. Surprisingly, along with the bringing in of a cyano group at the 5-position of indole ring, compounds 26 and 28-30 exerted xanthine oxidase (XO) inhibitory activity. In particular, compound 29 presented potency on URAT1 (48.0% at 10 µM) and XO (IC50 = 1.01 µM). Molecular simulation analysis revealed that the basic structure of compound 29 had an affinity with URAT1, and XO. Furthermore, compound 29 demonstrated a significant hypouricemic effect in a potassium oxonate-induced hyperuricemia rat model at an oral dose of 10 mg/kg during in vivo tests. In summary, tranilast analog 29 was identified as a potent dual-target inhibitor of URAT1 and XO, and a promising lead compound for further investigation.
Assuntos
Hiperuricemia , Xantina Oxidase , Animais , Humanos , Ratos , Ácidos Carboxílicos/farmacologia , Células HEK293 , Hiperuricemia/induzido quimicamente , Hiperuricemia/tratamento farmacológico , Indóis/uso terapêutico , Tiazóis/uso terapêuticoRESUMO
Uricosuric agents lower serum uric acid levels by increasing urinary excretion via inhibition of urate transporter 1 (URAT1), urate reabsorption transporter in the renal proximal tubules. Probenecid and benzbromarone have been used as uricosurics, but these drugs inhibit organic anion transporters (OATs) in addition to URAT1. In this study, we investigated whether uricosuric agents interacted with adefovir, known as a substrate for OAT1, using Sprague-Dawley (SD) rats. Furthermore, involvement of other transporters, multi-drug resistance protein 2 (MRP2) in this interaction was examined using Mrp2-deficient rats. Probenecid and lesinurad increased plasma adefovir concentrations and decreased kidney-to-plasma partition coefficient (Kp) in these rats, presumably by inhibiting Oat1. Although benzbromarone had no effect on plasma adefovir concentration, it increased the Kp to 141% in SD rats. Since this effect was abolished in Mrp2-deficient rats, together with the MRP2 inhibition study, it is suggested that benzbromarone inhibits Mrp2-mediated adefovir excretion from the kidney. In contrast, dotinurad, a novel uricosuric agent that selectively inhibits URAT1, had no effect on the plasma and kidney concentrations of adefovir. Therefore, due to the lack of interaction with adefovir, dotinurad is expected to have low drug-drug interaction risk mediated by OAT1, and also by MRP2.
Assuntos
Transportadores de Ânions Orgânicos , Uricosúricos , Ratos , Animais , Uricosúricos/farmacologia , Benzobromarona , Probenecid/farmacologia , Probenecid/metabolismo , Ácido Úrico , Ratos Sprague-Dawley , Rim/metabolismo , Transportadores de Ânions Orgânicos/metabolismoRESUMO
Chronic kidney disease (CKD) is a major global health problem for which there are no curative drug treatments. Hyperuricemia is one of risk factors for CKD. The evidence on effects of uric acid (UA)-lowering treatments on the progression of CKD was very limited and previous meta-analyses used only trials which primarily used xanthin oxidase (XO) inhibitors because the reports on fulminant hepatitis due to benzbromarone kept us from using uricosuric agents for hyperuricemia patients. Dotinurad, a novel selective urate reabsorption inhibitor for the treatment of hyperuricemia, reduces serum UA levels by selectively inhibiting urate transporter 1 (URAT1). We retrospectively picked up patients who had taken dotinurad from June 2018 to August 2021 and compared metabolic parameters at baseline with the data at 3 and 6 months after the start of dotinurad. We found 84 patients, and approximately 74% of patients were complicated with CKD. After the start of dotinurad, improvements in serum lipids, systolic blood pressure, body weight, and albuminuria, in addition to reduction in serum UA, were observed. Dotinurad increased urinary UA excretion, and was effective to reduce serum UA in patients with both UA underexcretion type and renal UA overload type. Furthermore, urinary UA excretion was significantly and negatively correlated with serum creatine levels at baseline and at 6 months after the start of dotinurad, and the change in urinary UA excretion after 3 months was significantly and negatively correlated with change in serum creatine levels. The property of dotinurad, which selectively inhibits URAT1, but not other UA transporters, such as ATP-binding cassette, subfamily G, and 2 (ABCG2), which ABCG2 is a UA and uremic toxin exporter, may be beneficially associated with pathology of CKD. URAT1 can be a therapeutic target molecule for CKD and DKD.
RESUMO
OBJECTIVE: Previous studies have revealed associations between hyperuricemia and microvascular diseases, but the association between hyperuricemia and abdominal aortic aneurysm (AAA) remains unclear. The aim of this study was to elucidate the pathogenesis and prove the relationship between AAA and hyperuricemia. METHODS: A retrospective study was performed to validate the growth rates of AAA in humans with different serum uric acid levels. A murine model of angiotensin II-induced AAA was used to assess the effects of hyperuricemia on AAA growth in vivo, and human aortic smooth muscle cells (HASMCs) were used to study the pathways involved in these effects in vitro. RESULTS: We analyzed data from 107 AAA patients and found that patients with serum uric acid levels above 9 mg/dl had higher AAA growth rates than patients with serum uric acid levels between 4 and 7.9 mg/dl. In vivo, induction of hyperuricemia increased the incidence of AAA formation and the abdominal aortic diameter in mice. The hyperuricemic mice exhibited higher levels of urate transporter 1 (URAT1) expression, phospho-extracellular signal-regulated kinase (p-ERK)1/2 expression, reactive oxygen species (ROS) levels and matrix metalloproteinase (MMP)-9 expression in the abdominal aorta than the control mice. Soluble uric acid increased the expression of URAT1, p-ERK1/2, and MMP-9 and the levels of ROS in HASMCs in vitro. CONCLUSIONS: We have provided human evidence that hyperuricemia exacerbates AAA formation. In addition, our murine experimental evidence suggests that hyperuricemia exacerbates AAA formation and reveals that the URAT1/ERK1/2/ROS/MMP-9 pathway is among the pathways activated by uric acid in HASMCs.
Assuntos
Aneurisma da Aorta Abdominal , Hiperuricemia , Humanos , Camundongos , Animais , Sistema de Sinalização das MAP Quinases , Ácido Úrico , Metaloproteinase 9 da Matriz/metabolismo , Hiperuricemia/complicações , Hiperuricemia/diagnóstico , Espécies Reativas de Oxigênio/metabolismo , Estudos Retrospectivos , Aneurisma da Aorta Abdominal/metabolismo , Aorta Abdominal , Transdução de Sinais , Modelos Animais de Doenças , Angiotensina II/metabolismoRESUMO
Hyperuricemia characterized by high serum levels of uric acid (UA, >6.8 mg/dL) is regarded as a common chronic metabolic disease. When used as a food supplement, naringenin might have various pharmacological activities, including antioxidant, free-radical-scavenging, and inflammation-suppressing activities. However, the effects of naringenin on hyperuricemia and renal inflammation and the underlying mechanisms remain to be elucidated. Here, we comprehensively examined the effects of naringenin on hyperuricemia and the attenuation of renal impairment. Mice were injected with 250 mg/kg of potassium oxonate (PO) and given 5% fructose water to induce hyperuricemia. The pharmacological effects of naringenin (10 and 50 mg/kg) and benzbromarone (positive control group, 20 mg/kg) on hyperuricemic mice were evaluated in vivo. The disordered expression of urate transporters in HK-2 cells was stimulated by 8 mg/dL UA, which was used to determine the mechanisms underlying the effects of naringenin in vitro. Naringenin markedly reduced the serum UA level in a dose-dependent manner and improved renal dysfunction. Moreover, the increased elimination of UA in urine showed that the effects of naringenin were associated with the regulation of renal excretion. Further examination indicated that naringenin reduced the expression of GLUT9 by inhibiting the PI3K/AKT signaling pathway and reinforced the expression of ABCG2 by increasing the abundance of PDZK1 in vivo and in vitro. Furthermore, sirius red staining and western blotting indicated that naringenin plays a protective role in renal injury by suppressing increases in the levels of pro-inflammatory cytokines, including IL-6 and TNF-α, which contribute to the inhibition of the TLR4/NF-κB signaling pathway in vivo and in vitro. Naringenin supplementation might be a potential therapeutic strategy to ameliorate hyperuricemia by promoting UA excretion in the kidney and attenuating the inflammatory response by decreasing the release of inflammatory cytokines. This study shows that naringenin could be used as a functional food or dietary supplement for hyperuricemia prevention and treatment.
Assuntos
Hiperuricemia , Camundongos , Animais , Hiperuricemia/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Ácido Úrico/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Eliminação Renal , Rim/metabolismo , Transdução de Sinais , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Citocinas/metabolismo , Ácido OxônicoRESUMO
SHR4640 is a novel, selective urate reabsorption inhibitor. As the mode of action of SHR4640 differs from that of a xanthine oxidase inhibitor, such as febuxostat, coadministration of these drugs may be a treatment option for patients with primary hyperuricemia. We assessed the potential drug-drug interaction between SHR4640 and febuxostat. In this single-center, open-label, randomized, drug-drug interaction study, subjects received 80 mg febuxostat or 10 mg SHR4640 alone daily in the first week, whereas during the second week a combination of SHR4640 and febuxostat was administered daily to all subjects. Plasma concentrations of SHR4640 and febuxostat were analyzed. We compared their pharmacokinetic and pharmacodynamic parameters and assessed both safety and tolerability. Compared with febuxostat alone, the geometric mean ratios (90%CIs) of the maximum concentration (Cmax ) and the area under the plasma concentration-time curve over the dosing interval τ (AUC0-τ ) for febuxostat after coadministration were 1.284 (1.016 to 1.621) and 0.984 (0.876 to 1.106), respectively. The geometric mean ratios (90%CIs) of Cmax and AUC0-τ for SHR4640 after coadministration compared with SHR4640 alone were 0.910 (0.839 to 0.988) and 0.929 (0.893 to 0.966), respectively. Febuxostat had no effect on SHR4640 pharmacokinetic parameters, as the 90%CIs of the geometric mean ratios were all within the range of 0.80 to 1.25. The coadministration of febuxostat and SHR4640 was well tolerated. The coadministration of SHR4640 with febuxostat was not associated with any clinically relevant pharmacokinetic drug interactions. SHR4640 combined with febuxostat had a synergistic effect on reducing uric acid in the pharmacodynamics, with the AUC decreasing from 7440 to 3170 h µmol/L compared with febuxostat alone and from 5730 to 2960 h µmol/L compared with SHR4640 alone.
Assuntos
Gota , Hiperuricemia , Humanos , Interações Medicamentosas , Inibidores Enzimáticos/efeitos adversos , Febuxostat/uso terapêutico , Gota/tratamento farmacológico , Supressores da Gota , Hiperuricemia/tratamento farmacológico , Hiperuricemia/induzido quimicamente , Resultado do Tratamento , Ácido Úrico , Xantina Oxidase/uso terapêuticoRESUMO
The present study aimed to determine the effects of polysaccharides-riched Prunus mume fruit juice concentrate (PFC) on uric acid (UA) excretion and the gut microbiota in mice with chronic kidney disease (CKD). C57BL/6 mice were randomly allocated to four groups: two that were fed AIN93M diet, one of which was administered 500 mg/kg PFC, and two that were fed AIN93M diet containing 0.2% adenine, one of which was administered 500 mg/kg PFC. PFC promoted UA excretion, which may have been mediated through increases in the protein expression of ATP-binding cassette transporter G2 (ABCG2), organic anion transporter 1 (OAT1), organic carnitine transporter 2 (OCTN2), and reductions in the protein expression of glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1) in kidneys of CKD mice. ABCG2 expression in the intestine was also increased by PFC administration. Additionally, PFC significantly increased large intestinal short-chain fatty acids (SCFAs) concentrations, and the number of gut microbial species, and reduced the abundance of the genera Bacteroides, Pseudoflavonifractor, Helicobacter, Clostridium_IV and Allobaculum, which have a negative effect on UA excretion. In conclusion, PFC may promote UA excretion in CKD mice by altering the expression of urate transporters and regulating the gut microbiota.
RESUMO
Recent studies suggest that Aster glehni extract (AGE) reduces hyperuricemia by preventing xanthine oxidase activity. However, its effect on renal urate transporters responsible for modulating urate excretion has not been examined. This study investigated whether AGE affects gene expressions of urate transporters using potassium oxonate (PO)-induced hyperuricemia rats. Furthermore, the underlying mechanisms of AGE were explored to ameliorate renal inflammation and injury by PO. AGE effectively restored PO-induced dysregulation of renal urate transporter 1 (URAT1), glucose transporter 9 (GLUT9), ATP-binding cassette transporter subfamily G member 2 (ABCG2), organic anion transporter 1 (OAT1), and organic cation transporter 1 (OCT1), resulting in increasing urate excretion. Additionally, AGE suppressed toll-like receptor 4/myeloid differentiation factor 88 (TLR4/MyD88) signaling, phosphorylation of nuclear factor kappa B (NF-κB), and renal production of IFN-γ, IL-1ß, TNF-α, and IL-6. These results suggest that AGE may ameliorate PO-induced hyperuricemia by modulating renal transporters, and further renal inflammation via inhibiting the TLR4/MyD88/NF-κB signaling pathway. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01153-5.