Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121642, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38950505

RESUMO

Water resource management, as a foundation for supporting sustainable urban development, has garnered increasing attention from scholars. Developing effective water resource management plans is a major challenge faced by countries worldwide. This study uses the 2015 Water Pollution Control and Prevention Action Plan (WPCAP) in China as a natural experiment and employs a Difference-in-Differences (DID) model to estimate the relationship between WPCAP and urban water pollution from 2010 to 2021. The findings are as follows: 1) WPCAP reduces water pollution. 2) WPCAP decreases water pollution in high-policy-pressure cities but increases water pollution in low-policy-pressure cities within a 60 km radius, particularly having a significantly negative impact on water pollution in low-policy-pressure cities with low altitude. 3) optimizing industrial and domestic water use, as well as enhancing sewage treatment capabilities, are crucial pathways through which WPCAP reduces water pollution. Additionally, WPCAP significantly improves water pollution control capabilities in cities with abundant water resources, large cities, and industrialized cities. 4) although WPCAP's ability to control water pollution increases management costs, it also raises residential income and promotes population growth. These findings have important implications for the sustainable development of water resources in emerging countries, including China.


Assuntos
Cidades , Poluição da Água , Recursos Hídricos , China , Poluição da Água/prevenção & controle , Conservação dos Recursos Naturais , Abastecimento de Água
2.
Environ Monit Assess ; 196(5): 440, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592560

RESUMO

The absence of a sewer system and inadequate wastewater treatment plants results in a discharge of untreated wastewater to the urban drainage channels and pollutes receiving waters. Field visits were carried out to observe water quality parameters such as dissolved oxygen (DO), biochemical oxygen demand (BOD), and chemical oxygen demand (COD) in an urban drainage system (Kolshet drain) in Thane City, Mumbai Metropolitan Region, India. Dye-tracing studies using rhodamine WT dye were used for computing the velocity, discharge, and dispersion coefficient of the drain. The data analysis shows that the BOD and COD values in the drain are higher than the permissible limits (30 mg L-1 for BOD and 250 mg L-1 for COD), which is not suitable for disposal to any receiving water body. Also, the DO was less than the permissible limit of a minimum of 3 mg L-1 (for the survival of aquatic life). It is seen that the higher BOD load significantly reduced the DO throughout the drain. The Water Quality Analysis Simulation Program (WASP 8.32, 2019) developed by the US Environmental Protection Agency (USEPA) has been used for the simulation of the DO and BOD in the drainage channel. The model simulates an appropriate estimate of the expected variation of DO and BOD at points of interest. The modeling for the Kolshet drain is expected to enable better estimates of the wastewater parameters and the pollution transport in the drain for planning purposes.


Assuntos
Águas Residuárias , Qualidade da Água , Estados Unidos , Monitoramento Ambiental , Índia , Simulação por Computador , Oxigênio
3.
Crit Rev Anal Chem ; : 1-18, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451912

RESUMO

The number of pollutants and chemicals with the potential to reach the environment is still largely unknown, which poses great challenges for researchers in various fields of science, environmental scientists, and analytical chemists. Chromatographic techniques, both gas chromatography (GC) and liquid chromatography (LC) coupled with different types of detection, are now invaluable tools for the identification of a wide range of chemical compounds and contaminants in water. This review is devoted to chromatographic techniques GC-MS, GC-Orbitrap-MS, GC-MS/MS, GC-HRMS, GC × GC-TOFMS, GC-ECD, LC-MS/MS, HPLC-UV, HPLC-PDA, UPLC-QTOFMS, used to determinate emerging organic contaminants in aquatic media, mainly in urban water, published in the scientific literature over the past several years. The article also focuses on sample preparation methods used in the analysis of aqueous samples. Most research focuses on minimizing the number of sample preparation steps, reducing the amount of solvents used, the speed of analysis, and the ability to apply it to a wide range of analytes in a sample. This is extremely important in the application of sensitive and selective methods to monitor the status of urban water quality and assess its impact on human health.

4.
Sci Total Environ ; 804: 150116, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34520926

RESUMO

Influence of land use and population characteristics on solid-liquid partitioning of heavy metals in aquatic ecosystems is little understood. This study hypothesised that the partitioning of heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) between water and sediments is influenced by different land use classes, their configuration patterns including patch density, Shannon's diversity index, largest patch index, and splitting index and population density. Relationships between variables were investigated from different distances to the stream network (sub-catchment and riparian scales) and considering land use patterns within individual land use classes and individual sub-catchments as a whole (class and landscape levels, respectively). The study outcomes confirmed that the influence of land use and configuration on metals partitioning is scale independent. However, population density increases metal bioavailability at the riparian scale compared to the sub-catchment scale. Agricultural lands discharge the highest fractions of dissolved metals at both spatial scales (eigenvectors = 0.409 - sub-catchment, and -0.533 - riparian, whilst metals have opposite loadings). Positive relationships between splitting index and metal partitioning confirmed that the division of anthropogenic land uses into smaller patches reduces water pollution. However, high fragmentation of forested areas increases the fraction of soluble metals. Further, high patch density and patch diversity are beneficial for controlling the solubility of some metals. Configuration metrics at the landscape level fundamentally reproduce the patterns of the largest land use type and are not effective for assessing metal partitioning. Therefore, analyses at the class level are preferred. This research investigation contributes essential knowledge to improve land use management strategies and, thereby, help safeguard urban waterways.


Assuntos
Metais Pesados , Poluentes Químicos da Água , China , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Rios , Água , Poluentes Químicos da Água/análise
5.
J Hazard Mater ; 421: 126743, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34364212

RESUMO

Limited knowledge of the combined effects of water and sediment properties and metal ionic characteristics on the solid-liquid partitioning of heavy metals constrains the effective management of urban waterways. This study investigated the synergistic influence of key water, sediment and ionic properties on the adsorption-desorption behavior of weakly-bound heavy metals. Field study results indicated that clay minerals are unlikely to adsorb heavy metals in the weakly-bound fraction of sediments (e.g., r = -0.37, kaolinite vs. Cd), whilst dissociation of metal-phosphates can increase metal solubility (e.g., r = 0.61, dissolved phosphorus vs. Zn). High salinity favors solubility of weakly-bound metals due to cation exchange (e.g., r = 0.60, conductivity vs. Cr). Dissolved organic matter does not favor metal solubility (e.g., r = -0.002, DOC vs. Pb) due to salt-induced flocculation. Laboratory study revealed that water pH and salinity dictate metal partitioning due to ionic properties of Ca2+ and H+. Selectivity for particulate phase increased in the order Cu>Pb>Ni>Zn, generally following the softness (2.89, 3.58, 2.82, 2.34, respectively) of the metal ions. Desorption followed the order Ni>Zn>Pb>Cu, which was attributed to decreased hydrolysis constant (pK1 = 9.4, 9.6, 7.8, 7.5, respectively). The study outcomes provide fundamental knowledge for understanding the mobility and potential ecotoxicological impacts of heavy metals in aquatic ecosystems.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , China , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Água , Poluentes Químicos da Água/análise
6.
Water Res ; 202: 117386, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229194

RESUMO

The adsorption-desorption behaviour of heavy metals in aquatic environments is complex and the processes are regulated by the continuous interactions between water and sediments. This study provides a quantitative understanding of the effects of nutrients and key water and sediment properties on the adsorption-desorption behaviour of heavy metals in riverine and estuarine environments. The influence levels of the environmental factors were determined as conditional regression coefficients. The research outcomes indicate that the mineralogical composition of sediments, which influence other sediment properties, such as specific surface area and cation exchange capacity, play the most important role in the adsorption and desorption of heavy metals. It was found that particulate organic matter is the most influential nutrient in heavy metals adsorption in the riverine environment, while particulate phosphorus is more important under estuarine conditions. Dissolved nutrients do not exert a significant positive effect on the release of heavy metals in the riverine area, whilst dissolved phosphorus increases the transfer of specific metals from sediments to the overlying water under estuarine conditions. Furthermore, the positive interdependencies between marine-related ions and the release of most heavy metals in the riverine and estuarine environments indicate an increase in the mobility of heavy metals as a result of cation exchange reactions.


Assuntos
Metais Pesados , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Água , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 763: 142984, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33498122

RESUMO

Bioavailability is a critical facet of metal toxicity. Although past studies have investigated the individual role of sediment physico-chemical properties in relation to the bioavailability of heavy metals, their collective effects are little-known. Further, limited knowledge exists on the contribution of nutrients to metal bioavailability. In this study, the influence of physico-chemical properties of sediments, including total organic carbon (TOC), total phosphorus (TP), total nitrogen (TN), cation exchange capacity (CEC), specific surface area (SSA), and mineralogical composition to metal bioavailability is reported. The weak-acid extraction method was used to measure Cd, Cr, Cu, Ni, Pb and Zn as the potentially bioavailable fraction in sediments in an urban creek. The results confirmed that Cu has strong selectivity for organic matter (r = 0.814, p < 0.01). Cr bioavailability was influenced by either sediment mineralogy, nutrients, CEC or SSA. Zn, Ni and Pb showed strong affinity to mineral oxides, though their preferred binding positions were with nutrients, particularly organic matter (r = 0.794, 0.809, and 0.753, p < 0.01, respectively). The adsorption of Cd was strongly influenced by the competition with other metals and its bioavailability was weakly influenced by ion exchange (CEC: r = 0.424, p < 0.01). The study results indicate that nitrogen and phosphorus compounds can elevate metal bioavailability due to complexation reactions. Generally, the estuarine area was more favourable for the adsorption of weakly-bound metals. This is concerning as estuaries generate high biogeochemical activity and are economically important.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Disponibilidade Biológica , China , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Poluentes Químicos da Água/análise
8.
Environ Pollut ; 251: 354-362, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31091499

RESUMO

The provision of water to meet the needs of an ever increasing urban population is a significant challenge. This is because urban receiving waters are constantly at risk from pollutant inputs via stormwater runoff and wastewater discharge. This research study employed multiple approaches including principal component analysis, Bayesian Networks (BNs) modelling and geospatial analysis to identify patterns in the distributions of nutrients and metals in water and sediments in an urban river and the interactions between the two phases. In both, water and sediments, nutrient concentrations/loads varied in the order of total carbon (TC) > total nitrogen (TN) > total phosphorus (TP). The river sediments were found to contain the highest crustal metal loads, while in water, the marine-related metals had the highest concentrations. The BNs modelling of pollutant interactions between water and sediment phases indicated that nitrogen is more likely to be transferred from water to sediment than the opposite, while anthropogenic metals are more likely to be transferred from sediments to water. Further, geospatial analysis showed that TN, crustal metals and anthropogenic metal loads in sediments increased from upstream to downstream, while having a decreasing pattern in water. However, marine-related metals in both, water and sediments had increasing concentrations/loads from upstream to downstream. These spatial patterns are attributed to the interactions between water and sediment phases, sediment transport along the river and seawater intrusion in the estuarine area. The study outcomes are expected to contribute to enhancing the knowledge required for developing mitigation strategies to improve urban receiving water quality.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais Pesados/análise , Rios/química , Poluentes Químicos da Água/análise , Teorema de Bayes , Carbono/análise , China , Nitrogênio/análise , Fósforo/análise , Água do Mar/química , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA