RESUMO
Modeling the fate and transport of organic pollutants at contaminated sites is critical for risk assessment and management practices, such as establishing realistic cleanup standards or remediation endpoints. Against the conventional wisdom that highly hydrophobic persistent organic pollutants (POPs) (e.g., polybrominated diphenyl ethers and polycyclic aromatic hydrocarbons) in surface soils are essentially immobile, mounting evidence has demonstrated the potential of these contaminants leaching into the groundwater, due to enhanced transport by soil colloids. Here, we develop a Colloids-Enhanced Transport (CET) model, which can be used as a simple screening tool to predict the leaching potential of POPs into groundwater, as mediated by soil colloids. The CET model incorporates several processes, including the release of POPs-bearing colloids into the porewater, the vertical transport of colloids and associated POPs in the vadose zone, the mixing of POPs-containing soil leachate with groundwater, and the migration of POPs-bearing colloids in saturated zone. Thus, using parameters that can be easily obtained (e.g., annual rainfall, soil type, and common hydrogeological properties of the subsurface porous media), the CET model can estimate the concentrations of POPs in the saturated zone from the observed POPs concentrations in surface or shallow subsurface zones. The CET model can also be used to derive soil quality standards or cleanup endpoints by back-calculating soil concentrations based on groundwater protection limits.
Assuntos
Coloides , Monitoramento Ambiental , Água Subterrânea , Interações Hidrofóbicas e Hidrofílicas , Modelos Químicos , Poluentes do Solo , Solo , Poluentes Químicos da Água , Água Subterrânea/química , Coloides/química , Poluentes do Solo/análise , Poluentes do Solo/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Monitoramento Ambiental/métodos , Solo/química , Poluentes Orgânicos Persistentes/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Éteres Difenil Halogenados/análise , Éteres Difenil Halogenados/químicaRESUMO
During nuclear accidents, large quantities of radionuclides will be released into the environment, posing serious health hazards to local residents. The screening of high-risk nuclides is critical for the development of subsequent nuclear emergency response measures. In order to overcome the shortcomings of traditional screening methods, a machine learning method was proposed to screen high-risk nuclides and predict their contamination to groundwater more effectively. The performances of Support Vector Machine (SVM), Random Forest (RF) and Back Propagation Neural Network (BPNN) algorithms were compared, and sensitivity analyses of the initial leakage concentration ratio (C0/Cp), distribution coefficient (Kd) and decay coefficient (λ) on the model outputs were performed. Results showed that RF classification model achieved the highest prediction accuracy for screening high-risk nuclides. The contribution of the input parameters ranked as Kd > λ > C0/Cp. BPNN regression model was found to be the best for predicting when high-risk nuclides would pollute groundwater. The output was negatively correlated with C0/Cp and positively correlated with Kd and λ, with the parameter influence ranking as Kd > C0/Cp > λ. The contribution of Kd mainly came from itself, and the contribution of C0/Cp and λ mainly due to their interaction with other parameters.
RESUMO
Leaching of dissolved organic nitrogen (DON) is a significant pathway for nitrogen (N) loss in agricultural ecosystems. The excessive application of N for enhanceing agricultural productivity often results in the leaching of N into groundwater. Yet not well understood, the extent of retention in the vadose zone has critical implications for risk management and remediation strategies. This study aims to advance simulation techniques for modelling the transport process of reactive DON within a heterogeneous vadose zone. Through a combination of laboratory experiments and numerical simulations, the study firstly examines the extent of DON retention in the vadose zone and quantitatively analyse groundwater contamination risk from this kind of accumulation. Our findings indicate that heavy N fertilizer application and high-intensity rainfall events led to elevated contents of DON in the vadose zone and increased DON leaching fluxes into groundwater. Besides, intensifier rainfall reduced the N storage more quickly in scenarios devoid of DON application with higher mineralization rate, while DON slowly mineralized to other forms, largely accumulated in the top layer and migrated deeper with intensifier rainfall after input of urea. In our scenarios, DON accounted for a substantial portion (33-68%) of the total dissolved nitrogen (TDN) leaching fluxes, with exogenous DON content contributing significantly (25-85%) to the overall DON leaching into the aquifer. These results underscore the need for effective strategies to mitigate groundwater contamination risks associated with agricultural N use.
Assuntos
Agricultura , Fertilizantes , Água Subterrânea , Nitrogênio , Poluentes Químicos da Água , Nitrogênio/análise , Água Subterrânea/química , Poluentes Químicos da Água/análise , Fertilizantes/análise , Agricultura/métodos , Monitoramento Ambiental , Chuva/química , Solo/químicaRESUMO
Safe and effective storage of radioactive waste is essential to protect human and environmental health. Due to the potential for accidental releases and the severity of the associated risks, it is imperative to further understand radionuclide transport should an accident occur. This study was the second set of measurements conducted in 2022 of an ongoing experiment that has analyzed the vadose zone migration of radionuclides from cementitious wasteforms at the Savannah River Site over the last ten years. The radionuclides introduced within the sources are prominent constituents of radioactive waste or analogs for other groups or series of radionuclides. Lysimeters were first analyzed in 2016 using a collimated high-purity germanium gamma-ray spectrometer to non-destructively measure the concentration of each radionuclide in the sediment column as a function of depth. Following these measurements, the lysimeters were redeployed for another 4 years. All radionuclides in all lysimeters were observed to transport further during the redeployment period; however, the extent of migration varied with the material used for introduction. Except for 137Cs, migration through the sediment control system increased with decreasing ionic potential (ionic charge/radius); migration order: 152Eu < 137Cs < 60Co < 133Ba. Overall, the cementitious wasteforms were observed to decrease radionuclide migration extent relative to natural vadose zone conditions. In both cementitious wasteforms, the migration extent increased in the order 152Eu < 133Ba<60Co < 137Cs. However, less migration was measured when the radionuclides were incorporated into a reducing grout wasteform. The novelty of this paper is the demonstration of a technique capable of creating non-destructive measurements over decade time scales. Ultimately, this work provides insight into the long-term migration of alkali, alkali earth, divalent transition metal, and trivalent (e.g., lanthanide and actinide element) isotopes.
RESUMO
Deep nitrate accumulation below 1 m has been observed in various soil regions, yet remains undocumented in the black soil (mainly Phaeozems and Chernozems) region. Climatic and edaphic factors likely influence deep nitrate accumulation on a large scale, although existing studies primarily focus on individual sites. In order to evaluate the distribution and controlling factors of deep nitrate in the black soil region, inorganic nitrogen forms and regolith properties of nine boreholes spanning humid, semi-humid, and semi-arid areas in Fujin, Hailun, and Lindian in northeast China were analyzed down to a depth of 10 m. The results revealed significant nitrate accumulation in Lindian, peaking at 11.03 mg N kg-1 at a depth of 3 m underground. Nitrate storage from the land surface to a depth of 10 m in Lindian ranged from 459.65 kg N ha-1 to 1072.88 kg N ha-1, with over 70 % of nitrate stored below 1 m. Nitrate accounted for 97.74 % of the total N stock in Lindian. Ammonium accumulation has been observed at a deeper depth in Hailun, with no nitrate accumulation detected in Hainlun and Fujin. Regolith properties such as clay, silt, sand, and pH playing a crucial role in reshaping the vertical pattern of nitrate. The presence of nitrate pools at greater depths in intensively managed black soil regions should be taken into account for the sustainable utilization of soil resources and the mitigation of groundwater pollution risks.
RESUMO
The transport of per- and polyfluoroalkyl substances (PFASs) through unsaturated source-zone soils is a critical yet poorly understood aspect of their environmental behavior. To date, most experimental studies have only focused on the equilibrium or non-equilibrium partitioning of PFASs to the air-water interface, or solid-phase based equilibrium or non-equilibrium transport. Currently, there are discrepancies between air-water interfacial partitioning (Kia) results measured using a drainage-based column method (which supports a Langmuir isotherm) when compared to measurements from alternative experimental methods (which support a Freundlich isotherm). We hypothesize that this discrepancy is the result of non-Fickian transport conditions developing during column tests using the drainage method, which reduces the magnitude of the apparent Kia (Kia,app) when estimated using the retardation factor correlation from breakthrough curve experiments. To test the validity of this hypothesis, the drainage method was implemented using PFOS in a sand column and compared with prior data collected using a quasi-saturated column method. Results demonstrate that the apparent Kia was reduced by 3 to 123-fold, resulting in up to 123-fold faster breakthrough of PFOS than predicted with the assumption of equilibrium adsorption to the air-water interface. A novel mobile-immobile model (MIM) of PFAS fate and transport was developed, incorporating a term for anomalously adsorbed solute in the mobile zone to explain highly anomalous data. The modelling results using a modified HYDRUS-1D software show that anomalous air-water interfacial adsorption and/or flowpath channelization are plausible mechanisms for accelerated transport of PFOS and support the application of a Freundlich isotherm for PFOS. Overall, non-Fickian transport mechanisms demonstrate the potential to accelerate PFOS transport through the vadose zone by up to a factor of 123 under specific circumstances. This work demonstrates the assumption of equilibrium adsorption to air-water interfaces, even for homogeneous laboratory experiments, is not necessarily valid.
RESUMO
Soil salinization poses a significant ecological challenge, emerging as a critical constraint to agricultural development in the arid and semi-arid regions of China, especially in southern Xinjiang. In particular, Yuepuhu County, situated in Kashgar, faces a distinctive issue. Impermeable thin clay layers within the vadose zone impede year-round leaching of salts, significantly impacting the growth of cotton. Through a combination of indoor testing, experiments, and statistical analyses, this study elucidated the varying permeability of soil layers at different depths and explored the forms and accumulation characteristics of soil salts in Yuepuhu County. It unveiled patterns of water and salt movement in soils with variable permeability layers, identifying key influencing factors. The research also proposed an irrigation regime suitable for cultivating vadose zone soils in the local context. The findings revealed a progression of increasing soil complexity and decreasing burial depth of clay layers from northwest to southeast, aligned with the direction of groundwater flow. With increasing depth, a noticeable reduction in soil saturated hydraulic conductivity was observed, indicating significant variability in permeability. Predominantly chloride-sulfate type saline soils in Yuepuhu County contained potassium (K+) and sodium (Na+) as the main cations in surface soils. Salinity strongly correlated with calcium (Ca2+) and magnesium (Mg2+). Chloride (Cl-), sulfate (SO42-), K+, Na+, and bicarbonate (HCO3-) reflected the degree of soil salinization in Yuepuhu County. The clay interlayers in variable permeability zones significantly impeded water and salt movement in the vadose zone. Moving from west to east, thicker and shallower clay interlayers hindered downward water movement, increasing the difficulty of salt leaching. Additionally, the irrigation regime influenced water and salt movement in the vadose zone. Under the same soil structure, flood irrigation with a higher water flux resulted in more significant salt leaching, and lower total dissolved solids (TDS) in irrigation water were more favorable for effective salt leaching. Collectively, our findings provided a theoretical foundation for improving and managing local saline soils, as well as guiding the implementation of rational agricultural irrigation practices.
Assuntos
Permeabilidade , Salinidade , Solo , Solo/química , China , Movimentos da Água , Água Subterrânea/química , Cloreto de Sódio/química , Monitoramento Ambiental , Agricultura/métodos , Argila/química , Irrigação AgrícolaRESUMO
To analyze the surface cumulative mass of VOCs from residual sources in dual-media fractured rocks and assess environmental health risks, complex 3D numerical models were constructed. These models comprehensively considered fracture-rock interactions, density-driven effects, and surface pressure fluctuations. The investigation identified the key control factors affecting surface cumulative mass, including the fracture aperture, pollutant source location, fracture density, and so on. Additionally, a regression-based general surrogate model was established using the obtained representative dataset. According to U.S. EPA's Respiratory Inhalation Reference Concentrations, the cumulative mass of CH2ClCHCl2 in one day for one-third of the model exceeds the concentration limit. Benzene and TCE concentrations reached 29 and 740 times the reference limits, significantly impacting air quality and health. Surrogate model analysis showed that in the worst-case scenario, 1 min's surface cumulative mass could cause Benzene concentrations to exceed the limit by 57 times. The implications of the study lies in reminding us that even after groundwater remediation in the saturated zone, residual VOCs in the capillary zones can still significantly impact surface environmental health risks. This investigation also presents an effective framework that integrates complex, time-consuming numerical modeling with simple, efficient statistical modeling to predict concerned variables and their uncertainties. This study provides a reference basis for the control of environmental pollution pertaining to VOCs volatilization from buried capillary zones at specific depths.
RESUMO
The study embarked on a comprehensive examination of the evolution and diversity of microorganisms within long-term leachate pollution environments, with a focus on varying depths and levels of contamination, and its linkage to soil characteristics and the presence of heavy metals. It was observed that microbial diversity presented distinct cross-depth trend, where archaeal communities were found to be particularly sensitive to alterations in soil depth. Noteworthily, Euryarchaeota increased by 4.82 %, 7.64 % and 9.87 % compared with topsoil. The abundance of Tahumarchaeota was successively reduced by 5.79 %, 9.58 %, and 12.66 %. The bacterial community became more sensitive to leachate pollution, and the abundance of Protebacteria in contaminated soil decreased by 10.27 %, while the abundance of Firmicutes increased by 7.46 %. The bacterial genus Gemmobacter, Chitinophaga and Rheinheimera; the archaeal genus Methanomassiliicoccus and Nitrosopumilus; along with the fungal genus Goffeauzyma, Gibberella, and Setophaeosphaeria emerged as pivotal biological markers for their respective domains, underpinning the biogeochemical dynamics of these environments. Furthermore, the study highlighted that geochemical factors, specifically nitrate (NO3--N) levels and humic acid (HA) fractions, played crucial roles in modulating the composition and metabolic potential of these communities. Predictive analyses of functional potentials suggested that the N functional change of archaea was more pronounced, with anaerobic ammonia oxidation and nitrification decreased by 15.78 % and 14.62 %, respectively. Overall, soil characteristics alone explained 57.9 % of the total variation in the bacterial community structure. For fungal communities within contaminated soil, HMs were the primary contributors, explaining 46.9 % of the variability, while soil depth accounting for 6.4 % of the archaeal variation. This research enriches the understanding of the complex interrelations between heavy metal pollution, soil attributes, and microbial communities, paving the way for informed strategies in managing informal landfill sites effectively.
Assuntos
Archaea , Microbiota , Microbiologia do Solo , Poluentes do Solo , Instalações de Eliminação de Resíduos , Poluentes do Solo/análise , Microbiota/efeitos dos fármacos , Bactérias/classificação , Solo/química , Monitoramento Ambiental , Metais Pesados/análise , Fungos , Poluentes Químicos da Água/análise , ChinaRESUMO
Evaluating and predicting the natural attenuation capacity (AC) of a vadose zone is essential for determining groundwater vulnerability to contamination from upper sources. However, it remains unclear how the physicochemical properties of vadose zone soils affect AC owing to their complexity and spatial heterogeneity. In this study, we developed a regression model for estimating the AC of a vadose zone against diesel using datasets from different soils with a wide range of physicochemical properties. Among the 17 properties, six (i.e., organic matter (OM), total phosphorous (TP), coefficient of uniformity, particle size (D30), van Genuchten's n, saturation degree (SD)) were selected as primary regressors. The results indicate that biogeochemical factors, including OM and TP, have decisive effects on the AC. Finally, the regression model was expanded to a GIS-based spatial model and applied to Namyangju, Korea using the index-overlay method. The produced AC map showed a nonmonotonic decrease along the depth, and the areas closer to the water bodies generally represented low AC values, most likely due to the lower OM, TP, and higher SD. This study provides an empirical basis for future research initiatives for spatial and temporal AC dynamics, which complements conventional intrinsic groundwater vulnerability models such as DRASTIC.
RESUMO
Understanding the mechanisms of natural source zone depletion (NSZD) will support an improved understanding of the long-term sustainability of NSZD as a site remedy and how NSZD rates may change over time. This is the first study that has quantified and compared the rate of three NSZD mechanisms (methanogenesis, vaporization, and aqueous biodegradation) between two chemically distinct light non-aqueous phase liquid (LNAPL) source zones (aliphatic-rich naphtha for Zone #1 vs aromatic-rich pyrolysis gasoline for Zone #2) within the same geologic and climate conditions. The rates of NSZD attributable to vaporization (400 mg C/m2/d vs. 300 mg C/m2/d) and aqueous biodegradation (92 mg C/m2/d vs. 67 mg C/m2/d) were similar for Zone #1 and #2; however, the rate of methanogenesis NSZD was 6x higher in Zone #1 (1000 mg C/m2/d vs. 170 mg C/m2/d). These results suggest that the aliphatic hydrocarbons content in an LNAPL source may be a factor in the rate of methanogenesis NSZD. For both Zone #1 and #2, total NSZD rate determined using this "three mechanism" measurement method was in reasonable agreement with two other methods used to measure total NSZD rates (CO2 Gradient Method and Dynamic Closed Chamber Method), validating the "three mechanism" method as a tool to measure the total NSZD rate at a site and to provide an improved understanding of the predominant NSZD mechanism. Overall, this study highlights the importance of LNAPL type and chemical characteristics in determining source zone natural attenuation mechanism and its total rates.
Assuntos
Biodegradação Ambiental , Metano/análise , Gasolina , Monitoramento Ambiental/métodos , VolatilizaçãoRESUMO
Some Per- and polyfluoroalkyl substances (PFAS) are strongly retained in the vadose zone due to their sorption to both soils and air-water interfaces. While significant research has been dedicated to understanding equilibrium behavior for these multi-phase retention processes, leaching and desorption from aqueous film-forming foam (AFFF) impacted soils under field relevant conditions can exhibit significant deviations from equilibrium. Herein, laboratory column studies using field collected AFFF-impacted soils were employed to examine the leaching of perfluoroalkyl acids (PFAAs) under simulated rainfall conditions. The HYDRUS 1-D model was calibrated to estimate the unsaturated hydraulic properties of the soil in a layered system using multiple boundary condtions. Forward simulations of equilibrium PFAS partitioning using the HYDRUS model and simplified mass balance calculations showed good agreement with the net PFAS mass flux out of the column. However, neither were able to predict the PFAS concentrations in the leached porewater. To better understand the mechanisms controlling the leaching behavior, the HYDRUS 1-D two-site leaching model incorporating solid phase rate limitation and equilibrium air-water interfacial partitioning was employed. Three variations of the novel model incorporating different forms of equilibrium air-water interfacial partitioning were considered using built-in numerical inversion. Results of numerical inversion show that a combination of air-water interfacial collapse and rate-limited desorption from soils can better predict the unique leaching behavior exhibited by PFAAs in AFFF-impacted soils. A sensitivity analysis of the initial conditions and rate-limited desorption terms was conducted to assess the agreement of the model with measured data. The models demonstrated herein show that, under some circumstances, laboratory equilibrium partitioning data can provide a reasonable estimation of total mass leaching, but fail to account for the significant rate-limited, non-Fickian transport which affect PFAA leaching to groundwater in unsaturated soils.
Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes do Solo , Poluentes Químicos da Água , Fluorocarbonos/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Água Subterrânea/química , Poluentes do Solo/química , Poluentes do Solo/análise , Solo/química , Modelos Teóricos , Adsorção , Ar , Modelos QuímicosRESUMO
Arsenic (As) is a widespread environmental contaminant that poses a significant threat to ecosystems and human health. Although previous studies have qualitatively revealed the effects of individual soil properties on the transport and fate of As in the vadose zone, their integrated impacts remain obscure. Moreover, studies investigating the retardation factor therein, which is a key parameter for comprehending As transport in the vadose zone, are extremely limited. In this study, we investigated the interplay of soil properties with As transport and retention within the vadose zone, while focusing on the retardation factor of As. We employed steady-state unsaturated water-flow soil column experiments coupled with a mobile-immobile model and multiple linear regression analysis to elucidate the dependence of As retardation factors on the soil properties. In the mobile water zone, iron and organic matter contents emerged as the two most influential properties that impedes As mobility. Whereas, in the immobile water zone, the coefficient of uniformity and bulk density were the most influential factors that enhanced As retention. Finally, we derived an empirical equation for calculating the As retardation factors in each zone, offering a valuable tool for describing and predicting As behavior to protect the groundwater resources underneath.
RESUMO
Indigenous soil microbial communities play a pivotal role in the in situ bioremediation of contaminated sites. However, research on the distribution characteristics of microbial communities at various soil depths remains limited. In particular, there is little information on the assembly of microbial communities, especially those with degradation potential, in the vadose and saturated zones of hydrocarbon-contaminated sites. In this study, 18 soil samples were collected from the vadose zone and saturated zone at a long-term hydrocarbon-contaminated site. The diversity, composition, and driving factors of assembly of the soil bacterial community were determined by high-throughput sequencing analysis. Species richness and diversity were significantly higher in the vadose zone soils than in the saturated zone soils. Significant differences in abundance at both the phylum and genus levels were observed between the two zones. Soil bacterial community assembly was driven by the combination of pollution stress and nutrients in the vadose zone but by nutrient limitations in the saturated zone. The abundance of dechlorinating bacteria was greater in the saturated zone soils than in the vadose zone soils. Compared with contaminant concentrations, nutrient levels had a more pronounced impact on the abundance of dechlorinating bacteria. In addition, the interactions among dechlorinating bacterial populations were stronger in the saturated zone soils than in the vadose zone soils. These findings underscore the importance of comprehensively understanding indigenous microbial communities, especially those with degradation potential, across different soil layers to devise specific, effective in situ bioremediation strategies for contaminated sites.
Assuntos
Bactérias , Biodegradação Ambiental , Hidrocarbonetos , Microbiologia do Solo , Poluentes do Solo , Solo , Poluentes do Solo/metabolismo , Hidrocarbonetos/metabolismo , Bactérias/metabolismo , Bactérias/genética , Bactérias/classificação , Solo/químicaRESUMO
Americium (III) (Am(III)) in the natural environment is considered immobile due to its low solubility, strong adsorption, and high affinity to solid surfaces. However, the presence of natural colloids may carry Am(III) transport for long distance. The individual and co-transport behaviors of Am(III) and natural colloids through the unsaturated packed columns were investigated under the influence of pH, electrolyte concentration, velocity, Am(III) concentration and natural colloids concentration. Under all experimental conditions, Am(III) individual transport construct sight breakthrough curves (BTCs, CAm/C0 < 3%), but the presence of natural colloids increased the BTCs plateau of Am(III) significantly (30% < CAm/C0 < 80%), indicating that the colloids were able to promote Am(III) transport in the unsaturated porous media. DLVO theoretical calculations reveal that the increased pH and decreased electrolyte concentration lead to a rase in electrostatic repulsion, and the natural colloids tend to be dispersed and stabilized, which facilitates elution. In addition to this, the increase of velocity and colloids concentration will lead to greater breakthrough of natural colloids. The non-equilibrium two-site model and the two-site kinetic retention model well-described the BTCs of Am(III) and natural colloids, respectively. This study provide new insights into the behavior of natural colloids carrying the Am(III) into aquifers through the vadose zone sediments.
Assuntos
Amerício , Coloides , Sedimentos Geológicos , Coloides/química , Sedimentos Geológicos/química , Amerício/química , Adsorção , Poluentes Químicos da Água/química , Cinética , Concentração de Íons de HidrogênioRESUMO
Bioremediation is an economically viable and sustainable clean-up strategy. Hydrodynamic, as well as transport characteristics of the porous medium, can evolve over the period as a result of biological clean-up activities. The present study proposes a 2-D numerical framework to simulate the effect of bioclogging on multiple electron acceptor-mediated petroleum hydrocarbon bioremediation in the vadose zone. For modelling, a spill of BTEX (benzene, toluene, ethylbenzene and xylene) is assumed near source zone. The developed model results are validated using three previously published datasets on flow, transport and biodegradation in the vadose zone. Simulations are performed for three types of soil, including clay, sand and loam. The analysis shows that sand has a maximum infiltration rate and clay has a minimum. Hydraulic conductivity and saturation profile peaks reach their minimal value at a shallower depth (around four times) when bioclogging is present compared to when it is absent. The migration depth and concentration of BTEX are observed to be restricted to a shallower depth in aquifers with the presence of microbial clogging. The outcome shows that electron acceptor consumption is more (around sevenfold for oxygen, fourfold for nitrate and threefold for sulphate) in the presence of bioclogging at the shallower zone. Zeroth order spatial moment and sensitivity analyses show that biological clogging, number of electron acceptors and inhibition constant substantially affect BTEX bioremediation in the vadose zone.
Assuntos
Biodegradação Ambiental , Hidrocarbonetos , Petróleo , Petróleo/metabolismo , Hidrocarbonetos/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Modelos Teóricos , ElétronsRESUMO
The unregulated irrigation systems used in the late 20th century have led to increasingly severe deep percolation (DP) in the agricultural irrigation areas of the North China Plain. This has become an important factor limiting the efficient utilization of water resources and sustainable environmental development in these irrigation areas. However, the thick vadose zone is hydrodynamically exceptionally complex. The soil hydrological cycle is constantly changing under the influence of major climate change and human activity, thereby causing changes in DP that are difficult to quantify accurately. Here, the Luancheng Agricultural Irrigation District in North China was selected for a continuous 20-year in situ experiment. Soil-water dynamics were monitored using neutron probes and tensiometers, to determine the complete annual soil-water cycle and the hydrodynamic properties of the thick vadose zone irrigation district. For 1971-2021, DP was simulated using the HYDRUS-1D model and was verified by fitting observed values. Soil water content (SWC) exhibited similar trends in years that differed in terms of the amounts of irrigation and precipitation. The 0-100 cm soil layer was significantly affected by precipitation and other factors, and recharge >60 mm/d caused percolation. DP occurred mostly after irrigation or during the period of intensive precipitation in July-October. The maximum percolation rate was 16.9 mm/d under the present irrigation method. The main factors leading to DP were soil water storage capacity (R2 = 0.86) and precipitation (R2 = 0.54). Under the evolution of irrigation measures in the last 50 years, the average DP has gradually decreased from 574.2 mm (1971-1990) to 435.5 mm (2005-2021). However, a substantial amount of precipitation and irrigation water infiltrated the soil and percolated into the deep soil layer without being utilized by the crop. Therefore, there is an urgent need to consider measures to reduce DP to improve water-use efficiency in agriculture.
RESUMO
We developed a set of two precision, small-scale, water balance lysimeters to provide accurate measurements of bare soil evaporation. Each lysimeter comprises a soil tank, a balance assembly with load cell, a wicking drainage system, and a stilling well to measure drained water. Fiberglass wicks installed at the bottom of the soil tanks provide -60 cm of tension to the base of the soil column, and soil water drainage is quantified to close the water balance within the lysimeter. The calibrated lysimeters return mass changes with uncertainties ranging from 3 to 8 g, corresponding to uncertainties of 0.02-0.05 mm of water. Installed at a semi-arid site in northern Nevada, the two lysimeters are filled with uniform construction sand and silt loam. Over a six-month pilot observation period, bare soil evaporation rates of 0.19 and 0.40 mm/day were measured for the construction sand and silt loam, respectively, which is consistent with meteorological data and models of potential evapotranspiration at the site. The design of the lysimeter can be adapted to specific research goals or site restrictions, and these instruments can contribute significantly to our ability to close the soil water balance.
RESUMO
Radon (222Rn) is a radioactive gas that occurs naturally in the soil and is harmful to the environment and health. However, the measuring the amount of radon flowing is challenging. This study reveals the mechanism responsible for radon transportation and concentration variation, the main driving forces acting, and the key factors operating in the vadose zone. In this study, two separate holes were used to monitor the amount of earth-air and radon flowing in and out of the soil in the extremely arid region in China where the Mogao Grottoes are located. Using a closed-system model, the quantity, characteristics, and regularity of the flow of earth-air and radon were thus determined on daily and yearly timescales. The same patterns of variation in earth-air flow and radon concentration were found at the two sites, both depending on the variation in the atmospheric pressure (AP). When the AP decreases, earth-air flows out from the soil with a high radon concentration. Conversely, when the AP increases, earth-air enters into the soil with a low radon concentration. Thus, radon is continuously emitted from the soil. The concentration of radon in the earth-air is proportional to the rate of flow of earth-air and therefore increases as the AP decreases. The radon emission also varies with the seasonal variation in temperature and AP, which is high in summer and low in winter. On a daily timescale, the radon varies in a bimodal manner. Therefore, the net amount of radon emitted from the soil is positively correlated with the amplitude of the AP fluctuation, temperature, soil porosity, and thickness of the vadose zone. The atmospheric pumping is the main driving force responsible for the radon emission. However, the surface closure, landform, cracks, faults, grain size, pore structure, soil adsorption, basal uranium/radium, salts, wind, lunar cycle, latitude and altitude have important effects on the number of radon emission. As such, it provides a scientific basis for the effective utilization of radon and prevention of its emission from soil.