Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 16(1): 2353394, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743047

RESUMO

Exposing C-section infants to the maternal vaginal microbiome, coined "vaginal seeding", partially restores microbial colonization. However, whether vaginal seeding decreases metabolic disease risk is unknown. Therefore, we assessed the effect of vaginal seeding of human infants on adiposity in a murine model. Germ-free mice were colonized with transitional stool from human infants who received vaginal seeding or control (placebo) seeding in a double-blind randomized trial. There was a reduction in intraabdominal adipose tissue (IAAT) volume in male mice that received stool from vaginally seeded infants compared to control infants. Higher levels of isoleucine and lower levels of nucleic acid metabolites were observed in controls and correlated with increased IAAT. This suggests that early changes in the gut microbiome and metabolome caused by vaginal seeding have a positive impact on metabolic health.


Assuntos
Adiposidade , Transplante de Microbiota Fecal , Fezes , Microbioma Gastrointestinal , Vagina , Animais , Humanos , Feminino , Camundongos , Masculino , Vagina/microbiologia , Fezes/microbiologia , Fezes/química , Método Duplo-Cego , Gordura Intra-Abdominal/metabolismo , Lactente , Recém-Nascido
2.
BJOG ; 131(9): 1249-1258, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38311451

RESUMO

OBJECTIVE: To assess whether labour variables (i.e. individuals characteristics, labour characteristics and medical interventions) impact maternal and newborn microbiomes. DESIGN: Prospective monocentric study. SETTING: Saint-Joseph Hospital tertiary maternity unit, in Paris, France. POPULATION: All consecutive primiparous women with a physiological pregnancy and term labour from 15 April to 1 June 2017. METHODS: 16S ribosomal RNA gene sequencing of the maternal vaginal, newborn skin and newborn oral microbiomes from 58 mother-baby dyads. MAIN OUTCOME MEASURES: Analysis of the effects of 19 labour variables on the composition and diversity of these microbiomes. RESULTS: The 19 labour variables explained a significant part of the variability in the vaginal, newborn oral and skin microbiomes (44%-67%). Strikingly, duration of rupture of membranes was the single factor that explained the greatest variability (adjusted R2: 7.7%-8.4%, p ≤ 0.002) and conditioned, by itself, the compositions of the three microbiomes under study. Long duration of rupture of membranes was specifically associated with a lower relative abundance of the Lactobacillus genus (1.7-fold to 68-fold reduction, p < 0.0001) as well as an increase in microbiome diversity, including genera implicated in nosocomial infections. The effects of duration of rupture of membranes were also present in newborns delivered by non-elective caesarean section. CONCLUSIONS: Maternal and newborn microbiomes were greatly affected by labour variables. Duration of rupture of membranes, even in non-elective caesarean sections, should be considered in epidemiological and microbiological studies, as well as in vaginal seeding practices.


Assuntos
Microbiota , Vagina , Humanos , Feminino , Recém-Nascido , Gravidez , Estudos Prospectivos , Vagina/microbiologia , Adulto , Pele/microbiologia , Trabalho de Parto , Fatores de Tempo , RNA Ribossômico 16S/análise , Boca/microbiologia , Ruptura Prematura de Membranas Fetais/microbiologia , Lactobacillus/isolamento & purificação
3.
Antibiotics (Basel) ; 12(11)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37998819

RESUMO

BACKGROUND: The microbiome of newborn infants during the first 1000 days, influenced early on by their mothers' microbiome health, mode of delivery and breast feeding, orchestrates the education and programming of the infant's immune system and determines in large part the general health of the infant for years. METHODS: PubMed was reviewed for maternal infant microbiome health and microbiota therapy in this setting with prebiotics, probiotics, vaginal seeding and fecal microbiota transplantation (FMT). RESULTS: A healthy nonobese mother, vaginal delivery and strict breast feeding contribute to microbiome health in a newborn and young infant. With reduced microbiome diversity (dysbiosis) during pregnancy, cesarean delivery, prematurity, and formula feeding contribute to dysbiosis in the newborn. Microbiota therapy is an important approach to repair dysbiosis in pregnant women and their infants. Currently available probiotics can have favorable metabolic effects on mothers and infants, but these effects are variable. In research settings, reversal of infant dysbiosis can be achieved via vaginal seeding or FMT. Next generation probiotics in development should replace current probiotics and FMT. CONCLUSIONS: The most critical phase of human microbiome development is in the first 2-3 years of life. Preventing and treating dysbiosis during pregnancy and early life can have a profound effect on an infant's later health.

4.
Anim Reprod ; 20(3): e20230082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026003

RESUMO

The neonatal period represents a critical stage for the establishment and development of the gut microbiota, which profoundly influences the future health trajectory of individuals. This review examines the importance of intestinal microbiota in humans and dogs, aiming to elucidate the distinct characteristics and variations in the composition between these two species. In humans, the intestinal microbiota contributes to several crucial physiological processes, including digestion, nutrient absorption, immune system development, and modulation of host metabolism. Dysbiosis, an imbalance or disruption of the gut microbial community, has been linked to various disorders, such as inflammatory bowel disease, obesity, and even neurological conditions. Furthermore, recent research has unveiled the profound influence of the gut-brain axis, emphasizing the bidirectional communication between the gut microbiota and the central nervous system, impacting cognitive function and mental health. Similarly, alterations in the canine intestinal microbiota have been associated with gastrointestinal disorders, including chronic enteropathy, such as inflammatory bowel disease, food allergies, and ulcerative histiocytic colitis. However, our understanding of the intricacies and functional significance of the intestinal microbiota in dogs remains limited. Understanding the complex dynamics of the intestinal microbiota in both humans and dogs is crucial for devising effective strategies to promote health and manage disease. Moreover, exploring the similarities and differences in the gut microbial composition between these two species can facilitate translational research, potentially leading to innovative therapeutic interventions and strategies to enhance the well-being of both humans and dogs.

5.
Mater Sociomed ; 35(3): 234-243, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37795168

RESUMO

Background: Pregnancy is an admirable biological process, resulting in significant changes in many of the body's normal systems so that they can support the development of the fetus. These changes involve hormonal changes, weight gain, immune system regulation, and others that need to be synchronized to maintain both maternal and fetal health. Objective: The purpose of this study was to compare gut microbiome in neonates born by caesarean section and vaginal seeding with gut microbiomes of neonates born by caesarean section without vaginal seeding and neonates born by vaginal delivery. Methods: In Democritus University of Thrace, from 2019 to 2022, gut microbiomes were compared for three groups of neonates. Group A included 110 neonates born by CS who underwent vaginal seeding, group B included 85 neonates born by CS without vaginal seeding and group C included 95 neonates born by vaginal delivery. Results: Vaginal seeding in neonates born with CS resulted in gut microbiome which was similar to the gut microbiome of neonates born by vaginal delivery (including lactobacillus species and bacteroides). On the contrary, gut microbiome of neonates born by CS without vaginal seeding was "limited". Conclusion: According to our findings, vaginal seeding alters the gut microbiome of the neonates born with CS. However, there is a need for further investigation to prove its efficacy and its safety for the neonate.

6.
Front Cell Infect Microbiol ; 13: 1144254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065202

RESUMO

Birth mode has been implicated as a major factor influencing neonatal gut microbiome development, and it has been assumed that lack of exposure to the maternal vaginal microbiome is responsible for gut dysbiosis among caesarean-delivered infants. Consequently, practices to correct dysbiotic gut microbiomes, such as vaginal seeding, have arisen while the effect of the maternal vaginal microbiome on that of the infant gut remains unknown. We conducted a longitudinal, prospective cohort study of 621 Canadian pregnant women and their newborn infants and collected pre-delivery maternal vaginal swabs and infant stool samples at 10-days and 3-months of life. Using cpn60-based amplicon sequencing, we defined vaginal and stool microbiome profiles and evaluated the effect of maternal vaginal microbiome composition and various clinical variables on the development of the infant stool microbiome. Infant stool microbiomes showed significant differences in composition by delivery mode at 10-days postpartum; however, this effect could not be explained by maternal vaginal microbiome composition and was vastly reduced by 3 months. Vaginal microbiome clusters were distributed across infant stool clusters in proportion to their frequency in the overall maternal population, indicating independence of the two communities. Intrapartum antibiotic administration was identified as a confounder of infant stool microbiome differences and was associated with lower abundances of Escherichia coli, Bacteroides vulgatus, Bifidobacterium longum and Parabacteroides distasonis. Our findings demonstrate that maternal vaginal microbiome composition at delivery does not affect infant stool microbiome composition and development, suggesting that practices to amend infant stool microbiome composition focus factors other than maternal vaginal microbes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Recém-Nascido , Humanos , Lactente , Gravidez , Feminino , Microbioma Gastrointestinal/genética , Estudos Prospectivos , Canadá , Fezes/microbiologia
7.
mBio ; 14(3): e0049123, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37074174

RESUMO

Children delivered by elective, prelabor Cesarean section (C-section) are not exposed to the birth canal microbiota and, in relation to vaginally delivered children, show altered microbiota development. Perturbed microbial colonization during critical early-life windows of development alters metabolic and immune programming and is associated with an increased risk of immune and metabolic diseases. In nonrandomized studies, vaginal seeding of C-section-born neonates partially restores their microbiota colonization to that of their vaginally delivered counterparts, but without randomization, confounding factors cannot be excluded. In a double-blind, randomized, placebo-controlled trial, we determined the effect of vaginal seeding versus placebo seeding (control arm) on the skin and stool microbiota of elective, prelabor C-section-born neonates (n = 20) at 1 day and 1 month after birth. We also examined whether there were between-arm differences in engraftment of maternal microbes in the neonatal microbiota. In relation to the control arm, vaginal seeding increased mother-to-neonate microbiota transmission and caused compositional changes and a reduction in alpha diversity (Shannon Index) of the skin and stool microbiota. The neonatal skin and stool microbiota alpha diversity when maternal vaginal microbiota is provided is intriguing and highlights the need of larger randomized studies to determine the ecological mechanisms and effects of vaginal seeding on clinical outcomes. IMPORTANCE Children delivered by elective C-section are not exposed to the birth canal and show altered microbiota development. Impairing microbial colonization during early life alters metabolic and immune programming and is associated with an increased risk of immune and metabolic diseases. In a double-blind, randomized, placebo-controlled trial, we determined the effect of vaginal seeding on the skin and stool microbiota of elective C-section born neonates and found that vaginal seeding increased mother-to-neonate microbiota transmission and caused compositional changes and a reduction in the skin and stool microbiota diversity. The reduction of neonatal skin and stool microbiota diversity when maternal vaginal microbiota is provided is intriguing and highlights the need of larger randomized studies to determine the ecological mechanisms and effects of vaginal seeding on clinical outcomes.


Assuntos
Cesárea , Microbiota , Recém-Nascido , Criança , Humanos , Gravidez , Feminino , Cesárea/efeitos adversos , Fezes/microbiologia , Pele/microbiologia , Vagina/microbiologia , Bactérias
9.
Gut Microbes ; 14(1): 2118811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093611

RESUMO

The gut microbiota has a central role in the programming of the host's metabolism and immune function, with both immediate and long-term health consequences. Recent years have witnessed an accumulation of understanding of the process of the colonization and development of the gut microbiota in infants. The natural gut microbiota colonization during birth is frequently disrupted due to C-section birth or intrapartum or postpartum antibiotic exposure, and consequently aberrant gut microbiota development is common. On a positive note, research has shown that restoration of normal gut microbiota development is feasible. We discuss here the current understanding of the infant microbiota, provide an overview of the sources of disturbances, and critically evaluate the evidence on early life gut microbiota restoration for improved health outcomes by analyzing published data from infant gut microbiota restoration studies.


Assuntos
Microbioma Gastrointestinal , Antibacterianos , Cesárea , Feminino , Humanos , Lactente , Gravidez
10.
Trends Mol Med ; 28(10): 806-822, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36085277

RESUMO

As rates of Cesarean delivery and common non-communicable disorders (NCDs), such as obesity, metabolic disease, and atopy/asthma, have concomitantly increased in recent decades, investigators have attempted to discern a causal link. One line of research has led to a hypothesis that Cesarean birth disrupts the presumed normal process of colonization of the neonatal microbiome with vaginal microbes, yielding NCDs later in life. However, a direct link between a disrupted microbiota transfer at time of delivery and acute and/or chronic illness in infants born via Cesarean has not been causally established. Microbiota seeding from maternal vaginal or stool sources has been preliminarily evaluated as an intervention designed to compensate for the lack of (or limited) exposure to such sources among Cesarean-delivered neonates. However, to date, clinical trials have yet to show a clear health benefit with neonatal 'vaginal seeding' practices. Until the long-term effects of these microbiome alterations can be fully determined, it is paramount to conduct parallel meaningful and mechanistic-minded interrogations of the impact of clinically modifiable maternal, nutritional, or environmental exposure on the functional microbiome over the duration of pregnancy and lactation to determine their role in the mitigation of childhood and adult NCDs.


Assuntos
Cesárea , Microbiota , Adulto , Cesárea/efeitos adversos , Fezes , Feminino , Humanos , Lactente , Recém-Nascido , Obesidade , Gravidez , Vagina
11.
EBioMedicine ; 69: 103443, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34186487

RESUMO

BACKGROUND: Birth by caesarean section (CS) is associated with aberrant gut microbiome development and greater disease susceptibility later in life. We investigated whether oral administration of maternal vaginal microbiota to infants born by CS could restore their gut microbiome development in a pilot single-blinded, randomised placebo-controlled trial (Australian New Zealand Clinical Trials Registry, ACTRN12618000339257). METHODS: Pregnant women scheduled for a CS underwent comprehensive antenatal pathogen screening. At birth, healthy neonates were randomised to receive a 3 ml solution of either maternal vaginal microbes (CS-seeded, n = 12) or sterile water (CS-placebo, n = 13). Vaginally-born neonates were used as the reference control (VB, n = 22). Clinical assessments occurred within the first 2 h of birth, and at 1 month and 3 months of age. Infant stool samples and maternal vaginal extracts from CS women underwent shotgun metagenomic sequencing. The primary outcome was gut microbiome composition at 1 month of age. Secondary outcomes included maternal strain engraftment, functional potential of the gut microbiome, anthropometry, body composition, and adverse events. FINDINGS: Despite the presence of viable microbial cells within transplant solutions, there were no observed differences in gut microbiome composition or functional potential between CS-seeded and CS-placebo infants at 1 month or 3 months of age. Both CS groups displayed the characteristic signature of low Bacteroides abundance, which contributed to a number of biosynthesis pathways being underrepresented when compared with VB microbiomes. Maternal vaginal strain engraftment was rare. Vaginal seeding had no observed effects on anthropometry or body composition. There were no serious adverse events associated with treatment. INTERPRETATION: Our pilot findings question the value of vaginal seeding given that oral administration of maternal vaginal microbiota did not alter early gut microbiome development in CS-born infants. The limited colonisation of maternal vaginal strains suggest that other maternal sources, such as the perianal area, may play a larger role in seeding the neonatal gut microbiome. FUNDING: Health Research Council of New Zealand, A Better Start - National Science Challenge.


Assuntos
Cesárea/efeitos adversos , Transplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal , Doenças do Recém-Nascido/microbiologia , Vagina/microbiologia , Administração Oral , Adulto , Bacteroides/patogenicidade , Transplante de Microbiota Fecal/efeitos adversos , Feminino , Humanos , Recém-Nascido , Doenças do Recém-Nascido/etiologia , Doenças do Recém-Nascido/prevenção & controle , Masculino
12.
Acta Paediatr ; 110(1): 60-67, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33405258

RESUMO

AIM: Description of the impact of caesarean section on the infant gut microbiome, infant health and solutions to restore the dysbiosis. METHODS: We searched PubMed and Google Scholar for relevant articles. Only articles published in English were selected. Separate searches were performed for each topic. We selected 60 articles published between 1999 and 2019 by extracting subject headings and key words of interest for this topic. RESULTS: Caesarean section is an obstetrical procedure that is increasing in prevalence worldwide. On top of the maternal and neonatal risks that this procedure carries, it also induces a dysbiosis of the infant intestinal microbiome possibly challenging the health outcome for the infant. Antibiotics administered during Caesarean deliveries contribute to the development of the gut microbiome. Nonetheless, breastfeeding and several interventions such as vaginal seeding and supplementation with probiotics, prebiotics and synbiotics may contribute to the restoration of the dysbiosis. CONCLUSION: Caesarean section is associated with the development of an imbalance of the infant gut microbiome. Long-term consequences of this imbalance are debated. Besides breastfeeding, other strategies to restore this dysbiosis need further studies before they can be recommended.


Assuntos
Microbioma Gastrointestinal , Probióticos , Simbióticos , Cesárea/efeitos adversos , Disbiose , Feminino , Humanos , Lactente , Recém-Nascido , Prebióticos , Gravidez
13.
Ceska Gynekol ; 86(6): 422-427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35038883

RESUMO

OBJECTIVE: To provide a comprehensive overview of the available information on the maternal microbio-me and its effect on pregnancy and preterm birth. METHODS: Systematic review of available literature on the topic was done using the PubMed database. CONCLUSION: Etiology of preterm labor is multifactorial. Individual setting of humoral and cellular immune response is key; however, lately the focus has shifted to the role of the microbio-me, especially the vaginal one. The role of additional microbio-mes and the relationship between different compartments are the focus of intensive research. Mainly the differences in the maternal and neonatal microbio-me depend on the method of delivery and administration of different antibio-tics during pregnancy and labor. The uterine cavity is no longer thought to be without colonization and the formation of the fetal microbio-me begins early in pregnancy.


Assuntos
Trabalho de Parto , Microbiota , Trabalho de Parto Prematuro , Nascimento Prematuro , Líquido Amniótico , Feminino , Humanos , Recém-Nascido , Gravidez
14.
Front Microbiol ; 11: 932, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508773

RESUMO

Microbiota transplant is becoming a popular process to restore or initiate "healthy" gut microbiota and immunity. But, the potential risks of the related practices need to be carefully evaluated. This study retrospectively examined the resistomes of donated fecal microbiota for treating intestinal disorders, vaginal microbiota of pregnant women, and infant fecal microbiota from rural and urban communities, as well as the impact of transplants on the fecal resistome of human and animal recipients. Antibiotic resistance (AR) genes were found to be abundant in all donor microbiota. An overall surge of resistomes with higher prevalence and abundance of AR genes was observed in the feces of all transplanted gnotobiotic pigs as well as in the feces of infant subjects, compared to those in donor fecal and maternal vaginal microbiota. Surprisingly, transplants using rural Amish microbiota led to more instead of less AR genes in the fecal microbiota of gnotobiotic pigs than did transplants using urban microbiota. New AR gene subtypes undetected originally also appeared in gnotobiotic pigs, in Crohn's Disease (CD) patients after transplant, and in feces of infant subjects. The data illustrated the key role of the host gastrointestinal tract system in amplifying the ever-increasing AR gene pool, even without antibiotic exposure. The data further suggest that the current approaches of microbiota transplant can introduce significant health risk factor(s) to the recipients, and newborn human and animal hosts with naïve gut microbiota were especially susceptible. Given the illustrated public health risks of microbiota transplant, minimizing massive and unnecessary damages to gut microbiota by oral antibiotics and other gut impacting drugs becomes important. Since eliminating risk factors including AR bacteria and opportunistic pathogens directly from donor microbiota is still difficult to achieve, developing microbial cocktails with defined organisms and functions has further become an urgent need, should microbiota transplantation become necessary.

15.
Ann Nutr Metab ; 73 Suppl 3: 24-32, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30041170

RESUMO

The rate of Caesarean-section delivery in the United States has increased by 60% from 1996 through to 2013 and now accounts for > 30% of births [CDC, 2017]. The purpose of this review is to present the current understanding of both the microbial risk factors that increase the likelihood of a Caesarean-section delivery and the microbial dysbiosis that is thought to result from the Caesarean section. We provide examples of research into the impact of early-life microbial dysbiosis on infant development and long-term health outcomes, as well as consider the efficacy and the long-term implications of microbiome-based therapies to mitigate this dysbiosis. The steep rise in the Caesarean-section delivery rate makes it imperative to understand the potential of microbiota modulation for the treatment of dysbiosis.


Assuntos
Cesárea/efeitos adversos , Disbiose/etiologia , Microbioma Gastrointestinal , Parto Obstétrico , Feminino , Humanos , Sistema Imunitário , Recém-Nascido , Gravidez
16.
Front Med (Lausanne) ; 5: 135, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780807

RESUMO

Numerous studies suggest that infants delivered by cesarean section are at a greater risk of non-communicable diseases than their vaginal counterparts. In particular, epidemiological studies have linked Cesarean delivery with increased rates of asthma, allergies, autoimmune disorders, and obesity. Mode of delivery has also been associated with differences in the infant microbiome. It has been suggested that these differences are attributable to the "bacterial baptism" of vaginal birth, which is bypassed in cesarean deliveries, and that the abnormal establishment of the early-life microbiome is the mediator of later-life adverse outcomes observed in cesarean delivered infants. This has led to the increasingly popular practice of "vaginal seeding": the iatrogenic transfer of vaginal microbiota to the neonate to promote establishment of a "normal" infant microbiome. In this review, we summarize and critically appraise the current evidence for a causal association between Cesarean delivery and neonatal dysbiosis. We suggest that, while Cesarean delivery is certainly associated with alterations in the infant microbiome, the lack of exposure to vaginal microbiota is unlikely to be a major contributing factor. Instead, it is likely that indication for Cesarean delivery, intrapartum antibiotic administration, absence of labor, differences in breastfeeding behaviors, maternal obesity, and gestational age are major drivers of the Cesarean delivery microbial phenotype. We, therefore, call into question the rationale for "vaginal seeding" and support calls for the halting of this practice until robust evidence of need, efficacy, and safety is available.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA