Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Med Chem ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38982919

RESUMO

BACKGROUND: Among various carboxylic acid derivatives, valeric acid or pentanoic acid is found to be widely distributed in nature. It is a straight-chain alkyl carboxylic acid containing five carbon atoms. Due to the therapeutic value of valeric acid, it is used as a versatile nucleus in the pharmaceutical field. Valeric acid derivatives are associated with a broad spectrum of biological activities, like anticonvulsant, antiplatelet, antidiabetic, and plant growth activities. AIM: It has previously been revealed that peptide derivatives of carboxylic acids are accountable for enhanced antimicrobial activity. Therefore, it was hypothesized that coupling peptides with valeric acid would increase the antimicrobial properties of the target compounds. So, the objective of the present study was to synthesize peptide derivatives of 5-bromovaleric acid and evaluate their antibacterial and antifungal activities. METHODS: 5-bromovaleric acid was synthesized by the reaction of cyclopentanone and hydrogen peroxide in the presence of copper bromide and sodium bromide. Additionally, 5-bromovaleric acid was coupled with amino acid methyl esters, dipeptides, tripeptides, and tetrapeptides in the presence of dicyclohexylcarbodimide (DCC) and N-methylmorpholine (NMM) as a base under continuous stirring for 36 hours to produce its peptide derivatives. RESULTS: The results obtained showed that 5-bromovaleric acid possesses more potent antibacterial activity than N-terminal 5-bromovaleric acid conjugates of selected di-, tri, and tetra peptide Cterminal methyl esters against ciprofloxacin as a standard. The selected dipeptide and tripeptide Nterminal 5-bromovaleric acid-conjugated C-terminal methyl ester derivatives were more active than the selected tetrapeptide methyl ester analogue. Using fluconazole as a reference, the antifungal efficacy of 5-bromovaleric acid against C. albicans and A. niger declined as it was combined with C-terminal methyl esters of selected dipeptides, tripeptides, and tetrapeptides. CONCLUSION: The novel selected peptide derivatives had less antibacterial and antifungal action than the parent 5-bromovaleric acid. Antibacterial and antifungal investigations showed that 5- bromopentanoic acid peptide derivatives might impair antimicrobial efficacy. Further, attaching 5- bromopentanoic acid to di, tri, and tetra peptides did not boost their antibacterial potential.

2.
Biochem Pharmacol ; 226: 116343, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852645

RESUMO

The abnormal accumulation of fibrillar α-synuclein in the substantia nigra contributes to Parkinson's disease (PD). Chemical chaperones like 4-phenyl butyric acid (4PBA) show neuroprotective potential, but high doses are required. A derivative, 5-phenyl valeric acid (5PVA), has reported therapeutic potential for PD by reducing Pael-R expression. This study assessed 5PVA's efficacy in PD animals and its molecular mechanism. In vitro studies revealed 5PVA's anti-aggregation ability against alpha-synuclein and neuroprotective effects on SHSY5Y neuroblastoma cells exposed to rotenone. PD-like symptoms were induced in SD rats with rotenone, followed by 5PVA treatment at 100 mg/kg and 130 mg/kg. Behavioral analysis showed significant improvement in memory and motor activity with 5PVA administration. Histopathological studies demonstrated normal neuronal histoarchitecture in mid-brain tissue sections of 5PVA-treated animals compared to the PD group. mRNA studies revealed significant suppression in the expression of various protein folding and heat-shock protein markers in the 5PVA-treated group. In conclusion, 5PVA, with its anti-aggregation ability against alpha-synuclein, acts as a chemical chaperone, showing potential as a therapeutic candidate for PD treatment.


Assuntos
Estresse do Retículo Endoplasmático , Ratos Sprague-Dawley , Rotenona , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Rotenona/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ratos , Masculino , Linhagem Celular Tumoral , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ácidos Pentanoicos/farmacologia , Ácidos Pentanoicos/uso terapêutico , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Agregados Proteicos/efeitos dos fármacos
3.
Chemphyschem ; : e202300900, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38856848

RESUMO

Studies on the electrochemical hydrogenation (ECH) of levulinic acid (LA) to valeric acid (VA) or γ-valerolactone (GVL) have mainly focused on the electroreduction of LA in acidic aqueous solutions. However, the narrow range of applied potentials has hindered understanding of some mechanistic aspects of LA electrochemical conversion. Earlier, we discovered that employing proton-deficient non-aqueous reaction media provides more comprehensive insights into the mechanism of LA electrochemical reduction. Here, we conducted further investigations into the LA electroreduction process using cyclic voltammetry in various organic solvents on a Pt electrode and on various electrode materials in acetonitrile, both with and without the addition of proton donors. The products of the ECH processes were identified using HPLC. The solvent nature, the presence of proton donors, the electrode material, and the applied potential strongly influence the LA electroreduction process. This study reveals that LA, in the presence proton donors, can undergo electroreduction through different pathways, depending on the difference (ΔE1/2) between the reduction half-wave potential of protons and LA. When the difference is large, the LA reduction is incomplete and the formation of GVL is observed. Under the close reduction potentials of protons and LA, LA can be completely reduced to VA.

4.
Theriogenology ; 225: 152-161, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38805997

RESUMO

Oocytes and embryos are highly sensitive to environmental stress in vivo and in vitro. During in vitro culture, many stressful conditions can affect embryo quality and viability, leading to adverse clinical outcomes such as abortion and congenital abnormalities. In this study, we found that valeric acid (VA) increased the mitochondrial membrane potential and ATP content, decreased the level of reactive oxygen species that the mitochondria generate, and thus improved mitochondrial function during early embryonic development in pigs. VA decreased expression of the autophagy-related factors LC3B and BECLIN1. Interestingly, VA inhibited expression of autophagy-associated phosphorylation-adenosine monophosphate-activated protein kinase (p-AMPK), phosphorylation-UNC-51-like autophagy-activated kinase 1 (p-ULK1, Ser555), and ATG13, which reduced apoptosis. Short-chain fatty acids (SCFAs) can signal through G-protein-coupled receptors on the cell membrane or enter the cell directly through transporters. We further show that the monocarboxylate transporter 1 (MCT1) was necessary for the effects of VA on embryo quality, which provides a new molecular perspective of the pathway by which SCFAs affect embryos. Importantly, VA significantly inhibited the AMPK-ULK1 autophagic signaling pathway through MCT1, decreased apoptosis, increased expression of embryonic pluripotency genes, and improved embryo quality.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Autofagia , Desenvolvimento Embrionário , Mitocôndrias , Transportadores de Ácidos Monocarboxílicos , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Suínos/embriologia , Desenvolvimento Embrionário/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transdução de Sinais/efeitos dos fármacos , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Técnicas de Cultura Embrionária/veterinária , Simportadores
5.
Biochar ; 6(1): 51, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799720

RESUMO

Although addition of pyrolyzed organic materials (biochars) to soil generally results in increased growth and physiological performance of plants, neutral and negative responses have also commonly been detected. Toxicity of organic compounds generated during pyrolysis, sorbed by biochars, and then released into the soil solution, has been implicated as a possible mechanism for such negative effects. Conversely, water-soluble biochar constituents have also been suggested to have "hormetic" effects (positive effects on plants at low concentrations); however, no specific compounds responsible have been identified. We investigated the relative phytotoxicity-and possible hormetic effects-of 14 organic compounds common in aqueous extracts of freshly produced lignocellulosic biochars, using seed germination bioassays. Of the compounds examined, volatile fatty acids (VFAs: acetic, propionic, butyric, valeric, caproic, and 2-ethylbutyric acids) and phenol, showed acute phytotoxicity, with germination-based ED50 values of 1-30 mmol L-1, and 2-ethylbutyric acid showed ED50 values of 0.1-1.0 mmol L-1. Other compounds (benzene, benzoic acid, butanone, methyl salicylate, toluene, and 2,4-di-tert-butylphenol) showed toxic effects only at high concentrations close to solubility limits. Although phytotoxic at high concentrations, valeric and caproic acid also showed detectable hormetic effects on seedlings, increasing radicle extension by 5-15% at concentrations of ~ 0.01-0.1 mmol L-1. These data support the hypothesis that VFAs are the main agents responsible for phytotoxic effects of lignocellulosic biochar leachates, but that certain VFAs also have hormetic effects at low concentrations and may contribute to positive effects of biochar leachates on early plant development in some cases. Supplementary Information: The online version contains supplementary material available at 10.1007/s42773-024-00339-w.

6.
J Drug Target ; 32(4): 423-432, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38315456

RESUMO

Parkinson's disease (PD) is a central nervous system disease with the highest disability and mortality rate worldwide, and it is caused by a variety of factors. The most common medications for PD have side effects with limited therapeutic outcomes. Many studies have reported that chitosan oligosaccharide (COS) crossed blood-brain barrier to achieve a neuroprotective effect in PD. However, the role of COS in PD remains unclear. The present study demonstrated that COS increased dopaminergic neurons in the substantia nigra (SN) and ameliorated dyskinesia in a PD mouse model. Moreover, COS reduced gut microbial diversity and faecal short-chain fatty acids. Valeric acid supplementation enhanced the inflammatory response in the colon and SN, and it reversed COS - suppressed dopamine neurons damage. Autophagy was involved in COS modulating inflammation through valeric acid. These results suggest that COS reduces bacterial metabolites - valeric acid, which diminishes inflammation via activating autophagy, ultimately alleviating PD.


Assuntos
Quitosana , Fármacos Neuroprotetores , Doença de Parkinson , Ácidos Pentanoicos , Animais , Camundongos , Doença de Parkinson/tratamento farmacológico , Quitosana/farmacologia , Fármacos Neuroprotetores/farmacologia , Autofagia , Inflamação/tratamento farmacológico , Oligossacarídeos/farmacologia , Oligossacarídeos/uso terapêutico , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
7.
Artigo em Inglês | MEDLINE | ID: mdl-38375842

RESUMO

BACKGROUNDS: Postbiotics produced by gut microbiota have exhibited diverse pharmacological activities. Valeric acid, a postbiotic material produced by gut microbiota and some plant species like valerian, has been explored to have diverse pharmacological activities. METHODS: This narrative review aims to summarise the beneficial role of valeric acid for different health conditions along with its underlying mechanism. In order to get ample scientific evidence, various databases like Science Direct, PubMed, Scopus, Google Scholar and Google were exhaustively explored to collect relevant information. Collected data were arranged and analyzed to reach meaningful a conclusion regarding the bioactivity profiling of valeric acid, its mechanism, and future prospects. RESULTS: Valeric acid belongs to short-chain fatty acids (SCFAs) compounds like acetate, propionate, butyrate, pentanoic (valeric) acid, and hexanoic (caproic) acid. Valeric acid has been identified as one of the potent histone deacetylase (HDAC) inhibitors. In different preclinical in -vitro and in-vivo studies, valeric acid has been found to have anti-cancer, anti-diabetic, antihypertensive, anti-inflammatory, and immunomodulatory activity and affects molecular pathways of different diseases like Alzheimer's, Parkinson's, and epilepsy. CONCLUSION: These findings highlight the role of valeric acid as a potential novel therapeutic agent for endocrine, metabolic and immunity-related health conditions, and it must be tested under clinical conditions to develop as a promising drug.

8.
Inflamm Bowel Dis ; 30(4): 617-628, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38206334

RESUMO

BACKGROUND: Ulcerative colitis (UC) is characterized by a complicated interaction between mucosal inflammation, epithelial dysfunction, abnormal activation of innate immune responses, and gut microbiota dysbiosis. Though valeric acid (VA), one type of short-chain fatty acids (SCFAs), has been identified in other inflammatory disorders and cancer development, the pathological role of VA and underlying mechanism of VA in UC remain under further investigation. METHODS: Studies of human clinical specimens and experimental colitis models were conducted to confirm the pathological manifestations of the level of SCFAs from human fecal samples and murine colonic homogenates. Valeric acid-intervened murine colitis and a macrophage adoptive transfer were applied to identify the underlying mechanisms. RESULTS: In line with gut microbiota dysfunction in UC, alteration of SCFAs from gut microbes were identified in human UC patients and dextran sodium sulfate -induced murine colitis models. Notably, VA was consistently negatively related to the disease severity of UC, the population of monocytes, and the level of interluekin-6. Moreover, VA treatment showed direct suppressive effects on lipopolysaccharides (LPS)-activated human peripheral blood mononuclear cells and murine macrophages in the dependent manner of upregulation of GPR41 and GPR43. Therapeutically, replenishment of VA or adoptive transfer with VA-modulated macrophages showed resistance to dextran sodium sulfate-driven murine colitis though modulating the production of inflammatory cytokine interleukin-6. CONCLUSIONS: In summary, the research uncovered the pathological role of VA in modulating the activation of macrophages in UC and suggested that VA might be a potential effective agent for UC patients.


The study collectively indicated that valeric acid (VA) was consistently negatively related to the disease severity of UC, and hypofunction of macrophage driven by VA impeded the progression of UC.


Assuntos
Colite Ulcerativa , Colite , Ácidos Pentanoicos , Sulfatos , Humanos , Camundongos , Animais , Colite Ulcerativa/patologia , Dextranos , Leucócitos Mononucleares/patologia , Colo/patologia , Colite/induzido quimicamente , Colite/patologia , Ácidos Graxos Voláteis/uso terapêutico , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
9.
Nutrients ; 16(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38257154

RESUMO

The GG genotype of the Patatin-like phosphatase domain-containing 3 (PNPLA3), dietary fat, short-chain fatty acids (SCFA) and branched-chain amino acids (BCAA) are linked with non-alcoholic fatty liver disease. We studied the impact of the quality of dietary fat on plasma (p) and fecal (f) SCFA and p-BCAA in men homozygous for the PNPLA3 rs738409 variant (I148M). Eighty-eight randomly assigned men (age 67.8 ± 4.3 years, body mass index 27.1 ± 2.5 kg/m2) participated in a 12-week diet intervention. The recommended diet (RD) group followed the National and Nordic nutrition recommendations for fat intake. The average diet (AD) group followed the average fat intake in Finland. The intervention resulted in a decrease in total p-SCFAs and iso-butyric acid in the RD group (p = 0.041 and p = 0.002). Valeric acid (p-VA) increased in participants with the GG genotype regardless of the diet (RD, 3.6 ± 0.6 to 7.0 ± 0.6 µmol/g, p = 0.005 and AD, 3.8 ± 0.3 to 9.7 ± 8.5 µmol/g, p = 0.015). Also, genotype relation to p-VA was seen statistically significantly in the RD group (CC: 3.7 ± 0.4 to 4.2 ± 1.7 µmol/g and GG: 3.6 ± 0.6 to 7.0 ± 0.6 µmol/g, p = 0.0026 for time and p = 0.004 for time and genotype). P-VA, unlike any other SCFA, correlated positively with plasma gamma-glutamyl transferase (r = 0.240, p = 0.025). Total p-BCAAs concentration changed in the AD group comparing PNPLA3 CC and GG genotypes (CC: 612 ± 184 to 532 ± 149 µmol/g and GG: 587 ± 182 to 590 ± 130 µmol/g, p = 0.015 for time). Valine decreased in the RD group (p = 0.009), and leucine decreased in the AD group (p = 0.043). RD decreased total fecal SCFA, acetic acid (f-AA), and butyric acid (f-BA) in those with CC genotype (p = 0.006, 0.013 and 0.005, respectively). Our results suggest that the PNPLA3 genotype modifies the effect of dietary fat modification for p-VA, total f-SCFA, f-AA and f-BA, and total p-BCAA.


Assuntos
Aminoácidos de Cadeia Ramificada , Ácidos Graxos Voláteis , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Ácido Butírico , Gorduras na Dieta , Genótipo
10.
EBioMedicine ; 100: 104952, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176203

RESUMO

BACKGROUND: Gut probiotic depletion is associated with non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC). Here, we investigated the prophylactic potential of Lactobacillus acidophilus against NAFLD-HCC. METHODS: NAFLD-HCC conventional and germ-free mice were established by diethylnitrosamine (DEN) injection with feeding of high-fat high-cholesterol (HFHC) or choline-deficient high-fat (CDHF) diet. Orthotopic NAFLD-HCC allografts were established by intrahepatic injection of murine HCC cells with HFHC feeding. Metabolomic profiling was performed using liquid chromatography-mass spectrometry. Biological functions of L. acidophilus conditional medium (L.a CM) and metabolites were determined in NAFLD-HCC human cells and mouse organoids. FINDINGS: L. acidophilus supplementation suppressed NAFLD-HCC formation in HFHC-fed DEN-treated mice. This was confirmed in orthotopic allografts and germ-free tumourigenesis mice. L.a CM inhibited the growth of NAFLD-HCC human cells and mouse organoids. The protective function of L. acidophilus was attributed to its non-protein small molecules. By metabolomic profiling, valeric acid was the top enriched metabolite in L.a CM and its upregulation was verified in liver and portal vein of L. acidophilus-treated mice. The protective function of valeric acid was demonstrated in NAFLD-HCC human cells and mouse organoids. Valeric acid significantly suppressed NAFLD-HCC formation in HFHC-fed DEN-treated mice, accompanied by improved intestinal barrier integrity. This was confirmed in another NAFLD-HCC mouse model induced by CDHF diet and DEN. Mechanistically, valeric acid bound to hepatocytic surface receptor GPR41/43 to inhibit Rho-GTPase pathway, thereby ablating NAFLD-HCC. INTERPRETATION: L. acidophilus exhibits anti-tumourigenic effect in mice by secreting valeric acid. Probiotic supplementation is a potential prophylactic of NAFLD-HCC. FUNDING: Shown in Acknowledgments.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Ácidos Pentanoicos , Probióticos , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/etiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Lactobacillus acidophilus , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/etiologia , Fígado/metabolismo , Transformação Celular Neoplásica/metabolismo , Carcinogênese/patologia , Dieta Hiperlipídica , Colina/metabolismo , Probióticos/farmacologia , Probióticos/uso terapêutico , Camundongos Endogâmicos C57BL
11.
ChemSusChem ; 17(2): e202300973, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37679942

RESUMO

In this article, we address the transition of the Kolbe electrolysis of valeric acid (VA) to n-octane as an exemplary electrosynthesis process from a batch reaction to a continuous, self-regulated process. Based on a systematic assessment of chemical boundary conditions and sustainability aspects, we propose a continuous electrosynthesis including a simple product separation and electrolyte recirculation, as well as an online-pH-controlled VA feeding. We demonstrate how essential performance parameters such as product selectivity (S) and coulombic efficiency (CE) are significantly improved by the transition from batch to a continuous process. Thus, the continuous and pH-controlled electrolysis of a 1 M valeric acid, starting pH 6.0, allowed a constantly high selectivity of around 47 % and an average Coulomb efficiency about 52 % throughout the entire experimental duration. Under otherwise identical conditions, the conventional batch operation suffered from lower and strongly decreasing performance values (Sn-octane, 60min =10.4 %, Sn-octane, 240min =1.3 %; CEn-octane, 60min =7.1 %, CEn-octane, 240min =0.5 %). At the same time, electrolyte recirculation significantly reduces wastes and limits the use of electrolyte components.

12.
Bioresour Technol ; 393: 130123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042435

RESUMO

The objective was to investigate the impact of the bioaugmentation on chain elongation process using glycerol, lactate and lactose as substrates in an open culture fermentation. In the batch trials the highest selectivity for chain elongation product, i.e. caproate, was observed in trials inoculated with co-culture of Megasphaera elsdenii and Eubacterium limosum grown on glycerol (28.6%), and in non-bioaugmented open culture run on lactose + lactate (14.8%). The results showed that E. limosum, out of two bioaugmented strains, was able to survive in the open culture. A continuous open culture fermentation of glycerol led to caproate and 1,3-propanediol (1,3-PDO) formation, while lactate addition led to 1,3-PDO and short chain carboxylates production. Moving the process into batch mode triggered even-carbon chain elongation. Presence of E. limosum promoted odd-carbon chain elongation and valerate production. Imaging flow cytometry combined with machine learning enabled the discrimination of Eubacterium cells from other microbial strains during the process.


Assuntos
Caproatos , Ácido Láctico , Propilenoglicóis , Ácidos Carboxílicos , Glicerol , Lactose , Fermentação , Propilenoglicol , Carbono
13.
Microbiome ; 11(1): 204, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37697393

RESUMO

BACKGROUND: Aging is a significant risk factor for ischemic stroke and worsens its outcome. However, the mechanisms for this worsened neurological outcome with aging are not clearly defined. RESULTS: Old C57BL/6J male mice (18 to 20 months old) had a poorer neurological outcome and more severe inflammation after transient focal brain ischemia than 8-week-old C57BL/6J male mice (young mice). Young mice with transplantation of old mouse gut microbiota had a worse neurological outcome, poorer survival curve, and more severe inflammation than young mice receiving young mouse gut microbiota transplantation. Old mice and young mice transplanted with old mouse gut microbiota had an increased level of blood valeric acid. Valeric acid worsened neurological outcome and heightened inflammatory response including blood interleukin-17 levels after brain ischemia. The increase of interleukin-17 caused by valeric acid was inhibited by a free fatty acid receptor 2 antagonist. Neutralizing interleukin-17 in the blood by its antibody improved neurological outcome and attenuated inflammatory response in mice with brain ischemia and receiving valeric acid. Old mice transplanted with young mouse feces had less body weight loss and better survival curve after brain ischemia than old mice transplanted with old mouse feces or old mice without fecal transplantation. CONCLUSIONS: These results suggest that the gut microbiota-valeric acid-interleukin-17 pathway contributes to the aging-related changes in the outcome after focal brain ischemia and response to stimulus. Valeric acid may activate free fatty acid receptor 2 to increase interleukin-17.


Assuntos
Envelhecimento , Isquemia Encefálica , Microbioma Gastrointestinal , Animais , Masculino , Camundongos , Ácidos Graxos não Esterificados , Inflamação , Interleucina-17 , Camundongos Endogâmicos C57BL
14.
Food Chem ; 404(Pt B): 134721, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36323044

RESUMO

This study investigated the effects of the sugarcane flavones diosmin, diosmetin, luteolin, and tricin, and their interactions with sugarcane fiber on the modulation of gut microbiota using in vitro batch fermentation. The alteration of fecal fermentation bacterial profile was analyzed using 16S rRNA sequencing data, while the bioavailability of fiber was indicated by short-chain fatty acid (SCFA) production and metabolism of polyphenols was measured directly by phenolic metabolites. Application of diosmin, diosmetin, luteolin, and tricin without fiber had no significant effect on the overall microbiota profile after 24 h of fermentation. When fiber alone was added, total SCFA production increased, specifically that of propionic and valeric acids. However, when flavones were combined with fiber, synergistic effects on the modulation of relative abundances of different bacterial taxa was noted. In particular, the proportion of Prevotella spp. was significantly increased by the combinations of diosmin, luteolin, and tricin with fiber.


Assuntos
Diosmina , Flavonas , Flavonas/farmacologia , Luteolina/farmacologia , RNA Ribossômico 16S , Ácidos Graxos Voláteis/metabolismo , Bactérias/genética , Bactérias/metabolismo , Fibras na Dieta
15.
Front Psychiatry ; 13: 977538, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36578297

RESUMO

Background: Individuals who experience the prodromal phase of schizophrenia (SCZ), a common and complex psychiatric disorder, are referred to as ultra-high-risk (UHR) individuals. Short-chain fatty acid (SCFA) is imperative in the microbiota-gut-brain axis and brain function. Accumulating amount of evidence shows the connections between psychiatric disorders and SCFAs. This study aims to explore the underlying roles SCFAs play in SCZ by investigating the association of alterations in SCFAs concentrations with common cognitive functions in both the SCZ and UHR populations. Methods: The study recruited 59 SCZ patients (including 15 participants converted from the UHR group), 51 UHR participants, and 40 healthy controls (HC) within a complete follow-up of 2 years. Results of cognitive functions, which were assessed by utilizing HVLT-R and TMT, and serum concentrations of SCFAs were obtained for all participants and for UHR individuals at the time of their conversion to SCZ. Results: Fifteen UHR participants converted to SCZ within a 2-year follow-up. Valeric acid concentration levels were lower in both the baseline of UHR individuals whom later converted to SCZ (p = 0.046) and SCZ patients (p = 0.036) than the HC group. Additionally, there were lower concentrations of caproic acid in the baseline of UHR individuals whom later transitioned to SCZ (p = 0.019) and the UHR group (p = 0.016) than the HC group. Furthermore, the caproic acid levels in the UHR group are significantly positively correlated with immediate memory (r = 0.355, p = 0.011) and negatively correlated with TMT-B (r = -0.366, p = 0.009). Significant differences in levels of acetic acid, butyric acid and isovaleric acid were absent among the three groups and in UHR individuals before and after transition to SCZ. Conclusion: Our study suggests that alterations in concentrations of SCFAs may be associated with the pathogenesis and the cognitive impairment of schizophrenia. Further researches are warranted to explore this association. The clinical implications of our findings were discussed.

16.
Med Oncol ; 39(12): 213, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175803

RESUMO

Prostate cancer is the second cause of cancer-related deaths in men worldwide, and new agents for curing the disease are still needed. In this study, we theoretically and experimentally demonstrated that valeric acid (VA) was a HDAC inhibitor, and anti-cancer efficacy of VA in prostate cancer cells was also observed using either 2D or 3D culture systems. VA was cytotoxic for prostate cancer cells but low toxic to normal cells. VA significantly inhibited E2F1/E2F3 expression but increased CASP3 activity. In vivo mouse models further showed its anti-cancer activity and potential property of chemosensitizer with promoting apoptosis. The findings suggest that VA acts as a HDAC3 inhibitor with anti-cancer effect on prostate cancer by regulating E2F1/E2F3/CASP3 axis.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias da Próstata , Animais , Caspase 3 , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Humanos , Masculino , Camundongos , Ácidos Pentanoicos , Próstata , Neoplasias da Próstata/tratamento farmacológico
17.
Carbohydr Polym ; 291: 119626, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35698418

RESUMO

The antidiabetic effect and potential mechanisms of the polysaccharides from the fruits of Lycium barbarum L. (LBPs) by the mouse model of high-fat diet/streptozotocin-induced diabetes were investigated. Six-week oral administration of LBPs (200 mg/kg/day) resulted in improvement in the levels of fasting blood glucose (13.51% decrease) and glycated hemoglobin and ß-cell function in diabetic mice, and simultaneously induced a 3.3-fold increment in one taxon belonging to genus Allobaculum in gut bacterial community. The experiments of fecal microbiota transplantation and antibiotics treatment confirmed that the LBPs-mediated gut microbiota participated in the glycemic control of the diabetes management. Moreover, LBPs intervention guarded the intestinal barrier function via upregulating the expression of zonula occludens 1 both in vivo (analyzing the gut permeability in diabetic mice) and in vitro (using intestinal-like Caco-2/RAW264.7 cells co-culture inflammation model). Collectively, our study showed that LBPs could confer anti-diabetic effect through modifying gut microbiota and intestinal barrier.


Assuntos
Diabetes Mellitus Experimental , Microbioma Gastrointestinal , Lycium , Animais , Células CACO-2 , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Frutas , Humanos , Camundongos , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico
18.
Pathology ; 54(5): 591-598, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35501169

RESUMO

Asymmetric dimethylguanidino valeric acid (ADGV), asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA) are three arginine metabolites which have utility in the assessment of cardiovascular disease, renal disease and non-alcoholic fatty liver disease (NAFLD). Translation of these research metabolomic markers into routine clinical use requires the development of robust assays with appropriately assessed preanalytical variables and traceable clinical reference intervals. A hydrophilic interaction liquid chromatography (HILIC) tandem mass spectrometry (LC-MS/MS) method for the simultaneous quantification of ADGV, ADMA and SDMA was developed. Sample stability and collection conditions were scrutinised to determine any preanalytical factors that could affect quantification under routine laboratory conditions. Patient samples from 120 males and 120 females were used to derive preliminary reference intervals. All three analytes were quantifiable in human plasma using unique MS/MS transitions. The analytes were stable for up to a week once separated from red cells, though reduced stability was observed upon extraction of the analytes from plasma. The assay was linear for concentration of ADGV between 1.6 nmol/L and 200 nmol/L and for ADMA and SDMA between 0.1 µmol/L and 4.0 µmol/L. The accuracy for all analytes was 97-103% and interday and intraday imprecisions (coefficients of variation) were less than 10%. ADGV concentrations were noted to be lower in the female reference population when compared to males. The analytical method shows excellent performance and is sufficiently robust to be used in the clinical investigation of cardiovascular disease and NAFLD.


Assuntos
Doenças Cardiovasculares , Hepatopatia Gordurosa não Alcoólica , Arginina/análogos & derivados , Arginina/química , Arginina/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Feminino , Humanos , Masculino , Espectrometria de Massas em Tandem/métodos
19.
Carbohydr Polym ; 289: 119410, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483832

RESUMO

A homogenous α-D-1,6-glucan (CPA) was extracted from Castanea mollissima Blume. The effect of CPA on ameliorating dextran sulfate sodium induced colitis was investigated. CPA repressed TNF-α and IL-1ß level in LPS stimulated RAW264.7 cells. After the intragastric administration of CPA (200 or 400 mg/kg/day), the colon length and body weights of mice with colitis increased and the disease activity index reduced. CPA alleviated colon tissue damage by elevating ZO-1 and occludin protein levels and regulating TNF-α and IL-1ß by inhibiting the protein expression of NLPR3 and NF-κB p65. The abundance of Bacteroidetes and Firmicutes was altered and short-chain fatty acid (SCFA) levels, especially propionic, butyric, and isovaleric acids increased significantly. These results indicated that CPA could alleviate colitis by protecting mucosal barriers, reducing inflammation, and regulating intestinal microbiota and SCFA levels. Thus, CPA can be developed as a functional food for the prevention and treatment of colitis.


Assuntos
Colite , Fagaceae , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Sulfato de Dextrana/toxicidade , Glucanos , Camundongos , Fator de Necrose Tumoral alfa
20.
Food Chem ; 385: 132665, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35299023

RESUMO

This study aimed to examine the effects of sugarcane polyphenol and fiber (Phytolin + Fiber) on gut microbiota, short-chain fatty acids (SCFAs) production and phenolic metabolites production using in vitro digestion and fermentation model. Microbial profiling by 16S rRNA sequencing was used to analyze the pig faecal microbiota profile. SCFAs were identified and quantified by GC-FID, and phenolic metabolites were characterized by LC-ESI-QTOF-MS/MS. The results showed that Phytolin + Fiber exert synergistic effects on the pig gut microbiota by increasing the relative abundances of Lactobacillus and Catenibacterium, and decreasing the relative abundances of Mogibacterium, Dialister, and Escherichia-Shigella. Phytolin + Fiber also significantly increased the total SCFAs production, particularly the propionic and butyric acids. Production of phenolic metabolites related to major polyphenols in Phytolin were tentatively identified. These results suggest that Phytolin + Fiber could be beneficial to human colon health given the similarities between pig and human intestine in terms of physiology and microbiome.


Assuntos
Microbioma Gastrointestinal , Saccharum , Animais , Fibras na Dieta/farmacologia , Digestão , Grão Comestível/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fermentação , Fenóis/farmacologia , Polifenóis/farmacologia , RNA Ribossômico 16S/metabolismo , Saccharum/metabolismo , Suínos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA