Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 10: 2335, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681201

RESUMO

Vibrio anguillarum causes a hemorrhagic septicemia that affects cold- and warm-water adapted fish species. The main goal of this work was to determine the temperature-dependent changes in the virulence factors that could explain the virulence properties of V. anguillarum for fish cultivated at different temperatures. We have found that although the optimal growth temperature is around 25°C, the degree of virulence of V. anguillarum RV22 is higher at 15°C. To explain this result, an RNA-Seq analysis was performed to compare the whole transcriptome profile of V. anguillarum RV22 cultured under low-iron availability at either 25 or 15°C, which would mimic the conditions that V. anguillarum finds during colonization of fish cultivated at warm- or cold-water temperatures. The comparative analysis of transcriptomes at high- and low-iron conditions showed profound metabolic adaptations to grow under low iron. These changes were characterized by a down-regulation of the energetic metabolism and the induction of virulence-related factors like biosynthesis of LPS, production of hemolysins and lysozyme, membrane transport, heme uptake, or production of siderophores. However, the expression pattern of virulence factors under iron limitation showed interesting differences at warm and cold temperatures. Chemotaxis, motility, as well as the T6SS1 genes are expressed at higher levels at 25°C than at 15°C. By contrast, hemolysin RTX pore-forming toxin, T6SS2, and the genes associated with exopolysaccharides synthesis were preferentially expressed at 15°C. Notably, at this temperature, the siderophore piscibactin system was strongly up-regulated. In contrast, at 25°C, piscibactin genes were down-regulated and the vanchrobactin siderophore system seems to supply all the necessary iron to the cell. The results showed that V. anguillarum adjusts the expression of virulence factors responding to two environmental signals, iron levels and temperature. Thus, the relative relevance of each virulence factor for each fish species could vary depending on the water temperature. The results give clues about the physiological adaptations that allow V. anguillarum to cause infections in different fishes and could be relevant for vaccine development against fish vibriosis.

2.
Microorganisms ; 7(9)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484388

RESUMO

Vibrio ordalii is the causative agent of vibriosis, mainly in salmonid fishes, and its virulence mechanisms are still not completely understood. In previous works we demonstrated that V. ordalii possess several iron uptake mechanisms based on heme utilization and siderophore production. The aim of the present work was to confirm the production and utilization of piscibactin as a siderophore by V. ordalii. Using genetic analysis, identification by peptide mass fingerprinting (PMF) of iron-regulated membrane proteins and chemical identification by LC-HRMS, we were able to clearly demonstrate that V. ordalii produces piscibactin under iron limitation. The synthesis and transport of this siderophore is encoded by a chromosomal gene cluster homologous to another one described in V. anguillarum, which also encodes the synthesis of piscibactin. Using ß-galactosidase assays we were able to show that two potential promoters regulated by iron control the transcription of this gene cluster in V. ordalii. Moreover, biosynthetic and transport proteins corresponding to piscibactin synthesis and uptake could be identified in membrane fractions of V. ordalii cells grown under iron limitation. The synthesis of piscibactin was previously reported in other fish pathogens like Photobacterium damselae subsp. piscicida and V. anguillarum, which highlights the importance of this siderophore as a key virulence factor in Vibrionaceae bacteria infecting poikilothermic animals.

3.
Front Microbiol ; 9: 1766, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116232

RESUMO

Vibrio anguillarum causes vibriosis, a hemorrhagic septicaemia that affects many cultured marine fish species worldwide. Two catechol siderophores, vanchrobactin and anguibactin, were previously identified in this bacterium. While vanchrobactin is a chromosomally encoded system widespread in all pathogenic and environmental strains, anguibactin is a plasmid-encoded system restricted to serotype O1 strains. In this work, we have characterized, from a serotype O2 strain producing vanchrobactin, a novel genomic island containing a cluster of genes that would encode the synthesis of piscibactin, a siderophore firstly described in the fish pathogen Photobacterium damselae subsp. piscicida. The chemical characterization of this siderophore confirmed that some strains of V. anguillarum produce piscibactin. An in silico analysis of the available genomes showed that this genomic island is present in many of the highly pathogenic V. anguillarum strains lacking the anguibactin system. The construction of single and double biosynthetic mutants for vanchrobactin and piscibactin allowed us to study the contribution of each siderophore to iron uptake, cell fitness, and virulence. Although both siderophores are simultaneously produced, piscibactin constitute a key virulence factor to infect fish, while vanchrobactin seems to have a secondary role in virulence. In addition, a transcriptional analysis of the gene cluster encoding piscibactin in V. anguillarum showed that synthesis of this siderophore is favored at low temperatures, being the transcriptional activity of the biosynthetic genes three-times higher at 18°C than at 25°C. We also show that iron levels and temperature contribute to balance the synthesis of both siderophores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA