Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 729
Filtrar
1.
Front Pharmacol ; 15: 1377081, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351091

RESUMO

Introduction: Monoiodoacetate (MIA)-induced osteoarthritis (OA) is the most commonly used rodent model for testing anti-OA drug candidates. Herein, we investigated the effects of our patented multitarget drug candidate SZV-1287 (3-(4,5-diphenyl-1,3-oxazol-2-yl) propanal oxime) that is currently under clinical development for neuropathic pain and characterized the mouse model through complex functional, in vivo imaging, and morphological techniques. Methods: Knee OA was induced by intraarticular MIA injection (0.5 and 0.8 mg). Spontaneous pain was assessed based on weight distribution, referred pain by paw mechanonociception (esthesiometry), edema by caliper, neutrophil myeloperoxidase activity by luminescence, matrix metalloproteinase activity, vascular leakage and bone remodeling by fluorescence imaging, bone morphology by micro-CT, histopathological alterations by semiquantitative scoring, and glia activation by immunohistochemistry. Then, SZV-1287 (20 mg/kg/day) or its vehicle was injected intraperitoneally over a 21-day period. Results: MIA induced remarkably decreased thresholds of weight bearing and paw withdrawal, alterations in the tibial and femoral structures (reactive sclerosis, increased trabeculation, and cortical erosions), histopathological damage (disorganized cartilage structure, hypocellularity, decreased matrix staining and tidemark integrity, and increased synovial hyperplasia and osteophyte formation), and changes in the astrocyte and microglia density in the lumbar spinal cord. There were no major differences between the two MIA doses in most outcome measures. SZV-1287 inhibited MIA-induced weight bearing reduction, hyperalgesia, edema, myeloperoxidase activity, histopathological damage, and astrocyte and microglia density. Conclusion: SZV-1287 may have disease-modifying potential through analgesic, anti-inflammatory, and chondroprotective effects. The MIA mouse model is valuable for investigating OA-related mechanisms and testing compounds in mice at an optimal dose of 0.5 mg.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39316467

RESUMO

Near-infrared (NIR) irradiation has shown potential to stimulate osteogenic differentiation, but the mechanisms are not fully understood. The study is to investigate the effects of NIR laser irradiation on osteoblastic differentiation. Human periodontal ligament stem cells (hPDLSCs) were cultured in osteogenic medium and exposed to 810 nm NIR laser at 0.5 J/cm2 every 48 h. The transient receptor potential vanilloid (TRPV1) channel inhibitor capsazepine (CPZ) was used to evaluate the role of calcium influx. Osteogenic differentiation was assessed by proliferation (CCK-8), alkaline phosphatase (ALP) activity, mineralization (Alizarin Red), and expression of bone markers by PCR and Western blot over 2 weeks. Intracellular calcium was measured by Fluo-4M dye and flow cytometry. Results showed that NIR irradiation enhanced hPDLSC proliferation, ALP activity, mineralization, and bone marker expression, indicating increased osteogenic differentiation. These effects were inhibited by CPZ. NIR induced a transient rise in intracellular calcium peaking at 3 min, which was blocked by CPZ. In conclusion, this study demonstrates that NIR laser irradiation promotes osteogenic differentiation of PDLSCs through the activation of TRPV1 channels and subsequent calcium signaling. Further research is warranted to optimize the treatment parameters and elucidate the detailed signaling pathways involved, paving the way for the clinical application of NIR therapy in the treatment of bone disorders and periodontal disease.

3.
Integr Cancer Ther ; 23: 15347354241278635, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39256982

RESUMO

Objective: Development of chemotherapy-induced peripheral neuropathy (CIPN) poses significant challenges in cancer treatment, often leading to dose reductions or treatment discontinuation. Goshajinkigan (GJG), a traditional Japanese medicine, has shown promise for alleviating CIPN symptoms. This multicenter, randomized controlled trial aimed to prospectively examine the efficacy of GJG in preventing paclitaxel-induced peripheral neuropathy. Methods: This study enrolled 55 patients with ovarian cancer undergoing first-line chemotherapy using paclitaxel and carboplatin. The participants were randomized into Groups A (GJG initiation after onset of grade 2 neuropathy) and B (prophylactic administration of GJG from 1 week before chemotherapy). The primary endpoints were the proportion with a maximum sensory neuropathy grade and visual analog scale (VAS) scores. The secondary endpoints were the rate of chemotherapy completion and paclitaxel dose reduction due to neurotoxicity. Results: Prophylactic GJG administration (Group B) resulted in significant benefits. While both groups had a similar incidence of grade 2 sensory neuropathy, all patients in Group B with grade 2 neuropathy completed treatment without requiring additional analgesics. Group B exhibited lower VAS scores by the end of the study, reduced reliance on adjuvant analgesics (27.3% vs 66.7% in Group A), and significantly less frequent persistent CIPN 6 months post-chemotherapy (18.2% vs 55.6% in Group A). No differences were observed in the chemotherapy completion rates or CIPN-related changes between the groups. Conclusion: GJG, when administered prophylactically, showed potential for mitigating CIPN symptoms during paclitaxel chemotherapy. While promising, further research with placebo controls and objective measures is essential to comprehensively validate these findings.


Assuntos
Medicamentos de Ervas Chinesas , Paclitaxel , Doenças do Sistema Nervoso Periférico , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Carboplatina/efeitos adversos , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional do Leste Asiático/métodos , Neoplasias Ovarianas/tratamento farmacológico , Paclitaxel/efeitos adversos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Doenças do Sistema Nervoso Periférico/prevenção & controle , Estudos Prospectivos
4.
Mol Neurobiol ; 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39312069

RESUMO

Aberrant neurogenesis in the adult hippocampal dentate gyrus (DG) contributes to synapse remodeling during temporal lobe epilepsy (TLE). Transient receptor potential vanilloid 4 (TRPV4) is involved in the pathogenesis of TLE. Activation of TRPV4 can modulate neurogenesis in the adult hippocampal DG. The present study examined whether TRPV4 is responsible for the aberrant neurogenesis in the adult hippocampal DG during TLE. Herein, administration of a TRPV4-specific antagonist, HC-067047, attenuated the enhanced neural stem cell proliferation in the adult hippocampal DG in mice following pilocarpine­induced status epilepticus (PISE). HC-067047 reduced the heightened hippocampal protein levels of cyclin-dependent kinase (CDK) 2, CDK6, cyclin E1, cyclin A2, and phosphorylated retinoblastoma (p-Rb) observed following PISE. Meanwhile, HC-067047 inhibited the extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (p38 MAPK) pathways that were enhanced and responsible for the increased proliferation of stem cells and higher levels of CDKs, cyclins, and p-Rb protein. HC-067047 reduced the 28-day-old BrdU+ cells but increased the ratio of 28-day-old BrdU+ cells to 1-day-old BrdU+ cells, indicating that TRPV4 blockage reduced the number but increased the survival rate of newborn cells following PISE. Finally, HC-067047 increased the Akt signaling that was inhibited and responsible for the decreased survival rate of newborn cells following PISE. It is concluded that TRPV4 blockage inhibits stem cell proliferation in the hippocampal DG following PISE, likely through inhibiting ERK1/2 and p38 MAPK signaling to decrease cell cycle-related protein expression, and increases newborn cell survival rate likely through increasing phosphoinositide 3 kinase-Akt signaling.

5.
J Neuroinflammation ; 21(1): 218, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39227967

RESUMO

Alzheimer's disease (AD) is the leading form of dementia, characterized by the accumulation and aggregation of amyloid in brain. Transient receptor potential vanilloid 2 (TRPV2) is an ion channel involved in diverse physiopathological processes, including microglial phagocytosis. Previous studies suggested that cannabidiol (CBD), an activator of TRPV2, improves microglial amyloid-ß (Aß) phagocytosis by TRPV2 modulation. However, the molecular mechanism of TRPV2 in microglial Aß phagocytosis remains unknown. In this study, we aimed to investigate the involvement of TRPV2 channel in microglial Aß phagocytosis and the underlying mechanisms. Utilizing human datasets, mouse primary neuron and microglia cultures, and AD model mice, to evaluate TRPV2 expression and microglial Aß phagocytosis in both in vivo and in vitro. TRPV2 was expressed in cortex, hippocampus, and microglia.Cannabidiol (CBD) could activate and sensitize TRPV2 channel. Short-term CBD (1 week) injection intraperitoneally (i.p.) reduced the expression of neuroinflammation and microglial phagocytic receptors, but long-term CBD (3 week) administration (i.p.) induced neuroinflammation and suppressed the expression of microglial phagocytic receptors in APP/PS1 mice. Furthermore, the hyper-sensitivity of TRPV2 channel was mediated by tyrosine phosphorylation at the molecular sites Tyr(338), Tyr(466), and Tyr(520) by protein tyrosine kinase JAK1, and these sites mutation reduced the microglial Aß phagocytosis partially dependence on its localization. While TRPV2 was palmitoylated at Cys 277 site and blocking TRPV2 palmitoylation improved microglial Aß phagocytosis. Moreover, it was demonstrated that TRPV2 palmitoylation was dynamically regulated by ZDHHC21. Overall, our findings elucidated the intricate interplay between TRPV2 channel regulated by tyrosine phosphorylation/dephosphorylation and cysteine palmitoylation/depalmitoylation, which had divergent effects on microglial Aß phagocytosis. These findings provide valuable insights into the underlying mechanisms linking microglial phagocytosis and TRPV2 sensitivity, and offer potential therapeutic strategies for managing AD.


Assuntos
Peptídeos beta-Amiloides , Lipoilação , Camundongos Transgênicos , Microglia , Fagocitose , Canais de Cátion TRPV , Tirosina , Animais , Camundongos , Microglia/metabolismo , Microglia/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fagocitose/efeitos dos fármacos , Humanos , Fosforilação/efeitos dos fármacos , Tirosina/metabolismo , Lipoilação/efeitos dos fármacos , Células Cultivadas , Doença de Alzheimer/metabolismo , Canabidiol/farmacologia , Camundongos Endogâmicos C57BL , Canais de Cálcio
6.
Acta Physiol (Oxf) ; : e14236, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39324481

RESUMO

AIM: This investigation addresses Piezo1's expression and mechanistic role in dorsal root ganglion (DRG) neurons and delineates its participation in mechanical and inflammatory pain modulation. METHODS: We analyzed Piezo1's expression patterns in DRG neurons and utilized Piezo1-specific shRNA to modulate its activity. Electrophysiological assessments of mechanically activated (MA) currents in DRG neurons and behavioral analyses in mouse models of inflammatory pain were conducted to elucidate Piezo1's functional implications. Additionally, we investigated the excitability of TRPV1-expressing DRG neurons, particularly under inflammatory conditions. RESULTS: Piezo1 was preferentially expressed in DRG neurons co-expressing the TRPV1 nociceptor marker. Knockdown of Piezo1 attenuated intermediately adapting MA currents and lessened tactile pain hypersensitivity in models of inflammatory pain. Additionally, silencing Piezo1 modified the excitability of TRPV1-expressing neurons under inflammatory stress. CONCLUSION: Piezo1 emerges as a key mediator in the transmission of mechanical and inflammatory pain, indicating its potential as a novel target for pain management therapies. Our finding not only advances the understanding of nociceptive signaling but also emphasizes the therapeutic potential of modulating Piezo1 in the treatment of pain.

7.
Artigo em Inglês | MEDLINE | ID: mdl-39217101

RESUMO

Vanilloid analogs, which can activate transient receptor potential vanilloid 1 (TRPV1), have been classified into two types based on susceptibility to forskolin (FSK). Treatment of cells expressing TRPV1 with FSK enhances TRPV1 responses to capsaicin-type ligands while diminishing the responses to eugenol-type ligands. In this study, we determined the effect of FSK on the activation of TRPV1 stimulated with vanilloid ligands, through the influx of Ca2+ in HEK293T cells expressing TRPV1. Our findings suggest that the effects of FSK can be attributed to the phosphorylation of TRPV1, as evidenced by using a protein kinase A (PKA) inhibitor and TRPV1 mutants at potential phosphorylation sites. Furthermore, we examined the structure-activity relationship of 13 vanilloid analogs. Our results indicated that vanilloid compounds could be classified into three types, i.e., the previously reported two types and a novel type of 10-shogaol, by which TRPV1 activation was insusceptible to the FSK treatment.

8.
Chem Biol Interact ; 402: 111181, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39089414

RESUMO

Tanshinone IIA (TSA), the main lipo-soluble component from the dried rhizome of Salvia miltiorrhiza, has been shown to induce vasodilation. However, the underlying mechanisms remains unclear. This study aimed to investigate the effect of TSA on the vasodilation of small resistant arteries ex vivo. Vascular myography revealed that endothelial denudation reduced significantly the vasodilatory effect of TSA. Blocking transient receptor potential vanilloid 4 (TRPV4) channels prevented TSA-induced vasodilation. Whole-cell patch-clamp analysis revealed that the current passing through TRPV4 channels increased after TSA treatment in endothelial cells (ECs). This was attributed to reduced TRPV4 protein degradation along with its increased expression. The TRPV4 inhibitor HC-067047 lowed nitric oxide (NO) production and TSA-induced expression of endothelial nitric oxide synthase (eNOS). Moreover, it increased the production of cyclic guanosine monophosphate (cGMP) and protein kinase G (PKG). The present results indicate that TSA induces endothelium-dependent vasodilation, which is mediated by the TRPV4-NO-PKG signaling pathway. These findings highlight the potential of TSA, a compound known in traditional Chinese medicine as Danshen (Salvia miltiorrhiza), for future cardiovascular therapeutic strategies.


Assuntos
Abietanos , GMP Cíclico , Óxido Nítrico Sintase Tipo III , Canais de Cátion TRPV , Vasodilatação , Abietanos/farmacologia , Canais de Cátion TRPV/metabolismo , Vasodilatação/efeitos dos fármacos , Animais , Óxido Nítrico Sintase Tipo III/metabolismo , Masculino , GMP Cíclico/metabolismo , Óxido Nítrico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Ratos Sprague-Dawley , Morfolinas/farmacologia , Humanos , Ratos , Vasodilatadores/farmacologia , Pirróis
9.
Cells ; 13(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39195219

RESUMO

The conjunctiva has immune-responsive properties to protect the eye from infections. Its innate immune system reacts against external pathogens, such as fungi. The complement factor C5a is an important contributor to the initial immune response. It is known that activation of transient-receptor-potential-vanilloid 1 (TRPV1) and TRP-melastatin 8 (TRPM8) channels is involved in different immune reactions and inflammation in the human body. The aim of this study was to determine if C5a and mucor racemosus e voluminae cellulae (MR) modulate Ca2+-signaling through changes in TRPs activity in human conjunctival epithelial cells (HCjECs). Furthermore, crosstalk was examined between C5a and MR in mediating calcium regulation. Intracellular Ca2+-concentration ([Ca2+]i) was measured by fluorescence calcium imaging, and whole-cell currents were recorded using the planar-patch-clamp technique. MR was used as a purified extract. Application of C5a (0.05-50 ng/mL) increased both [Ca2+]i and whole-cell currents, which were suppressed by either the TRPV1-blocker AMG 9810 or the TRPM8-blocker AMTB (both 20 µM). The N-terminal peptide C5L2p (20-50 ng/mL) blocked rises in [Ca2+]i induced by C5a. Moreover, the MR-induced rise in Ca2+-influx was suppressed by AMG 9810 and AMTB, as well as 0.05 ng/mL C5a. In conclusion, crosstalk between C5a and MR controls human conjunctival cell function through modulating interactions between TRPV1 and TRPM8 channel activity.


Assuntos
Cálcio , Complemento C5a , Túnica Conjuntiva , Células Epiteliais , Humanos , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/microbiologia , Cálcio/metabolismo , Complemento C5a/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Sinalização do Cálcio , Canais de Cátion TRPV/metabolismo
10.
Cell Rep ; 43(9): 114660, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180748

RESUMO

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by the progressive loss of motor neurons in the brain and spinal cord, and there are no effective drug treatments. Low-intensity pulsed ultrasound (LIPUS) has garnered attention as a promising noninvasive neuromodulation method. In this study, we investigate its effects on the motor cortex and underlying mechanisms using the SOD1G93A mouse model of ALS. Our results show that LIPUS treatment delays disease onset and prolongs lifespan in ALS mice. LIPUS significantly increases cerebral blood flow in the motor cortex by preserving vascular endothelial cell integrity and increasing microvascular density, which may be mediated via the ion channel TRPV4. RNA sequencing analysis reveals that LIPUS substantially reduces the expression of genes associated with neuroinflammation. These findings suggest that LIPUS applied to the motor cortex may represent a potentially effective therapeutic tool for the treatment of ALS.


Assuntos
Esclerose Lateral Amiotrófica , Modelos Animais de Doenças , Progressão da Doença , Camundongos Transgênicos , Córtex Motor , Ondas Ultrassônicas , Animais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/terapia , Esclerose Lateral Amiotrófica/metabolismo , Camundongos , Córtex Motor/patologia , Córtex Motor/metabolismo , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Circulação Cerebrovascular , Terapia por Ultrassom/métodos , Camundongos Endogâmicos C57BL , Masculino , Células Endoteliais/metabolismo , Neurônios Motores/patologia , Neurônios Motores/metabolismo , Humanos
11.
Infect Immun ; : e0014624, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109830

RESUMO

Transmission is the first step for a microorganism to establish colonization in the respiratory tract and subsequent development of infectious disease. Streptococcus pneumoniae is a leading pathogen that colonizes the mucosal surfaces of the human upper respiratory tract and causes subsequent transmission and invasive infections especially in co-infection with influenza A virus. Host factors contributing to respiratory contagion are poorly understood. Transient receptor potential vanilloid (TRPV) channels have various roles in response to microoorganism. Inhibition of TRPV exacerbates invasive infection by Streptococcus pneumoniae, but it is unclear how TRPV channels influence pneumococcal transmission. Here, we describe the effect of inhibition of TRPV1 on pneumococcal transmission. We adopted a TRPV1-deficient infant mouse model of pneumococcal transmission during co-infection with influenza A virus. We also analyzed the expression of nasal mucin or pro-inflammatory cytokines. TRPV1 deficiency attenuated pneumococcal transmission and shedding during co-infection with influenza A virus. TRPV1 deficiency suppressed the expression of nasal mucin. In addition, there were increases in the expression of tumor necrosis factor-α and type I interferon, followed by the suppressed replication of influenza A virus in TRPV1-deficient mice. Inhibition of TRPV1 was shown to attenuate pneumococcal transmission by reducing shedding through the suppression of nasal mucin during co-infection with influenza A virus. Inhibition of TRPV1 suppressed nasal mucin by modulation of pro-inflammatory responses and regulation of replication of influenza A virus. TRPV1 could be a new target in preventive strategy against pneumococcal transmission.

12.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125864

RESUMO

The potential role of the transient receptor potential Vanilloid 1 (TRPV1) non-selective cation channel in gastric carcinogenesis remains unclear. The main objective of this study was to evaluate TRPV1 expression in gastric cancer (GC) and precursor lesions compared with controls. Patient inclusion was based on a retrospective review of pathology records. Patients were subdivided into five groups: Helicobacter pylori (H. pylori)-associated gastritis with gastric intestinal metaplasia (GIM) (n = 12), chronic atrophic gastritis (CAG) with GIM (n = 13), H. pylori-associated gastritis without GIM (n = 19), GC (n = 6) and controls (n = 5). TRPV1 expression was determined with immunohistochemistry and was significantly higher in patients with H. pylori-associated gastritis compared with controls (p = 0.002). TRPV1 expression was even higher in the presence of GIM compared with patients without GIM and controls (p < 0.001). There was a complete loss of TRPV1 expression in patients with GC. TRPV1 expression seems to contribute to gastric-mucosal inflammation and precursors of GC, which significantly increases in cancer precursor lesions but is completely lost in GC. These findings suggest TRPV1 expression to be a potential marker for precancerous conditions and a target for individualized treatment. Longitudinal studies are necessary to further address the role of TRPV1 in gastric carcinogenesis.


Assuntos
Infecções por Helicobacter , Neoplasias Gástricas , Canais de Cátion TRPV , Humanos , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/complicações , Infecções por Helicobacter/patologia , Carcinogênese/metabolismo , Carcinogênese/patologia , Estudos Retrospectivos , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Helicobacter pylori/patogenicidade , Metaplasia/metabolismo , Metaplasia/patologia , Gastrite/metabolismo , Gastrite/patologia , Gastrite/microbiologia , Adulto , Imuno-Histoquímica , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Gastrite Atrófica/metabolismo , Gastrite Atrófica/patologia
13.
Acta Biomater ; 184: 397-408, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38960111

RESUMO

Photothermal therapy (PTT) has attracted attention as a highly effective non-invasive treatment method. However, the high localized temperatures (>50 °C) required for its treatment will inevitably cause damage to the surrounding normal tissues. Therefore, it is important to develop novel and effective strategies to achieve mild photothermal therapy (mPTT). The overexpression of heat shock proteins (HSPs), a widespread heat stress protein, leads to the generation of heat resistance in cancer cells, which seriously affects the therapeutic effect. Thus, inhibiting the expression of HSPs to reduce the heat resistance of tumor cells is expected to enhance the therapeutic effect of mPTT. Here, we successfully synthesized a fluorescent probe bonded with an amphiphilic polypeptide to a cyanine dye and achieved physical encapsulation of the blocker SB705498 through a self-assembly process. SB705498 promotes transient receptor potential vanilloid member 1 (TRPV1) channel blockade that can inhibit the translocation of the heat shock transcription factor 1 (HSF 1) by blocking the influx of calcium and thus affecting the expression of HSPs, which has the potential to enhance the thermotherapy of cancer under mild conditions. In addition, the nanoparticles enabled NIR-II fluorescence imaging with good stability and high photothermal conversion efficiency (48.10 %). Therefore, this study provides a new strategy for realizing precise mPTT(<45 °C) guided by NIR-II imaging. STATEMENT OF SIGNIFICANCE: Inhibition of overexpression of heat shock proteins (HSPs) in cancer photothermal therapy (PTT) is expected to enhance the therapeutic effect of mild photothermal therapy (mPTT). In this study, we synthesized a fluorescent probe bonded to cyanine dyes with amphiphilic polypeptides and physically wrapped the blocker SB705498 through a self-assembly process. As a transient receptor potential vanillin 1 (TRPV1) channel blocker, SB705498 inhibits heat shock transcription factor 1 (HSF1) translocation by blocking calcium ion influx, thereby improving mPTT efficacy by inhibiting the expression of HSPs. The nanoparticles also enable NIR-II fluorescence imaging with good stability and high photothermal conversion efficiency (48.10 %). Thus, this study provides a new strategy for NIR-II mPTT.


Assuntos
Raios Infravermelhos , Nanopartículas , Peptídeos , Terapia Fototérmica , Canais de Cátion TRPV , Nanopartículas/química , Canais de Cátion TRPV/metabolismo , Humanos , Peptídeos/química , Peptídeos/farmacologia , Nanomedicina Teranóstica/métodos , Animais , Corantes Fluorescentes/química , Fatores de Transcrição de Choque Térmico/metabolismo , Linhagem Celular Tumoral , Camundongos , Camundongos Nus
14.
Adv Mater ; 36(36): e2403979, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39044708

RESUMO

The manipulation of cell surface receptors' activity will open a new frontier for drug development and disease treatment. However, limited by the desensitization of drugs, effective physical intervention strategy remains challenging. Here, the controllable internalization of transient receptor potential vanilloid 1 (TRPV1) on neural cells by local piezoelectric field is reported. Single-cell-level local electric field is construct by synthesizing piezoelectric BiOIO3 nanosheets (BIONSs). Upon a mild ultrasound of 0.08 W cm-2, an electric field of 15.29 µV is generated on the surface of BIONSs, further inducing TRPV1 internalization in 5 min. The as-downregulated TRPV1 expression results in the reduction of Ca2+ signal in a spinal neuron and the inhibition of the activity of wide range dynamic neurons, therefore effectively preventing the transmission of cancer-induced bone pain (CIBP). This strategy not only charts a new course for CIBP alleviation, but also introduces a promising nanotechnology for regulating cell surface receptors, showing significant potential in neuropathological and receptor-related diseases.


Assuntos
Dor do Câncer , Canais de Cátion TRPV , Animais , Canais de Cátion TRPV/metabolismo , Dor do Câncer/tratamento farmacológico , Dor do Câncer/metabolismo , Camundongos , Analgesia/métodos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/patologia , Humanos , Linhagem Celular Tumoral , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Nanoestruturas/química
16.
Anticancer Res ; 44(8): 3593-3604, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39060042

RESUMO

BACKGROUND/AIM: This study aimed to investigate the role of transient receptor potential vanilloid 2 (TRPV2) in a mouse model with non-alcoholic steatohepatitis (NASH) and to examine the effects of tranilast on TRPV2 and fibrosis-related cytokines. MATERIALS AND METHODS: C57BL/6N mice were fed a Gubra-Amylin NASH (GAN) diet for 20 weeks to induce NASH. The tranilast groups received oral administration of tranilast at doses of 300, 400 and 500 mg/kg/day, five days per week for 20 weeks, in addition to the GAN diet. The effects of tranilast were assessed based on the dosage of food intake, changes in body weight, liver weight, blood biochemical parameters, histopathological examination, and expression of TRPV2 and inflammatory cytokines. RESULTS: Hepatic expression of TRPV2 was observed in the GAN-fed NASH mouse model. The tranilast groups showed significantly suppressed increases in body and liver weights. The development of intrahepatic fat deposition and liver fibrosis, assessed histopathologically, was inhibited. Tranilast administration improved the expression of TRPV2 and inflammatory cytokines in the liver. Additionally, blood tests indicated a reduction in elevated liver enzyme levels. CONCLUSION: In GAN diet NASH models, TRPV2 was up-regulated in the liver and tranilast inhibited TRPV2 and suppressed fibrosis. Therefore, it might prevent the incidence of hepatocellular carcinoma associated with NASH.


Assuntos
Modelos Animais de Doenças , Cirrose Hepática , Hepatopatia Gordurosa não Alcoólica , Canais de Cátion TRPV , Aumento de Peso , ortoaminobenzoatos , Animais , Canais de Cátion TRPV/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , ortoaminobenzoatos/farmacologia , Camundongos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/prevenção & controle , Aumento de Peso/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Progressão da Doença , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Citocinas/metabolismo , Canais de Cálcio
17.
Pharmaceutics ; 16(7)2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-39065574

RESUMO

Palmitoylethanolamide (PEA) exhibits multiple skincare functions such as anti-nociceptive and anti-inflammatory effects. However, its topical application is limited due to its difficulty in bypassing the stratum corneum barrier, relatively low bioavailability, and low stability. Herein, elastic nano-liposomes (ENLs) with excellent deformability and elasticity were utilized as a novel drug delivery system to encapsulate PEA to overcome the abovementioned issues and enhance the biological effects on the skin. ENL was prepared with phosphatidylcholine, cholesterol, and cetyl-PG hydroxyethyl palmitamide with a molar ratio mimicking skin epidermal lipids, and PEA was loaded. The PEA-loaded ENL (PEA-ENL) demonstrated efficient transdermal delivery and enhanced skin retention, with negligible cytotoxicity toward HaCaT cells and no allergic reaction in the human skin patch test. Notably, PEA-ENL treatment increased cell migration and induced significant regulation in the expression of genes associated with anti-nociceptive, anti-inflammatory, and skin barrier repair. The mechanism of the anti-nociceptive and anti-inflammatory effects of PEA was further investigated and explained by molecular docking site analysis. This novel PEA-ENL, with efficient transdermal delivery efficiency and multiple skincare functionalities, is promising for topical application.

18.
Prog Neurobiol ; 240: 102634, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38834133

RESUMO

Identification of transient receptor potential cation channel, subfamily V member 1 (TRPV1), also known as capsaicin receptor, in 1997 was a milestone achievement in the research on temperature sensation and pain signalling. Very soon after it became evident that TRPV1 is implicated in a wide array of physiological processes in different peripheral tissues, as well as in the central nervous system, and thereby could be involved in the pathophysiology of numerous diseases. Increasing evidence suggests that modulation of TRPV1 may also affect seizure susceptibility and epilepsy. This channel is localized in brain regions associated with seizures and epilepsy, and its overexpression was found both in animal models of seizures and in brain samples from epileptic patients. Moreover, modulation of TRPV1 on non-neuronal cells (microglia, astrocytes, and/or peripheral immune cells) may have an impact on the neuroinflammatory processes that play a role in epilepsy and epileptogenesis. In this paper, we provide a comprehensive and critical overview of currently available data on TRPV1 as a possible molecular target for epilepsy management, trying to identify research gaps and future directions. Overall, several converging lines of evidence implicate TRPV1 channel as a potentially attractive target in epilepsy research but more studies are needed to exploit the possible role of TRPV1 in seizures/epilepsy and to evaluate the value of TRPV1 ligands as candidates for new antiseizure drugs.


Assuntos
Anticonvulsivantes , Epilepsia , Canais de Cátion TRPV , Humanos , Canais de Cátion TRPV/metabolismo , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Epilepsia/fisiopatologia , Animais , Anticonvulsivantes/farmacologia , Desenvolvimento de Medicamentos
19.
Brain Res Bull ; 215: 111007, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38852650

RESUMO

BACKGROUND: Schizophrenia (SCZ) is a severe mental disorder, but its pathogenesis is still unknown, and its clinical treatment effect is very limited. Transient receptor potential vanilloid 1 (TRPV1) channel and the Endocannabinoid System (ECS)have been confirmed to be involved in the pathogenesis of SCZ, although their actions have not been fully clarified yet. The objective is to examine TRPV1 and ECS expression in the blood of schizophrenia patients and investigate their correlation with disease severity. METHODS: This is a cross-sectional investigation. Peripheral blood samples were gathered from normal controls (NC, n=37), as well as individuals with schizophrenia, including first episode (n=30) and recurrent (n=30) cases. We employed western blot and ELISA techniques to quantify TRPV1, cannabinoid receptors 1(CB1), anandamide (AEA), and 2-arachidonoylglycerol (2-AG), and assess the severity of the patient's symptoms by means of the PANSS scale. RESULTS: Compared to NC, TRPV1 levels showed a noticeable decrease in both first episode schizophrenia (f-SCZ group) and recurrent schizophrenia (r-SCZ group) subjects. Additionally, CB1 levels appeared increased in f-SCZ group. Furthermore, 2-AG levels were found to be elevated in both f-SCZ group and r-SCZ group compared to NC, whereas AEA levels were decreased in f-SCZ group but increased in r-SCZ group. Moreover, among schizophrenia patients, TRPV1 demonstrated a negative correlation with negative symptoms. Within r-SCZ subjects, CB1 displayed a negative correlation with relapse number, while 2-AG showed a correlation in the opposite direction. CONCLUSIONS: This study provides initial clinical evidence of changed TRPV1 expression in schizophrenia, potentially linked to negative symptoms. These results suggest a possible dysfunction of TRPV1 and the endocannabinoid system (ECS), which might offer new avenues for medical interventions.


Assuntos
Ácidos Araquidônicos , Endocanabinoides , Glicerídeos , Alcamidas Poli-Insaturadas , Esquizofrenia , Canais de Cátion TRPV , Humanos , Canais de Cátion TRPV/metabolismo , Esquizofrenia/metabolismo , Esquizofrenia/sangue , Endocanabinoides/metabolismo , Endocanabinoides/sangue , Masculino , Feminino , Adulto , Ácidos Araquidônicos/sangue , Ácidos Araquidônicos/metabolismo , Estudos Transversais , Glicerídeos/sangue , Glicerídeos/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Alcamidas Poli-Insaturadas/sangue , Pessoa de Meia-Idade , Receptor CB1 de Canabinoide/metabolismo , Adulto Jovem
20.
J Nutr Sci Vitaminol (Tokyo) ; 70(3): 193-202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38945884

RESUMO

Oleuropein aglycone (OA), which is the absorbed form of oleuropein, is a major phenolic compound in extra virgin olive oil. We analyzed the anti-obesity effect of OA intake combined with mild treadmill walking (MTW, 4 m/min for 20 min/d, 5-6 d/wk, without electric shocks and slope) in rats under a high-fat diet (HF). Four-week-old male Sprague-Dawley rats (n=28) were equally divided into four groups: control (HF), 0.08% oleuropein-supplemented HF (HFO), HF with MTW (HF+W), and HFO with MTW (HFO+W) groups. After 28 d, the inguinal subcutaneous fat content and weight gain were significantly lower in the HFO+W group than in the control group. The HFO+W group also had significantly higher levels of urinary noradrenaline secretion, interscapular brown adipose tissue, uncoupling protein 1, brain transient receptor potential ankyrin subtype 1 (TRPA1), vanilloid subtype 1 (TRPV1), and brain-derived neurotrophic factor (BDNF) than the control group. Especially, the HFO+W group showed a synergistic effect on noradrenaline secretion. Therefore, OA combined with MTW may accelerate the enhancement of UCP1 and BDNF levels in rats with HF-induced obesity by increasing noradrenaline secretion after TRPA1 and TRPV1 activation.


Assuntos
Tecido Adiposo Marrom , Fator Neurotrófico Derivado do Encéfalo , Dieta Hiperlipídica , Glucosídeos Iridoides , Iridoides , Norepinefrina , Obesidade , Ratos Sprague-Dawley , Canal de Cátion TRPA1 , Proteína Desacopladora 1 , Animais , Masculino , Proteína Desacopladora 1/metabolismo , Glucosídeos Iridoides/farmacologia , Obesidade/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Iridoides/farmacologia , Norepinefrina/metabolismo , Canal de Cátion TRPA1/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos , Fármacos Antiobesidade/farmacologia , Caminhada , Aumento de Peso/efeitos dos fármacos , Condicionamento Físico Animal , Canais de Cátion TRPV
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA