Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biol Lett ; 19(2): 20220454, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36974665

RESUMO

Actinopterygians are the most diversified clade of extant vertebrates. Their impressive morphological disparity bears witness to tremendous ecological diversity. Modularity, the organization of biological systems into quasi-independent anatomical/morphological units, is thought to increase evolvability of organisms and facilitate morphological diversification. Our study aims to quantify patterns of variational modularity in a model actinopterygian, the zebrafish (Danio rerio), using three-dimensional geometric morphometrics on osteological structures isolated from micro-CT scans. A total of 72 landmarks were digitized along cranial and postcranial ossified regions of 30 adult zebrafishes. Two methods were used to test modularity hypotheses, the covariance ratio and the distance matrix approach. We find strong support for two modules, one comprised paired fins and the other comprised median fins, that are best explained by functional properties of subcarangiform swimming. While the skull is tightly integrated with the rest of the body, its intrinsic integration is relatively weak supporting previous findings that the fish skull is a modular structure. Our results provide additional support for the recognition of similar hypotheses of modularity identified based on external morphology in various teleosts, and at least two variational modules are proposed. Thus, our results hint at the possibility that internal and external modularity patterns may be congruent.


Assuntos
Evolução Biológica , Peixe-Zebra , Animais , Crânio/anatomia & histologia , Cabeça , Nadadeiras de Animais/anatomia & histologia
2.
Proc Natl Acad Sci U S A ; 112(2): 470-5, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548154

RESUMO

Modularity is a central concept in modern biology, providing a powerful framework for the study of living organisms on many organizational levels. Two central and related questions can be posed in regard to modularity: How does modularity appear in the first place, and what forces are responsible for keeping and/or changing modular patterns? We approached these questions using a quantitative genetics simulation framework, building on previous results obtained with bivariate systems and extending them to multivariate systems. We developed an individual-based model capable of simulating many traits controlled by many loci with variable pleiotropic relations between them, expressed in populations subject to mutation, recombination, drift, and selection. We used this model to study the problem of the emergence of modularity, and hereby show that drift and stabilizing selection are inefficient at creating modular variational structures. We also demonstrate that directional selection can have marked effects on the modular structure between traits, actively promoting a restructuring of genetic variation in the selected population and potentially facilitating the response to selection. Furthermore, we give examples of complex covariation created by simple regimes of combined directional and stabilizing selection and show that stabilizing selection is important in the maintenance of established covariation patterns. Our results are in full agreement with previous results for two-trait systems and further extend them to include scenarios of greater complexity. Finally, we discuss the evolutionary consequences of modular patterns being molded by directional selection.


Assuntos
Evolução Molecular , Modelos Genéticos , Seleção Genética , Simulação por Computador , Deriva Genética , Variação Genética , Genética Populacional , Mutação , Densidade Demográfica , Característica Quantitativa Herdável
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA