Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(1): 45-51, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36725257

RESUMO

Violet root rot is one of the main root diseases in the production process of Pseudostellaria heterophylla. To clarify the pathogenic species that cause the violet root rot of P. heterophylla in Fujian province, the roots and the sclerotia with violet root rot symptoms were collected from the main producing areas of P. heterophylla(Fujian province) from 2017 to 2021, and the pathogens were isolated by tissue separation method and identified by morphology and multi-gene phylogenetic analysis. Additionally, the biological characteristics of the pathogens were studied and the fungicides were determined. The results showed that 78 strains of violet root rot were isolated from the collected root samples, which belonged to one type after preliminary morphological identification. Two represen-tative strains were selected from the pathogens for multi-gene phylogenetic analysis, and they were clustered with Helicobasidium mompa together. The suitable culture conditions for the mycelium were OA medium, 25 ℃, pH 6, and ammonium oxalate as the nitrogen source. The lethal temperature of the mycelium was 50 ℃ for 10 minutes. Moreover, 99.1% propiconazole and 98.7% azoxystrobin had the optimal bacteriostatic effect, and the concentrations with the 50% bacteriostatic rate were 16.85 and 12.24 µg·mL~(-1), respectively. On the basis of the above results, the pathogen causing violet root rot of P. heterophylla in Fujian province was H. mompa. The medium type, growth temperature, pH value, nitrogen source, etc. had significant effect on the growth of mycelium.


Assuntos
Caryophyllaceae , Raízes de Plantas , Filogenia , Temperatura , Nitrogênio
2.
Plant Pathol J ; 38(5): 513-521, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36221923

RESUMO

Our study was carried out to determine the control efficacy of sodium hypochlorite (NaOCl) for violet root rot caused by Helicobasidium mompa in apple. The experiment was conducted in the farm located at Chungbuk province in South Korea from 2014 to 2016. When infected apple trees were treated at least two or three times with 31.25 and 62.5 ml/l available chlorine content in NaOCl, it greatly increased the rooting of rootstock, and restored the tree crown density by 44.4-60.5%. In addition, the number of commercial fruit setting was increased by 54.3-64.5%, and the total starch content in shoots was significantly higher than other non-treated apple trees. However, the untreated disease control and thiophanate-methyl WP treated trees showed the symptom of dieback. Therefore, our results indicate that the drenching treatment of NaOCl with 31.25-62.5 ml/l available chlorine content more than two times from late fall to early spring could effectively control the violet root rot and recover tree vigor up to 60%.

3.
Mycobiology ; 39(4): 321-3, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22783126

RESUMO

Severe violet root rot occurred in a field of membranous milk vetch in Bonghwa, Korea, in October 2010. Two fungal isolates from the diseased plants were identified as Helicobasidium mompa based on their morphological, cultural, and molecular characteristics. This is the first report that H. mompa causes violet root rot on membranous milk vetch in Korea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA