RESUMO
Currently, the efficacy of vaccination for preventing and controlling PRRSV is insufficient. Therefore, there is an urgent need for novel effective preventive strategies. This study aimed to investigate the antiviral effect of Eucalyptus essential oil (EEO) against PRRSV in vitro. Marc-145 cells were infected with PRRSV (rJXA1-R), and the toxicity of EEO in the cells was measured using the Cell Counting Kit-8 method. Additionally, the antiviral effect of EEO on PRRSV-infected cells was assessed using three treatment methods: drug administration post-PRRSV inoculation (post-treatment), drug administration before PRRSV inoculation (pre-treatment), and simultaneous drug administration and PRRSV inoculation (co-treatment). The EEO could not inhibit virus adsorption and/or replication since post-treatment and pre-treatment did not prevent viral infectivity. However, EEO exerted a significant virucidal effect on PRRSV. When PRRSV-infected cells were treated with 0.0156, 0.0312, and 0.0625% EEO, the cell survival rates were 55.37, 118.96, and 121.67%, respectively, and the titer of progeny virions decreased from 5.77 Log10TCID50 to 5.21 Log10TCID50, 0.55 Log10TCID50, and less than 0.167 Log10TCID50, respectively (where TCID50 is the 50% tissue culture infected dose). The fluorescence intensity of the PRRSV N protein significantly decreased in the indirect immunofluorescence assay. When cells were co-treated with EEO (0.0625%) and PRRSV (1000 TCID50) for 15 min, the viral particles were inactivated, and PRRSV (1000 TCID50) particles loss infectivity when the co-treatment time reached 60 min. In a word, EEO has no obvious therapeutic effect on PRRSV infection, but it can effectively inactivate virus particles and make them lose the ability to infect cells. These findings provide insights for the development and use of EEO to treat PRRS.
RESUMO
Uncaria tomentosa (UT) is a medicinal plant popularly known as cat's claw belonging to the Rubiaceae family that has been reported to display antiviral and anti-inflammatory activities. The chikungunya virus (CHIKV) outbreaks constitute a Brazilian public health concern. CHIKV infection develops an abrupt onset of fever, usually accompanied by a skin rash, besides incapacitating polyarthralgia. There is no vaccine available or treatment for CHIKV infection. The present study evaluates the hydroalcoholic extract of UT bark as a potential antiviral against CHIKV. The in vitro antiviral activity of the UT extract against the Brazilian CHIKV strain was assessed using quantitative reverse transcription polymerase chain reaction, flow cytometry, and plaque assay. Results obtained demonstrated that UT inhibits CHIKV infection in a dose-dependent manner. At the non-cytotoxic concentration of 100 µg/mL, UT exhibited antiviral activity above 90% as determined by plaque reduction assay, and it reduced the viral cytopathic effect. Similarly, a significant virucidal effect of 100 µg/mL UT was observed after 24 and 48 h post-infection. This is the first report on the antiviral activity of UT against CHIKV infection, and the data presented here suggests UT as a potential antiviral to treat CHIKV infection.
Assuntos
Unha-de-Gato , Febre de Chikungunya , Vírus Chikungunya , Plantas Medicinais , Extratos Vegetais/farmacologia , Antivirais/farmacologia , Febre de Chikungunya/tratamento farmacológicoRESUMO
BACKGROUND: Weak acids, such as acetic acid, show virucidal effects against viruses, and disinfectants are considered effective virucidal agents possibly because of their low pH, depending on the proton concentration. This study aimed to evaluate the efficacy of different weak acids (acetic, oxalic, and citric acids) and eligible vinegars under different pH conditions by comparing their inactivation efficacies against enveloped and non-enveloped viruses. METHODS: Acetic, oxalic, and citric acids were adjusted to pH values of 2, 4 and 6, respectively. They were also diluted from 1 M to 0.001 M with distilled water. Enveloped influenza A virus (FulV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and non-enveloped feline calicivirus (FCV) were treated with adjusted weak acids for up to 30 min. These viruses were also reacted with white distilled vinegar (WDV) and grain-flavored distilled vinegar (GV) for up to 30 min. Infectious viral titers after the reactions were expressed as plaque-forming units per mL. RESULTS: Acetic acid showed virucidal effects against FulV at pH 4, whereas citric and oxalic acids did not. Acetic and citric acids inactivated SARS-CoV-2 at pH 2, whereas oxalic acid did not. All acids showed virucidal effects against FVC at pH 2; however, not at pH 4. The virucidal effects of the serially diluted weak acids were also reflected in the pH-dependent results. WDV and GV significantly reduced FulV titers after 1 min. SARS-CoV-2 was also susceptible to the virucidal effects of WDV and GV; however, the incubation period was extended to 30 min. In contrast, WDV and GV did not significantly inactivate FCV. CONCLUSIONS: The inactivation efficacy of weak acids is different even under the same pH conditions, suggesting that the virucidal effect of weak acids is not simply determined by pH, but that additional factors may also influence these effects. Moreover, eligible vinegars, the main component of which is acetic acid, may be potential sanitizers for some enveloped viruses, such as FulV, in the domestic environment.
RESUMO
African swine fever (ASF) causes huge economic losses and is one of most dangerous diseases of pigs. The disease is known for almost 100 years, an effective vaccine or treatment is still unavailable, only proper biosecurity measures, including disinfection, are being applied, in order to prevent disease outbreaks. Eight active substances, i.e., formaldehyde, sodium hypochlorite, caustic soda, glutaraldehyde, phenol, benzalkonium chloride, potassium peroxymonosulfate and acetic acid, were tested, in order to confirm their effectiveness against African swine fever virus (ASFV). This specific selection was done based on the World Organisation for Animal Health (OIE)'s recommendation and previous disinfectant studies on surfaces. The result of our study shows that most of them inactivate the virus, in recommended concentrations. In order to reduce the cytotoxicity of the four substances, Microspin S-400 HR columns were applied, therefore making it possible to demonstrate four logarithms virus titer reduction. Sodium hypochlorite, glutaraldehyde, caustic soda and potassium peroxymonosulfate showed the best ASFV inactivation rates, achieving titer reductions over 5 logs. Despite microfiltration, the virucidal activity of formaldehyde was not assessable, due to its high cytotoxicity. Our results showed that cleaning is particularly important, because removal of the soiling provides improved effectiveness of the tested chemical compounds.
RESUMO
Four commercial disinfectants were chosen for being generally accepted as effective against ASFV. Only two of them, based on sodium hypochlorite and potassium peroxymonosulfate, confirmed their effectiveness in selected concentrations. Taken together, our data supports the effectivenes of chemical disinfectants containing sodium hypochlorite (1%, 0.5% in low level soiling) and potassium peroxymonosulfate (1% in high level soiling). Furthermore, these results highlight the importance of pre-cleaning steps to remove soiling before proper disinfection which improves the effectiveness of tested disinfectants.
Assuntos
Vírus da Febre Suína Africana/efeitos dos fármacos , Desinfetantes/farmacologia , FômitesRESUMO
African swine fever (ASF), caused by African swine fever virus (ASFV), is currently one of the most important and serious diseases of pigs, mainly due to the enormous sanitary and socio-economic consequences. It leads to serious economic losses, not only because of the near 100% mortality rate, but also through the prohibitions of pork exports it triggers. Currently neither vaccines nor safe and effective chemotherapeutic agents are available against ASFV. The disease is controlled by culling infected pigs and maintaining high biosecurity standards, which principally relies on disinfection. Some countries have approved and/or authorised a list of biocides effective against this virus. This article is focused on the characteristics of chemical substances present in the most popular disinfectants of potential use against ASFV. Despite some of them being approved and tested, it seems necessary to perform tests directly on ASFV to ensure maximum effectiveness of the disinfectants in preventing the spread of ASF in the future.