Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.472
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Environ Sci (China) ; 147: 582-596, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003073

RESUMO

As an emerging environmental contaminant, antibiotic resistance genes (ARGs) in tap water have attracted great attention. Although studies have provided ARG profiles in tap water, research on their abundance levels, composition characteristics, and potential threat is still insufficient. Here, 9 household tap water samples were collected from the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China. Additionally, 75 sets of environmental sample data (9 types) were downloaded from the public database. Metagenomics was then performed to explore the differences in the abundance and composition of ARGs. 221 ARG subtypes consisting of 17 types were detected in tap water. Although the ARG abundance in tap water was not significantly different from that found in drinking water plants and reservoirs, their composition varied. In tap water samples, the three most abundant classes of resistance genes were multidrug, fosfomycin and MLS (macrolide-lincosamide-streptogramin) ARGs, and their corresponding subtypes ompR, fosX and macB were also the most abundant ARG subtypes. Regarding the potential mobility, vanS had the highest abundance on plasmids and viruses, but the absence of key genes rendered resistance to vancomycin ineffective. Generally, the majority of ARGs present in tap water were those that have not been assessed and are currently not listed as high-threat level ARG families based on the World Health Organization Guideline. Although the current potential threat to human health posed by ARGs in tap water is limited, with persistent transfer and accumulation, especially in pathogens, the potential danger to human health posed by ARGs should not be ignored.


Assuntos
Água Potável , Resistência Microbiana a Medicamentos , Metagenômica , Resistência Microbiana a Medicamentos/genética , Água Potável/microbiologia , China , Monitoramento Ambiental , Antibacterianos/farmacologia , Microbiologia da Água
3.
Kaohsiung J Med Sci ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101328

RESUMO

This study aimed to investigate the therapeutic potential of human adipose-derived mesenchymal stem cells (hADSCs) modified with recombinant adeno-associated virus (rAAV) carrying the vascular endothelial growth factor 165 (VEGF165) gene in peripheral nerve injury (PNI). The hADSCs were categorized into blank, control (transduced with rAAV control vector), and VEGF165 (transduced with rAAV VEGF165 vector) groups. Subsequently, Schwann cell differentiation was induced, and Schwann cell markers were assessed. The sciatic nerve injury mouse model received injections of phosphate-buffered saline (PBS group), PBS containing hADSCs (hADSCs group), rAAV control vector (control-hADSCs group), or rAAV VEGF165 vector (VEGF165-hADSCs group) into the nerve defect site. Motor function recovery, evaluated through the sciatic function index (SFI), and nerve regeneration, assessed via toluidine blue staining along with scrutiny of Schwann cell markers and neurotrophic factors, were conducted. Modified hADSCs exhibited enhanced Schwann cell differentiation and elevated expression of Schwann cell markers [S100 calcium-binding protein B (S100B), NGF receptor (NGFR), and glial fibrillary acidic protein (GFAP)]. Mice in the VEGF165-hADSCs group demonstrated improved motor function recovery compared to those in the other three groups, accompanied by increased fiber diameter, axon diameter, and myelin thickness, as well as elevated expression of Schwann cell markers (S100B, NGFR, and GFAP) and neurotrophic factors [mature brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF)] in the distal nerve segment. rAAV-VEGF165 modification enhances hADSC potential in PNI, promoting motor recovery and nerve regeneration. Elevated Schwann cell markers and neurotrophic factors underscore therapy benefits, providing insights for nerve injury strategies.

4.
ACS Sens ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101394

RESUMO

The COVID-19 pandemic, in addition to the co-occurrence of influenza virus and respiratory syncytial virus (RSV), has emphasized the requirement for efficient and reliable multiplex diagnostic methods for respiratory infections. While existing multiplex detection techniques are based on reverse transcription quantitative polymerase chain reaction (RT-qPCR) and extraction and purification kits, the need for complex instrumentation and elevated cost limit their scalability and availability. In this study, we have developed a point-of-care (POC) device based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) that can simultaneously detect four respiratory viruses (SARS-CoV-2, Influenza A, Influenza B, and RSV) and perform two controls in less than 30 min, while avoiding the use of the RNA extraction kit. The system includes a disposable microfluidic cartridge with mechanical components that automate sample processing, with a low-cost and portable optical reader and a smartphone app to record and analyze fluorescent images. The application as a real point-of-care platform was validated using swabs spiked with virus particles in nasal fluid. Our portable diagnostic system accurately detects viral RNA specific to respiratory pathogens, enabling deconvolution of coinfection information. The detection limits for each virus were determined using virus particles spiked in chemical lysis buffer. Our POC device has the potential to be adapted for the detection of new pathogens and a wide range of viruses by modifying the primer sequences. This work highlights an alternative approach for multiple respiratory virus diagnostics that is well-suited for healthcare systems in resource-limited settings or at home.

5.
Front Cell Infect Microbiol ; 14: 1430424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39104853

RESUMO

Human papillomaviruses (HPVs) account for more than 30% of cancer cases, with definite identification of the oncogenic role of viral E6 and E7 genes. However, the identification of high-risk HPV genotypes has largely relied on lagged biological exploration and clinical observation, with types unclassified and oncogenicity unknown for many HPVs. In the present study, we retrieved and cleaned HPV sequence records with high quality and analyzed their genomic compositional traits of dinucleotide (DNT) and DNT representation (DCR) to overview the distribution difference among various types of HPVs. Then, a deep learning model was built to predict the oncogenic potential of all HPVs based on E6 and E7 genes. Our results showed that the main three groups of Alpha, Beta, and Gamma HPVs were clearly separated between/among types in the DCR trait for either E6 or E7 coding sequence (CDS) and were clustered within the same group. Moreover, the DCR data of either E6 or E7 were learnable with a convolutional neural network (CNN) model. Either CNN classifier predicted accurately the oncogenicity label of high and low oncogenic HPVs. In summary, the compositional traits of HPV oncogenicity-related genes E6 and E7 were much different between the high and low oncogenic HPVs, and the compositional trait of the DCR-based deep learning classifier predicted the oncogenic phenotype accurately of HPVs. The trained predictor in this study will facilitate the identification of HPV oncogenicity, particularly for those HPVs without clear genotype or phenotype.


Assuntos
Aprendizado Profundo , Genoma Viral , Papillomaviridae , Infecções por Papillomavirus , Humanos , Infecções por Papillomavirus/virologia , Papillomaviridae/genética , Genoma Viral/genética , Genótipo , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Carcinogênese/genética
6.
Emerg Infect Dis ; 30(9)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106453

RESUMO

We isolated highly pathogenic avian influenza (HPAI) H5N5 and H5N1 viruses from crows in Hokkaido, Japan, during winter 2023-24. They shared genetic similarity with HPAI H5N5 viruses from northern Europe but differed from those in Asia. Continuous monitoring and rapid information sharing between countries are needed to prevent HPAI virus transmission.

7.
Emerg Infect Dis ; 30(9)2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106459

RESUMO

We conducted a longitudinal cohort study of SARS-CoV-2 and influenza rates in childcare centers and schools in Wuxi, China, collecting 1,760 environmental samples and 9,214 throat swabs from 593 students (regardless of symptoms) in weekly collections during February-June 2023. We estimated a cumulative infection rate of 124.8 (74 episodes)/1,000 persons for SARS-CoV-2 and 128.2 (76 episodes)/1,000 persons for influenza. The highest SARS-CoV-2 infection rate was in persons 18 years of age, and for influenza, in children 4 years of age. The asymptomatic proportion of SARS-CoV-2 was 59.6% and 66.7% for influenza; SARS-CoV-2 symptomatic proportion was lower in 16-18-year-olds than in 4-6-year-olds. Only samples from frequently touched surface tested positive for SARS-CoV-2 (4/1,052) and influenza (1/1,052). We found asynchronous circulation patterns of SARS-CoV-2 and influenza, similar to trends in national sentinel surveillance. The results support vaccination among pediatric populations and other interventions, such as environmental disinfection in educational settings.

8.
Front Public Health ; 12: 1383536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39109154

RESUMO

Introduction: Seasonal influenza generally represents an underestimated public health problem with significant socioeconomic implications. Monitoring and detecting influenza epidemics are important tasks that require integrated strategies. Wastewater-based epidemiology (WBE) is an emerging field that uses wastewater data to monitor the spread of disease and assess the health of a community. It can represent an integrative surveillance tool for better understanding the epidemiology of influenza and prevention strategies in public health. Methods: We conducted a study that detected the presence of Influenza virus RNA using a wastewater-based approach. Samples were collected from five wastewater treatment plants in five different municipalities, serving a cumulative population of 555,673 Sicilian inhabitants in Italy. We used the RT-qPCR test to compare the combined weekly average of Influenza A and B viral RNA in wastewater samples with the average weekly incidence of Influenza-like illness (ILI) obtained from the Italian national Influenza surveillance system. We also compared the number of positive Influenza swabs with the viral RNA loads detected from wastewater. Our study investigated 189 wastewater samples. Results: Cumulative ILI cases substantially overlapped with the Influenza RNA load from wastewater samples. Influenza viral RNA trends in wastewater samples were similar to the rise of ILI cases in the population. Therefore, wastewater surveillance confirmed the co-circulation of Influenza A and B viruses during the season 2022/2023, with a similar trend to that reported for the weekly clinically confirmed cases. Conclusion: Wastewater-based epidemiology does not replace traditional epidemiological surveillance methods, such as laboratory testing of samples from infected individuals. However, it can be a valuable complement to obtaining additional information on the incidence of influenza in the population and preventing its spread.


Assuntos
Vírus da Influenza A , Influenza Humana , Águas Residuárias , Sicília/epidemiologia , Humanos , Influenza Humana/epidemiologia , Influenza Humana/virologia , Águas Residuárias/virologia , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/genética , Estações do Ano , Vírus da Influenza B/isolamento & purificação , Vírus da Influenza B/genética , RNA Viral/análise , Cidades/epidemiologia
9.
Front Public Health ; 12: 1183706, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091528

RESUMO

Background: Many respiratory viruses and their associated diseases are sensitive to meteorological factors. For SARS-CoV-2 and COVID-19, evidence on this sensitivity is inconsistent. Understanding the influence of meteorological factors on SARS-CoV-2 transmission and COVID-19 epidemiology can help to improve pandemic preparedness. Objectives: This review aimed to examine the recent evidence about the relation between meteorological factors and SARS-CoV-2/COVID-19. Methods: We conducted a global scoping review of peer-reviewed studies published from January 2020 up to January 2023 about the associations between temperature, solar radiation, precipitation, humidity, wind speed, and atmospheric pressure and SARS-CoV-2/COVID-19. Results: From 9,156 initial records, we included 474 relevant studies. Experimental studies on SARS-CoV-2 provided consistent evidence that higher temperatures and solar radiation negatively affect virus viability. Studies on COVID-19 (epidemiology) were mostly observational and provided less consistent evidence. Several studies considered interactions between meteorological factors or other variables such as demographics or air pollution. None of the publications included all determinants holistically. Discussion: The association between short-term meteorological factors and SARS-CoV-2/COVID-19 dynamics is complex. Interactions between environmental and social components need further consideration. A more integrated research approach can provide valuable insights to predict the dynamics of respiratory viruses with pandemic potential.


Assuntos
COVID-19 , Conceitos Meteorológicos , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Pandemias , Tempo (Meteorologia) , Temperatura
10.
Nanomedicine (Lond) ; : 1-21, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140594

RESUMO

Aim: To develop a trivalent DNA vaccine candidate encapsulated in Chitosan-TPP nanoparticles against hand foot and mouth disease (HFMD) and assess its immunogenicity in mice. Materials & methods: Trivalent plasmid carrying the VP1 and VP2 genes of EV-A71, VP1 gene of CV-A16 was encapsulated in Chitosan-TPP nanoparticles through ionic gelation. In vitro characterization and in vivo immunization studies of the CS-TPP-NPs (pIRES-VP121) were performed. Results: Mice administered with CS-TPP NPs (pIRES-VP121) intramuscularly were observed to have the highest IFN-γ response. Sera from mice immunized with the naked pDNA and CS-TPP-NPs (pIRES-VP121) demonstrated good viral clearance against wild-type EV-A71 and CV-A16 in RD cells. Conclusion: CS-TPP-NPs (pIRES-VP121) could serve as a prototype for future development of multivalent HFMD DNA vaccine candidates.


[Box: see text].

11.
Plant Pathol J ; 40(4): 377-389, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39117336

RESUMO

The possibility of new viruses emerging in various regions worldwide has increased due to a combination of factors, including climate change and the expansion of international trading. Plant viruses spread through various transmission routes, encompassing well-known avenues such as pollen, seeds, and insects. However, research on potential transmission routes beyond these known mechanisms has remained limited. To address this gap, this study employed metatranscriptomic analysis to ascertain the presence of plant viruses in imported frozen fruits, specifically cherries and blueberries. This analysis aimed to identify pathways through which plant viruses may be introduced into countries. Virome analysis revealed the presence of six species of plant viruses in frozen cherries and blueberries: cherry virus A (CVA), prunus necrotic ringspot virus (PNRSV), prune dwarf virus (PDV), prunus virus F (PrVF), blueberry shock virus (BlShV), and blueberry latent virus (BlLV). Identifying these potential transmission routes is crucial for effectively managing and preventing the spread of plant viruses and crop protection. This study highlights the importance of robust quality control measures and monitoring systems for frozen fruits, emphasizing the need for proactive measures to mitigate the risk associated with the potential spread of plant viruses.

12.
Immun Inflamm Dis ; 12(8): e1360, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39150224

RESUMO

BACKGROUND: Messenger RNA (mRNA) vaccines emerged as a powerful tool in the fight against infections. Unlike traditional vaccines, this unique type of vaccine elicits robust and persistent innate and humoral immune response with a unique host cell-mediated pathogen gene expression and antigen presentation. METHODS: This offers a novel approach to combat poxviridae infections. From the genome of vaccinia and Mpox viruses, three key genes (E8L, E7R, and H3L) responsible for virus attachment and virulence were selected and employed for designing the candidate mRNA vaccine against vaccinia and Mpox viral infection. Various bioinformatics tools were employed to generate (B cell, CTL, and HTL) epitopes, of which 28 antigenic and immunogenic epitopes were selected and are linked to form the mRNA vaccine construct. Additional components, including a 5' cap, 5' UTR, adjuvant, 3' UTR, and poly(A) tail, were incorporated to enhance stability and effectiveness. Safety measures such as testing for human homology and in silico immune simulations were implemented to avoid autoimmunity and to mimics the immune response of human host to the designed mRNA vaccine, respectively. The mRNA vaccine's binding affinity was evaluated by docking it with TLR-2, TLR-3, TLR-4, and TLR-9 receptors which are subsequently followed by molecular dynamics simulations for the highest binding one to predict the stability of the binding complex. RESULTS: With a 73% population coverage, the mRNA vaccine looks promising, boasting a molecular weight of 198 kDa and a molecular formula of C8901H13609N2431O2611S48 and it is said to be antigenic, nontoxic and nonallergic, making it safe and effective in preventing infections with Mpox and vaccinia viruses, in comparison with other insilico-designed vaccine for vaccinia and Mpox viruses. CONCLUSIONS: However, further validation through in vivo and in vitro techniques is underway to fully assess its potential.


Assuntos
Biologia Computacional , Vaccinia virus , Vacinas de mRNA , Humanos , Vaccinia virus/imunologia , Vaccinia virus/genética , Biologia Computacional/métodos , Infecções por Poxviridae/prevenção & controle , Infecções por Poxviridae/imunologia , Vacínia/prevenção & controle , Vacínia/imunologia , Vacinas Sintéticas/imunologia , RNA Mensageiro/imunologia , RNA Mensageiro/genética , Vacinas Virais/imunologia , Epitopos de Linfócito B/imunologia , Desenvolvimento de Vacinas , Epitopos de Linfócito T/imunologia
13.
Microbiol Resour Announc ; : e0041724, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39150243

RESUMO

The panzootic caused by H5N1 avian influenza viruses is a high concern for wild birds' conservation and the study of spillover events into mammals. The near coding-complete genome of H5N1 clade 2.3.3.4b sequencing in the Miseq Illumina platform was performed from a bird located in Pantanos of Villa National Wildlife Refuge.

14.
Neuro Oncol ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39148489

RESUMO

Pediatric brain tumors are the most common solid tumors in children. Even to date, with the advances in multimodality therapeutic management, survival outcomes remain dismal in some types of tumors, such as pediatric-type diffuse high-grade gliomas or central nervous system (CNS) embryonal tumors. Failure to understand the complex molecular heterogeneity and the elusive tumor and microenvironment interplay continues to undermine therapeutic efficacy. Developing a strategy that would improve survival for these fatal tumors remains unmet in pediatric neuro-oncology. Oncolytic viruses (OVs) are emerging as a feasible, safe, and promising therapy for brain tumors. The new paradigm in virotherapy implies that the direct cytopathic effect is followed, under certain circumstances, by an antitumor immune response responsible for the partial or complete debulking of the tumor mass. OVs alone or combined with other therapeutic modalities have been primarily used in adult neuro-oncology. A surge in encouraging preclinical studies in pediatric brain tumor models recently led to the clinical translation of OVs with encouraging results in these tumors. In this review, we summarize the different virotherapy tested in preclinical and clinical studies in pediatric brain tumors, and we discuss the limitations and future avenues necessary to improve the response of these tumors to this type of therapy.

15.
Front Microbiol ; 15: 1430445, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39132135

RESUMO

Carrot motley dwarf (CMD) is a viral disease complex caused by co-infection of the polerovirus carrot red leaf virus with the umbraviruses carrot mottle virus or carrot mottle mimic virus, and/or a tombusvirus like associated RNA (tlaRNA), which depend on co-infection with a helper polerovirus to gain aphid transmissibility. In 2020 and 2021 carrot samples from Washington, United States (U.S.), and parsley and cilantro samples from California, U.S., exhibiting typical symptoms of CMD were submitted for diagnosis. Initial RT-PCR diagnostic assays identified the typical CMD viruses in the carrot samples, however only the umbraviruses and tlaRNAs were detected in the parsley and cilantro samples; as such, these samples were retested with another RT-PCR assay for generic polerovirus detection. Unexpectedly, the poleroviruses Torilis crimson leaf virus (TorCLV) and fennel motley virus were identified. Subsequent RNA sequencing analysis was conducted to confirm these results and look for other emergent viruses. In addition to confirming the diagnostic results, the recently described polerovirus Foeniculum vulgare polerovirus, the umbraviruses Pastinaca umbravirus 1 and wild carrot mottle virus, and the tlaRNA Arracacha latent virus E associated RNA were identified, making this the first report of these viruses and tlaRNA in the U.S. Using phylogenetic and pairwise identity comparisons and RDP4 recombination analyses, we also identified a putative novel polerovirus, for which we propose the name parsley polerovirus, that appears to be a recombinant between carrot polerovirus 1, sharing 92% amino acid (aa) identity with the RNA dependent RNA polymerase in the 5' gene block, and TorCLV, sharing >98% aa identity with the capsid protein in the 3 gene block. This work adds to the growing list of polerovirus species exhibiting recombination between the 5' and 3' gene blocks, and highlights the unique, variable, and dynamic associations that can occur in polerovirus, umbravirus, and tlaRNA disease complexes.

16.
J Proteome Res ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134029

RESUMO

Metalloproteins are fundamental to diverse biological processes but still lack extensive investigation in viral contexts. This study reveals the prevalence and functional diversity of metal-binding proteins in DNA viruses. Among a subset of 1432 metalloproteins, zinc and magnesium-binding proteins are notably abundant, indicating their importance in viral biology. Furthermore, significant numbers of proteins binding to iron, manganese, copper, nickel, mercury, and cadmium were also detected. Human-infecting viral proteins displayed a rich landscape of metalloproteins, with MeBiPred (964 proteins) and Pfam (666) yielding the highest numbers. Interestingly, many essential viral proteins exhibited metal-binding capabilities, including polymerases, DNA binding proteins, helicases, dUPTase, thymidine kinase, and various structural and accessory proteins. This study sheds light on the ubiquitous presence of metalloproteins, their functional signatures, subcellular placements, and metal-utilization patterns, providing valuable insights into viral biology. A similar metal utilization pattern was observed in similar functional proteins across the various DNA viruses. Furthermore, these findings provide a foundation for identifying potential drug targets for combating viral infections.

17.
Respirology ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39134468

RESUMO

BACKGROUND AND OBJECTIVE: Understanding the seasonal behaviours of respiratory viruses is crucial for preventing infections. We evaluated the seasonality of respiratory viruses using time-series analyses. METHODS: This study analysed prospectively collected nationwide surveillance data on eight respiratory viruses, gathered from the Korean Influenza and Respiratory Surveillance System. The data were collected on a weekly basis by 52 nationwide primary healthcare institutions between 2015 and 2019. We performed Spearman correlation analyses, similarity analyses via dynamic time warping (DTW) and seasonality analyses using seasonal autoregressive integrated moving average (SARIMA). RESULTS: The prevalence of rhinovirus (RV, 23.6%-31.4%), adenovirus (AdV, 9.2%-16.6%), human coronavirus (HCoV, 3.0%-6.6%), respiratory syncytial virus (RSV, 11.7%-20.1%), influenza virus (IFV, 11.7%-21.5%), parainfluenza virus (PIV, 9.2%-12.6%), human metapneumovirus (HMPV, 5.6%-6.9%) and human bocavirus (HBoV, 5.0%-6.4%) were derived. Most of them exhibited a high positive correlation in Spearman analyses. In DTW analyses, all virus data from 2015 to 2019, except AdV, exhibited good alignments. In SARIMA, AdV and RV did not show seasonality. Other viruses showed 12-month seasonality. We describe the viruses as winter viruses (HCoV, RSV and IFV), spring/summer viruses (PIV, HBoV), a spring virus (HMPV) and all-year viruses with peak incidences during school periods (RV and AdV). CONCLUSION: This is the first study to comprehensively analyse the seasonal behaviours of the eight most common respiratory viruses using nationwide, prospectively collected, sentinel surveillance data.

18.
Front Immunol ; 15: 1433989, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39114660

RESUMO

Discovered over 4 decades ago in the supernatants of activated T cells, interleukin-2 (IL-2) is a potent pleiotropic cytokine involved in the regulation of immune responses. It is required for effector T cell expansion and differentiation as well as for peripheral tolerance induced by regulatory T cells. High-dose IL-2 treatment was the first FDA-approved immunotherapy for renal cell carcinoma and melanoma, achieving single agent complete and durable responses, albeit only in a small proportion of patients. The therapeutic potential of wild type IL-2 is clinically limited by its short half-life and severe vascular toxicity. Moreover, the activation of regulatory T cells and the terminal differentiation of effector T cells on IL-2 pose additional restrictions. To overcome the toxicity of IL-2 in order to realize its full potential for patients, several novel engineering strategies are being developed and IL-2 based immunotherapy for cancer has emerged as a burgeoning field of clinical and experimental research. In addition, combination of IL-2 with PD-1/L1 pathway blockade shows vastly improved anti-tumor efficacy over either monotherapy in preclinical tumor models. In this review we discuss the biological characteristics of IL-2 and its receptors, as well as its efficacy and treatment limiting toxicities in cancer patients. We also explore the efforts aimed at developing novel and safer IL-2 therapies to harness the full therapeutic potential of this cytokine.


Assuntos
Imunoterapia , Interleucina-2 , Neoplasias , Humanos , Interleucina-2/uso terapêutico , Neoplasias/terapia , Neoplasias/imunologia , Imunoterapia/métodos , Imunoterapia/efeitos adversos , Animais
19.
Plant Dis ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39115955

RESUMO

Vasconcellea x heilbornii, known as babaco, is a hybrid native to Ecuador grown in small orchards in sub-tropical highland regions. Over the last decade, several viruses have been identified in babaco using high-throughput sequencing (HTS) (Cornejo-Franco et al. 2020, (Reyes-Proaño et al. 2023). In 2021, total RNA from a babaco plant showing distinctive leaf yellowing was extracted using the PureLink RNA Mini Kit (Thermo Fischer Scientific, USA) and subjected to HTS on an Illumina NovaSeq6000 system as 150 paired-end reads (Macrogen Inc., South Korea). Library construction was done using the TruSeq Stranded Total RNA Sample kit with Plant Ribo-Zero, as described (Villamor et al. 2022). Reads were processed using BBDuk and de novo assembled using SPAdes 3.15. both implemented in Geneious 2022. Contig analysis was done by BLASTx using the NCBI viral sequence database (as of November 2022). HTS generated 54 million reads, of which 12% assembled into contigs corresponding to genomes of previously reported babaco viruses including babaco virus Q (BabVQ), babaco nucleorhabdovirus 1 (BabRV1) and babaco ilarvirus 1 (BabIV1). Interestingly, 144 reads (0.0003%) assembled into seven contigs ranging from 100 to 480 nucleotides (nt) in length. These contigs showed homology, with 97% amino acid (aa) identity (100% query coverage), to regions of the RNA-dependent-RNA-polymerase (RdRp) of beet western yellows virus (BWYV, Acc. No. NC_004756), a member of the Polerovirus genus. To confirm the occurrence of BWYV in babaco, double-stranded RNA (dsRNA) was extracted from 15 g of leaf tissue from the original sample as described (Dodds et al. 1984) and used as template for reverse-transcription (RT)-PCR using overlapping primers designed to span all short contigs. RT-PCR amplified fragments were cloned into a pGEM®T-easy vector (Promega, USA) and sequenced by the Sanger method (Macrogen Inc., South Korea). The sequences were assembled into a single 2.7 kbp BWYV genome fragment comprising the complete protein 1 (P1) and partial RdRp gene (GenBank Acc. No. PP480670). Sequence alignments between the partially sequenced genome of the babaco isolate and its corresponding fragment from the closest BWYV isolate (NC_004756) revealed 94% and 97% identities at the nt and aa levels, respectively. To assess the prevalence of BWYV in babaco, 30 leaf samples showing yellowing symptoms from Pichincha (n=15) and Azuay (n=15) provinces were tested by RT-PCR using total RNA. Total RNA extraction and reverse transcription were done using the methodology described by Halgren et al. (2007). For RT-PCR, the primer set BWYV_Bab_F: 5'-CAGTGTCCTCCAAGTGCAACAT-3' / BWYV_Bab_R: 5'GGTTCCTTCCCAGTTTGGTGGT-3', which amplifies a 235 nt-long P1 region, was used. Three RT-PCR products from each positive sample were purified using the GeneJET PCR clean-up kit (Thermo Scientific, USA) and sequenced. BWYV was confirmed in 9 out of 15 samples (60%) from Pichincha, and in 10 out of 15 samples (64%) from Azuay. Samples were also tested for additional babaco viruses as described (Reyes-Proaño et al. 2023). All BWYV-infected plants turned out positive for papaya ringspot virus (PRSV), babaco mosaic virus (BabMV), BabVQ, and BabIV1. Hence, the impact of BWYV infection on babaco plants in single and mixed infections warrants further investigation. To the best of our knowledge, this is the first report of BWYV in a crop in Ecuador, and the first time it has been found in a Caricaceae species.

20.
Antiviral Res ; : 105980, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117284

RESUMO

In search of novel therapeutic options to treat influenza virus (IV) infections, we previously identified a series of inhibitors that act by disrupting the interactions between the PA and PB1 subunits of the viral RNA polymerase. These compounds showed broad-spectrum antiviral activity against human influenza A and B viruses and a high barrier to the induction of drug resistance in vitro. In this short communication, we investigated the effects of combinations of the PA-PB1 interaction inhibitor 54 with oseltamivir carboxylate (OSC), zanamivir (ZA), favipiravir (FPV), and baloxavir marboxil (BXM) on the inhibition of influenza A and B virus replication in vitro. We observed a synergistic effect of the 54/OSC and 54/ZA combinations and an antagonistic effect when 54 was combined with either FPV or BXM. Moreover, we demonstrated the efficacy of 54 against avian IV strains both in cell culture and in the embryonated chicken eggs model. Finally, we observed that 54 enhances OSC protective effect against avian IV replication in the embryonated eggs model. Our findings represent an advance in the development of alternative therapeutic strategies against both human and avian IV infections.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA