Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.567
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Environ Sci (China) ; 147: 114-130, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003034

RESUMO

Fenton and Fenton-like processes, which could produce highly reactive species to degrade organic contaminants, have been widely used in the field of wastewater treatment. Therein, the chemistry of Fenton process including the nature of active oxidants, the complicated reactions involved, and the behind reason for its strongly pH-dependent performance, is the basis for the application of Fenton and Fenton-like processes in wastewater treatment. Nevertheless, the conflicting views still exist about the mechanism of the Fenton process. For instance, reaching a unanimous consensus on the nature of active oxidants (hydroxyl radical or tetravalent iron) in this process remains challenging. This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants, reactions involved in the Fenton process, and the behind reason for the pH-dependent degradation of contaminants in the Fenton process. Then, we summarized several strategies that promote the Fe(II)/Fe(III) cycle, reduce the competitive consumption of active oxidants by side reactions, and replace the Fenton reagent, thus improving the performance of the Fenton process. Furthermore, advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.


Assuntos
Peróxido de Hidrogênio , Ferro , Eliminação de Resíduos Líquidos , Ferro/química , Peróxido de Hidrogênio/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Águas Residuárias/química , Oxirredução , Radical Hidroxila/química
2.
J Environ Sci (China) ; 147: 310-321, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003049

RESUMO

In this study, the effects of different salinity gradients and addition of compatible solutes on anaerobic treated effluent water qualities, sludge characteristics and microbial communities were investigated. The increase in salinity resulted in a decrease in particle size of the granular sludge, which was concentrated in the range of 0.5-1.0 mm. The content of EPS (extracellular polymeric substances) in the granular sludge gradually increased with increasing salinity and the addition of betaine (a typical compatible solute). Meanwhile, the microbial community structure was significantly affected by salinity, with high salinity reducing the diversity of bacteria. At higher salinity, Patescibacteria and Proteobacteria gradually became the dominant phylum, with relative abundance increasing to 13.53% and 12.16% at 20 g/L salinity. Desulfobacterota and its subordinate Desulfovibrio, which secrete EPS in large quantities, dominated significantly after betaine addition.Their relative abundance reached 13.65% and 7.86% at phylum level and genus level. The effect of these changes on the treated effluent was shown as the average chemical oxygen demand (COD) removal rate decreased from 82.10% to 79.71%, 78.01%, 68.51% and 64.55% when the salinity gradually increased from 2 g/L to 6, 10, 16 and 20 g/L. At the salinity of 20 g/L, average COD removal increased to 71.65% by the addition of 2 mmol/L betaine. The gradient elevated salinity and the exogenous addition of betaine played an important role in achieving stability of the anaerobic system in a highly saline environment, which provided a feasible strategy for anaerobic treatment of organic saline wastewater.


Assuntos
Betaína , Salinidade , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias , Betaína/metabolismo , Esgotos/microbiologia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Anaerobiose , Microbiota/efeitos dos fármacos , Bactérias/metabolismo , Bactérias/efeitos dos fármacos
3.
J Environ Sci (China) ; 147: 688-713, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003083

RESUMO

Innately designed to induce physiological changes, pharmaceuticals are foreknowingly hazardous to the ecosystem. Advanced oxidation processes (AOPs) are recognized as a set of contemporary and highly efficient methods being used as a contrivance for the removal of pharmaceutical residues. Since reactive oxygen species (ROS) are formed in these processes to interact and contribute directly toward the oxidation of target contaminant(s), a profound insight regarding the mechanisms of ROS leading to the degradation of pharmaceuticals is fundamentally significant. The conceptualization of some specific reaction mechanisms allows the design of an effective and safe degradation process that can empirically reduce the environmental impact of the micropollutants. This review mainly deliberates the mechanistic reaction pathways for ROS-mediated degradation of pharmaceuticals often leading to complete mineralization, with a focus on acetaminophen as a drug waste model.


Assuntos
Acetaminofen , Espécies Reativas de Oxigênio , Acetaminofen/química , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/química , Oxirredução , Preparações Farmacêuticas/metabolismo
4.
J Environ Sci (China) ; 147: 538-549, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003069

RESUMO

The multi-soil-layering (MSL) systems is an emerging solution for environmentally-friendly and cost-effective treatment of decentralized rural domestic wastewater. However, the role of the seemingly simple permeable layer has been overlooked, potentially holding the breakthroughs or directions to addressing suboptimal nitrogen removal performance in MSL systems. In this paper, the mechanism among diverse substrates (zeolite, green zeolite and biological ceramsite) coupled microorganisms in different systems (activated bacterial powder and activated sludge) for rural domestic wastewater purification was investigated. The removal efficiencies performed by zeolite coupled with microorganisms within 3 days were 93.8% for COD, 97.1% for TP, and 98.8% for NH4+-N. Notably, activated sludge showed better nitrification and comprehensive performance than specialized nitrifying bacteria powder. Zeolite attained an impressive 89.4% NH4+-N desorption efficiency, with a substantive fraction of NH4+-N manifesting as exchanged ammonium. High-throughput 16S rRNA gene sequencing revealed that aerobic and parthenogenetic anaerobic bacteria dominated the reactor, with anaerobic bacteria conspicuously absent. And the heterotrophic nitrification-aerobic denitrification (HN-AD) process was significant, with the presence of denitrifying phosphorus-accumulating organisms (DPAOs) for simultaneous nitrogen and phosphorus removal. This study not only raises awareness about the importance of the permeable layer and enhances comprehension of the HN-AD mechanism in MSL systems, but also provides valuable insights for optimizing MSL system construction, operation, and rural domestic wastewater treatment.


Assuntos
Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Nitrificação , Nitrogênio/metabolismo , Solo/química , Desnitrificação , Águas Residuárias/química , Esgotos/microbiologia , Microbiologia do Solo , Zeolitas/química , Fósforo/metabolismo , Reatores Biológicos/microbiologia , Bactérias/metabolismo
5.
J Environ Sci (China) ; 147: 677-687, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003082

RESUMO

Due to their resistance to degradation, wide distribution, easy diffusion and potential uptake by organisms, microplastics (MPs) pollution has become a major environmental concern. In this study, PEG-modified Fe3O4 magnetic nanoparticles demonstrated superior adsorption efficiency against polyethylene (PE) microspheres compared to other adsorbents (bare Fe3O4, PEI/Fe3O4 and CA/Fe3O4). The maximum adsorption capacity of PE was found to be 2203 mg/g by adsorption isotherm analysis. PEG/Fe3O4 maintained a high adsorption capacity even at low temperature (5°C, 2163 mg/g), while neutral pH was favorable for MP adsorption. The presence of anions (Cl-, SO42-, HCO3-, NO3-) and of humic acids inhibited the adsorption of MPs. It is proposed that the adsorption process was mainly driven by intermolecular hydrogen bonding. Overall, the study demonstrated that PEG/Fe3O4 can potentially be used as an efficient control against MPs, thus improving the quality of the aquatic environment and of our water resources.


Assuntos
Microplásticos , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Cinética , Adsorção , Polietileno/química , Nanopartículas de Magnetita/química , Polietilenoglicóis/química , Modelos Químicos
6.
J Environ Sci (China) ; 148: 38-45, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095173

RESUMO

Nitrate (NO3-) is a widespread pollutant in high-salt wastewater and causes serious harm to human health. Although electrochemical removal of nitrate has been demonstrated to be a promising treatment method, the development of low-cost electro-catalysts is still challenging. In this work, a phosphate modified iron (P-Fe) cathode was prepared for electrochemical removal of nitrate in high-salt wastewater. The phosphate modification greatly improved the activity of iron, and the removal rate of nitrate on P-Fe was three times higher than that on Fe electrode. Further experiments and density functional theory (DFT) calculations demonstrated that the modification of phosphoric acid improved the stability and the activity of the zero-valent iron electrode effectively for NO3- removal. The nitrate was firstly electrochemically reduced to ammonium, and then reacted with the anodic generated hypochlorite to N2. In this study, a strategy was developed to improve the activity and stability of metal electrode for NO3- removal, which opened up a new field for the efficient reduction of NO3- removal by metal electrode materials.


Assuntos
Eletrodos , Ferro , Nitratos , Fosfatos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Nitratos/química , Ferro/química , Fosfatos/química , Poluentes Químicos da Água/química , Eliminação de Resíduos Líquidos/métodos , Técnicas Eletroquímicas/métodos
7.
J Environ Sci (China) ; 148: 579-590, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095191

RESUMO

This work established a quantitative method to access the shear stability of aerobic granular sludge (AGS) and validated its feasibility by using the mature AGS from a pilot-scale (50 tons/day) membrane bioreactor (MBR) for treating real municipal wastewater. The results showed that the changing rate (ΔS) of the peak area (S) of granule size distribution (GSD) exhibited an exponential relationship (R2≥0.76) with the shear time (y=a-b·cx), which was a suitable indicative index to reflect the shear stability of different AGS samples. The limiting granule size (LGS) was defined and proposed to characterize the equilibrium size for AGS after being sheared for a period of time, whose value in terms of Dv50 showed high correlation (R2=0.92) with the parameter a. The free Ca2+ (28.44-34.21 mg/L) in the influent specifically interacted with polysaccharides (PS) in the granule's extracellular polymeric substance (EPS) as a nucleation site, thereby inducing the formation of Ca precipitation to enhance its Young's modulus, while Ca2+ primarily interacted with PS in soluble metabolic product (SMP) during the initial granulation process. Furthermore, the Young's modulus significantly affected the parameter a related to shear stability (R2=0.99). Since the parameter a was more closely related (R2=1.00) to ΔS than that of the parameter b or c, the excellent correlation (R2=0.99) between the parameter a and the wet density further verified the feasibility of this method.


Assuntos
Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Projetos Piloto , Águas Residuárias/química , Membranas Artificiais , Aerobiose
8.
J Colloid Interface Sci ; 678(Pt C): 494-505, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39303567

RESUMO

In the field of photocatalytic treatment of dye wastewater, zinc oxide (ZnO) is a typical semiconductor photocatalyst, but it has some disadvantages such as wide band gap, low carrier yield and easy recombination. In this study, Cr-ZnO/N-CQDs catalyst was synthesised using the strategy of p-type doping and construction of Z-scheme heterojunction. The results showed that the removal rate of Cr-ZnO/N-CQDs for MB dye was 97.42 %, which was 70.56 % higher than that of ZnO, and was still 92.16 % after 5 cycles, and the TOC removal rate of methylene blue wastewater was 88.60 %. The reason for the enhanced photocatalytic activity of Cr-ZnO/N-CQDs is that the π* electron (e-) in the N-CQDs interact with the 3d orbitals of Cr-ZnO, so that e- is more easily transferred from the valence band of Cr-ZnO to the conduction band of N-CQDs. The band gap of p-type Cr-ZnO is narrowed, which makes its photogenerated carrier yield increase, hole concentration raise, and the adsorption capacity of H2O molecules reduce by 1.04 eV. The density functional theory calculation shows that the maximum Gibbs free energy of Cr-ZnO for the production of hydroxyl radical is 0.05 eV lower than that of ZnO. This study lays theoretical and practical foundation for the photocatalytic treatment of dye wastewater with ZnO.

9.
J Colloid Interface Sci ; 677(Pt A): 189-197, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38871628

RESUMO

The utilization of a cost-free sacrificial agent is a novel approach to significantly enhance the efficiency of photocatalytic hydrogen (H2) production by water splitting. Wastewater contains various organic pollutants, which have the potential to be used as hole sacrificial agents to promote H2 production. Our studies on different pollutants reveals that not all pollutants can effectively promote H2 production. However, when using the same pollutants, not all photocatalysts achieved a higher H2 evolution rate than pure water. Only when the primary oxidizing active species of the photocatalyst are •OH radicals, which are generated by photogenerated holes, and when the pollutants are easily attacked and degraded by •OH radicals, can the production of H2 be effectively promoted. It is noteworthy that the porous brookite TiO2 photocatalyst exhibits a significantly higher H2 evolution rate in Reactive Red X-3B and Congo Red, reaching as high as 26.46 mmol⋅g-1⋅h-1 and 32.85 mmol⋅g-1 ⋅h-1, respectively, which is 2-3 times greater than that observed in pure water and is 10 times greater than most reported studies. The great significance of this work lies in the potential for efficient H2 production through the utilization of wastewater.

10.
J Colloid Interface Sci ; 678(Pt B): 313-324, 2025 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-39245021

RESUMO

The water pollution caused by the abuse of antibiotics has significant harmful effects on the environment and human health. The photo-Fenton process is currently the most effective method for removing antibiotics from water, but it encounters challenges such as inadequate response to visible light, low yield and utilization of photogenerated electrons, and slow electron transport. In this study, spin state regulation was introduced into the photo-Fenton process, and the spin state of Co3+ was regulated through Ce displacement doping. The intermediate-spin state Ce-LaCoO3 could degrade 91.6 % of tetracycline within 120 min in the photo-Fenton system, which is 15.2 % higher than that of low-spin state LaCoO3. The improved degradation effect is attributed to the reasons that Ce-LaCoO3 in the intermediate-spin state have lower band gap, better charge transfer ability, and stronger adsorption capacity of H2O2, which can accelerate the redox cycle of Co2+/Co3+ and promote the generation of ·OH. This study presents a unique strategy for synthesizing efficient photo-Fenton materials to treat antibiotic wastewater effectively.


Assuntos
Antibacterianos , Peróxido de Hidrogênio , Ferro , Tetraciclina , Tetraciclina/química , Peróxido de Hidrogênio/química , Ferro/química , Antibacterianos/química , Antibacterianos/farmacologia , Processos Fotoquímicos , Cobalto/química , Poluentes Químicos da Água/química , Luz , Elétrons , Óxidos/química , Estrutura Molecular , Propriedades de Superfície , Tamanho da Partícula
11.
Talanta ; 281: 126898, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39288587

RESUMO

Molecularly imprinted polymer (MIP) is dedicated to the adsorption of target substances in the aqueous phase, but ignores the adsorption in a more complex environment (oily wastewater). In order to explore the application field of existing MIPs, acorn-like Janus particles were fabricated by photo-initiated seed swelling polymerization. A novel amphiphilic Janus-MIP was prepared with the acorn-like Janus particles as matrix, methacrylic acid, ethylene dimethacrylate and oxytetracycline (OTC) as functional monomers, crosslinking agents and template molecules via surface initiated-atom transfer radical polymerization (SI-ATRP). For comparison, the poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) (poly (GMA-co-EDMA)) microspheres were also utilized as the matrix to prepare common spherical-MIP. The adsorption capacity of Janus-MIP for OTC was 23.8 mg g-1 in oil-water system, while the adsorption capacity of spherical-MIP for OTC was only 12.6 mg g-1 in the same system. At the same time, through high performance liquid chromatography (HPLC) analysis, Janus-MIP can specifically recognize and adsorb trace OTC in restaurant oily wastewater samples, and the proposed method exhibited a lower limit of detection (LOD, 3 ng mL-1) and a higher OTC recovery rate (94.2 %-98.4 %). This work demonstrated great potential for the detection and control of OTC contamination from real samples in an oil-water mixed environment.

12.
J Environ Sci (China) ; 149: 651-662, 2025 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-39181675

RESUMO

Fischer-Tropsch synthesis (FTS) wastewater retaining low-carbon alcohols and acids are organic pollutants as a limiting factor for FTS industrialization. In this work, the structure-capacity relationships between alcohol-acid adsorption and surface species on graphene were reported, shedding light into their intricate interactions. The graphene oxide (GO) and reduced graphene oxide (rGO) were synthesized via improved Hummers method with flake graphite (G). The physicochemical properties of samples were characterized via SEM, XRD, XPS, FT-IR, and Raman. The alcohol-acid adsorption behaviors and adsorption quantities on G, GO, and rGO were measured via theoretical and experimental method. It was revealed that the presence of COOH, C=O and CO species on graphene occupy the adsorption sites and increase the interactions of water with graphene, which are unfavorable for alcohol-acid adsorption. The equilibrium adsorption quantities of alcohols and acids grow in pace with carbon number. The monolayer adsorption occurs on graphene was verified via model fitting. rGO has the highest FTS modeling wastewater adsorption quantity (110 mg/g) due to the reduction of oxygen species. These novel findings provide a foundation for the alcohol-acid wastewater treatment, as well as the design and development of high-performance carbon-based adsorbent materials.


Assuntos
Álcoois , Grafite , Águas Residuárias , Poluentes Químicos da Água , Grafite/química , Adsorção , Águas Residuárias/química , Poluentes Químicos da Água/química , Álcoois/química , Eliminação de Resíduos Líquidos/métodos , Modelos Químicos , Ácidos/química
13.
J Environ Sci (China) ; 150: 36-53, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306411

RESUMO

The global concern surrounding the advancement of methods for treating wastewater and polluted soil has markedly increased over time. While electrochemical advanced oxidation processes (EAOPs) and biotreatments are commonly employed technologies for remediating wastewater and polluted soil, their widespread adoption is hindered by their limitations, which include high costs associated with EAOPs and prolonged remediation time of biotreatments. In the review, we provided an overview of EAOP technology and biotreatment, emphasizing the critical aspects involved in building a combined system. This review systematically evaluates recent research that combines EAOPs with bioremediation for treating wastewater or contaminated soil as pretreatment or post-treatment process. Research findings suggest that the combined treatment method represents a promising and competitive technology that can overcome some of the limitations of individual treatments. Additionally, we discussed the potential applications of this technology in varying levels of wastewater and soil pollution, as well as the underlying combination mechanisms.


Assuntos
Biodegradação Ambiental , Recuperação e Remediação Ambiental , Oxirredução , Poluentes do Solo , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Poluentes do Solo/análise , Eliminação de Resíduos Líquidos/métodos , Recuperação e Remediação Ambiental/métodos , Técnicas Eletroquímicas/métodos , Solo/química
14.
J Environ Sci (China) ; 150: 318-331, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306407

RESUMO

The relationship between chemodiversity and microbial succession in wastewater treatment plants (WWTPs) is highly intricate and bidirectional. The specific contribution of the microbial community to changes in the composition of dissolved organic matter (DOM) within different biological treatment units remains unclear, as does the reciprocal influence of DOM composition on microbial succession. In this study, spectroscopy ((Excitation-emission matrix) EEM-PARAFAC, Ultraviolet (UV)-spectrum, Fourier transform infrared spectrometer (FT-IR)), Liquid chromatograph mass spectrometer (LC‒MS) and Fourier transform ion cyclotron resonance (FT-ICR) MS along with high-throughput sequencing technology were used to explore the relationship between chemodiversity and microbial succession in WWTPs concerning seasonal changes. The results showed that WWTPs with anaerobic/anoxic/oxic (A2O) processes can metabolize and transform most of the wastewater DOM, and the anaerobic unit has the highest removal rate for fluorescence DOM (FDOM, 14.07%-64.43%); the anaerobic unit increased aliphatic/proteins and lignin-like molecules but decreased relative intensity, while the anoxic unit removed unsaturated hydrocarbons, aromatic structures, and lignin-like substances. The impact of seasonal changes on the composition and removal of FDOM and DOM in wastewater treatment is significant, and the variations that occur during different seasons affect microbial activity, as well as the production, degradation, and transformation of organic compounds throughout the wastewater treatment process. Network analysis shows that Parcubacteria_genera_incertae_sedis plays a crucial role in DOM chemodiversity, highlighting the crucial contribution of microbial communities to both the structure and operation of the entire DOM network. The results in this study could provide some theoretical and practical basis for guiding the process optimization of WWTPs.


Assuntos
Estações do Ano , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/microbiologia , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Microbiota , Bactérias
15.
J Environ Sci (China) ; 150: 490-502, 2025 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-39306423

RESUMO

The removal of ammonia nitrogen (NH4+-N) and bacteria from aquaculture wastewater holds paramount ecological and production significance. In this study, Pt/RuO2/g-C3N4 photocatalysts were prepared by depositing Pt and RuO2 particles onto g-C3N4. The physicochemical properties of photocatalysts were explored by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-vis diffuse reflectance spectrometer (UV-vis DRS). The photocatalysts were then applied to the removal of both NH4+-N and bacteria from simulated mariculture wastewater. The results clarified that the removals of both NH4+-N and bacteria were in the sequence of g-C3N4 < RuO2/g-C3N4 < Pt/g-C3N4 < Pt/RuO2/g-C3N4. This magnificent photocatalytic ability of Pt/RuO2/g-C3N4 can be interpreted by the transfer of holes from g-C3N4 to RuO2 to facilitate the in situ generation of HClO from Cl- in wastewater, while Pt extracts photogenerated electrons for H2 formation to enhance the reaction. The removal of NH4+-N and disinfection effect were more pronounced in simulated seawater than in pure water. The removal efficiency of NH4+-N increases with an increase in pH of wastewater, while the bactericidal effect was more significant under a lower pH in a pH range of 6-9. In actual seawater aquaculture wastewater, Pt/RuO2/g-C3N4 still exhibits effective removal efficiency of NH4+-N and bactericidal performance under sunlight. This study provides an alternative avenue for removement of NH4+-N and bacteria from saline waters under sunlight.


Assuntos
Amônia , Bactérias , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Amônia/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Rutênio/química , Luz , Aquicultura/métodos , Platina/química , Catálise , Grafite , Compostos de Nitrogênio
16.
3 Biotech ; 14(11): 283, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39484078

RESUMO

The purpose of this study was to investigate the optimum conditions, including aerobic and anoxic conditions, for operating a long-term bioreactor system to decrease the toxicity of industrial electroplating wastewater effluents containing metal cyanide using Agrobacterium tumefaciens SUTS 1 and Pseudomonas monteilii SUTS 2. The initial results revealed that bacteria performed better under aerobic conditions than under anoxic conditions. An aerobic bioreactor system was subsequently set up in a long-term study lasting 30 days under optimum operating conditions. Both mixed-culture bacteria and indigenous bacteria promoted the high-efficiency treatment of cyanide and metals in the first 7 days of the study. When the system had high removal rates, cyanide removal was greater than that of zinc, copper, nickel, and chromium (CN- > Zn > Cu > Ni > Cr), with removal efficiencies of 96.67%, 93.93%, 74.17%, 63.43%, and 44.65%, respectively, with residual concentrations of 0.15 ± 0.01, 0.24 ± 0.005, 0.03 ± 0.002, 18.41 ± 0.06 and 14.26 ± 0.15 mg/L, respectively. The cell concentration in the bioreactor increased to approximately 107 CFU/mL over 30 days from initial cell concentrations of 6.15 × 105 CFU/mL and 1.05 × 103 CFU/mL for the mixed culture and indigenous inoculation, respectively. These results implied that the bacteria were resistant to heavy metal toxicity. The addition of an appropriate carbon source with sufficient aeration to a bioreactor resulted in increased cyanide degradation.

17.
Sci Rep ; 14(1): 26229, 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39482342

RESUMO

Wastewater is a by-product of numerous industrial processes that have been demonstrated to have adverse effects on human and natural health due to the pollutants it contains. The pollutants in these substances are organic or inorganic molecules and heavy metal ions that significantly harm the environment and human health. A variety of techniques have been devised for the removal of heavy metal ions from wastewater. The adsorption process has attracted significant attention due to its straightforward implementation, cost-effectiveness, and the environmentally friendly production of adsorbent materials using biocompatible substances. In this study, the removal of Cu2+ ions from wastewater was conducted using chitosan pullulan, a biocompatible and biodegradable polymer. In addition to chitosan and pullulan, waste refractory materials from a furnace used in iron and steel production were added to these polymer materials to increase the adsorption capacity. The initial step involved grinding the waste refractory brick material. Subsequently, chitosan was dissolved in acetic acid. After that, the refractory material was suspended in this solution, facilitating the formation of hydrogel beads using a NaOH solution. The obtained hydrogels were coated with pullulan to produce polyelectrolyte gel. Pullulan was oxidized to 6-carboxypullulan by the TEMPO (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl) oxidation method and the negatively charged groups in its structure interacted with the positively charged groups in the chitosan structure to produce a complex gel. The chemical structure, morphological analysis, thermal analysis, and water release analysis of the produced waste refractory brick material added chitosan/oxidized pullulan complex gels were examined. The impact of the 6-carboxypullulan coating on the gels' properties was elucidated. Furthermore, the adsorption of Cu2⁺ was conducted using solutions containing 100, 500, and 1000 ppm Cu2⁺ ions. It has been observed that the material can clean water with over 98% efficiency, even in solutions that exceed the standards set for wastewater. The material's efficacy in cleaning solutions with concentrations above the standard for wastewater cleaning is evidence of its high performance. Furthermore, the kinetics and isotherm of the adsorption reaction were examined. The kinetics were determined to be consistent with the Pseudo Second Order (chemical reaction controlled) and aligned with the Langmuir and Freundlich Isotherm (mixed adsorption occurred on homogeneous and heterogeneous surfaces).

18.
Int J Phytoremediation ; : 1-11, 2024 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-39482876

RESUMO

Coal mine drainage (CMD) is an environmental threat due to its high volume, low pH, presence of toxic metals, and absence of biodegradable organics. The present study aims to treat CMD in a horizontal sub-surface flow constructed wetland (CW) using dairy wastewater as an organic source. CW was planted with Typha angustifolia. Characteristics of synthetic CMD were (except pH, all unit mg/L) pH 1.9; Fe: 100, SO42-: 1,000, Mn: 6, Zn: 5, Co: 1, Ni: 1, and Cr: 1. CMD was mixed with synthetic dairy wastewater (pH: 5.05, COD: 2,700 mg/L, BOD: 1,600 mg/L) in the ratio of 3:1. Alkalinity of 120-190 mg/L CaCO3 was generated and effluent pH improved from 2.2 to 6.6. Metals precipitated as metal sulfide or hydroxide. Sulfate removal was hindered due to the synergistic toxicity of several metals. Except for Mn, all other effluent parameters were within the discharge limit for disposal in inland surface water.


There is limited information available on the advantages of using organic rich wastewater as a substrate for treatment of low carbon coal mine drainage (CMD). Coal mine drainage was mixed with dairy wastewater and treated in horizontal flow constructed wetland. Organic removal, metal removal, sulfate removal, and pH improvement of mixed wastewater are investigated in the present study.

19.
Environ Sci Technol ; 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39483067

RESUMO

Within the context of circular economy and industrial ecology, adsorption offers an effective manner for recycling resources from wastewater, but controllable desorption remains a challenge. Inspired by metal-thiol binding and reversible thiol-disulfide redox transformation in biological systems, this study reports the development of a reversible adsorption/desorption (RAD) system for controllable recovery of copper based on electrochemically switchable sulfurized polyacrylonitrile (SPAN). Density functional theory calculations offered theoretical prediction for the formation of S-Cu bonds and reversible weak interaction between S-S bonds and Cu2+. The SPAN anchored onto titanium suboxide ceramic foam (SPAN@TiSO) could regulate Cu2+ adsorption/desorption stimulated by the electrode potential, indicated by the adsorption capacity of 243.3 mg g-1 (30 min) at 0.2 V vs SHE and a desorption efficiency of 98.4% (5 min) at 0.8 V vs SHE. Electrochemical analysis revealed that the reversible redox transformation of S-S/-S- groups in SPAN was responsible for selective adsorption and rapid desorption in response to the electrode potential. This study provides a proof-of-concept demonstration of an electrochemically switchable polymer to build up a reversible RAD system for controllable recovery of heavy metals in wastewater, making value-added resource recovery more efficient, more intelligent, and more sustainable.

20.
J Environ Manage ; 370: 122760, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39383743

RESUMO

Municipal wastewater (MW) and industrial wastewater from juice processing (IWJ) were blended in different proportions to assess the effect of the carbon/nitrogen (C/N) ratio on pollutant removal, microalgal biomass (MB) cultivation, and the accumulation of carotenoids and biocompounds. MB development was not observed in treatments with higher C/N ratios (>30.67). The wastewater mixture favored the removal of dissolved organic carbon (75.61 and 81.90%) and soluble chemical oxygen demand (66.78-88.85%), compared to the treatment composed exclusively of MW (T7). Treatments T3 and T6 (C/N ratio equal to 30.67 and 7.52, respectively) showed higher Chlorophyll-a concentrations, 1.47 and 1.54 times higher than T7 (C/N ratio 1.75). It was also observed that the C/N ratio of 30.67 favored the accumulation of carbohydrates and lipids (30.07% and 26.39%, respectively), while the C/N ratio of 7.52 improved protein accumulation (33.00%). The fatty acids C16:0, C18:1, C18:2, and C18:3 had the highest concentrations. Additionally, increasing the C/N ratio can be an efficient strategy to improve the production of fatty acids for biofuels, mainly due to the increased concentration of shorter-chain fatty acids (C16:0). These findings suggest that blending wastewater not only enhances treatment performance but also increases the accumulation of valuable carbohydrates and lipids in MB, and optimizes fatty acid production for biofuel applications. This research represents significant progress towards feasibility of using MB produced from wastewater.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA