Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem (Oxf) ; 8: 100208, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38883998

RESUMO

Water bamboo shoots (Zizania latifolia) is prone to quality deterioration during cold storage after harvest, which causes the decline of commodity value. Chlorophyll synthesis and lignin deposition are the major reasons for quality degradation. This paper studied the influence of exogenous melatonin (MT) on the cold storage quality of water bamboo shoots. MT treatment could delay the increase in skin browning, hardness and weight loss rate, inhibit chlorophyll synthesis and color change of water bamboo shoots, while maintain the content of total phenols and flavonoids, and inhibit lignin deposition by inhibiting the activity and gene expression of phenylpropanoid metabolism related enzymes as PAL, C4H, 4CL, CAD, and POD. The results indicate that exogenous MT treatment can effectively inhibit the quality degradation of cold stored water bamboo shoots.

2.
Crit Rev Food Sci Nutr ; : 1-15, 2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36908217

RESUMO

Zizania latifolia is an aquatic and medicinal plant with a long history of development in China and the East Asian region. The smut fungus "Ustilago esculenta" parasitizes Z. latifolia and induces culm expansion to form a vegetable named Jiaobai, which has a unique taste and nutritional attributes. However, the postharvest quality of water bamboo shoots is still a big challenge for farmers and merchants. This paper traced the origin, development process, and morphological characteristics of Z. latifolia. Subsequently, the compilation of the primary nutrients and bioactive substances are presented in context to their effects on ecology a postharvest storage and preservation methods. Furthermore, the industrial, environmental, and material science applications of Z. latifolia in the fields of industry were discussed. Finally, the primary objective of the review proposes future directions for research to support the development of Z. latifolia industry and aid in maximizing its value. To sum up, Z. latifolia, aside from its potential as material it can be utilized to make different productions and improve the existing applications. This paper provides an emerging strategy for researchers undertaking Z. latifolia.

3.
Foods ; 13(1)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38201058

RESUMO

Zizania latifolia (Z. latifolia) is a popular aquatic vegetable with various nutrients in south China, but little is known about its cultivars and growing seasons in terms of the nutritional components. This work aims to characterize the nutrients of five Z. latifolia cultivars in different growing seasons. The results showed that Z. latifolia samples differed in terms of chemical parameters, which were significantly affected by variety, growing season, and their interaction. Zhejiao No. 8, harvested in the autumn, stood out with the highest levels of vitamin C. Tangxiajiao and Zhejiao No. 1 contained the highest values of total soluble solids, reducing sugar, soluble proteins, and amino acids. Significant differences were observed between the autumn Z. latifolia and spring samples; the former were of higher quality than the latter based on hierarchical clustering analysis and principal component analysis. Moreover, total amino acids (TAA) and glutamic acid (GLU) were selected as the key indicators for Z. latifolia comprehensive quality by multiple linear regression analysis. This study provides essential information on Z. latifolia quality characteristics corresponding to cultivars and growing seasons, which lays the foundation for promoting the quality improvement of Z. latifolia scientifically.

4.
Int J Mol Sci ; 23(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35163530

RESUMO

Harvested water bamboo shoots can be stored for only a few days before they lose weight and become soft. Nitrogen oxide (NO) and modified atmosphere packaging (MAP) have previously been used to prolong horticultural crop storage. In the present study, we analyzed the joint effect of these two methods on extending the postharvest quality of water bamboo shoots. Water bamboo shoots were treated with (1) 30 µL L-1 NO, (2) MAP, and (3) a combination of NO and MAP. The NO treatment delayed the softness and weight loss through maintaining the integrity of the mitochondrial ultrastructure and enhancing the ATP level by activating the expressions and activities of succinic dehydrogenase, malic acid dehydrogenase, and cytochrome oxidase. MAP improved the effect of NO on the mitochondrial energy metabolism. These results indicate that NO and MAP treatments are effective at suppressing the quality deterioration of water bamboo shoots, MAP improves the effect of NO in extending postharvest life, and NO may be the main effective factor in the combination of NO and MAP.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/metabolismo , Óxido Nítrico/farmacologia , Poaceae/crescimento & desenvolvimento , Trifosfato de Adenosina/metabolismo , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Poaceae/efeitos dos fármacos , Poaceae/metabolismo , Succinato Desidrogenase/metabolismo
5.
Food Chem ; 332: 127416, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32619946

RESUMO

Water bamboo shoots quickly deteriorate after harvest as a result of rapid lignification and softening. Nitric oxide (NO) has been used to extend the postharvest life of several other vegetables. Here, we examined the effect of NO on the storage of water bamboo shoots at 4℃ for 28 days. Without NO, fresh weight and firmness decreased quickly, while the cellulose and lignin contents increased sharply during storage. NO treatment delayed softening by maintaining the integrity of the cell wall and inhibiting the degradation of protopectin and the expressions of pectin methylesterase and polygalacturonase. NO treatment also delayed cellulose synthesis by increasing cellulase activity. NO treatment decreased the synthesis of lignin by inhibiting the activities of phenylalanine ammonia-lyase, cinnamyl alcohol dehydrogenase, laccase and peroxidase. These results indicate that NO treatment is effective at suppressing the softening and lignification of water bamboo shoots during postharvest storage.


Assuntos
Armazenamento de Alimentos/métodos , Óxido Nítrico/farmacologia , Poaceae/efeitos dos fármacos , Hidrolases de Éster Carboxílico/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Celulase/metabolismo , Celulose/metabolismo , Temperatura Baixa , Lignina/metabolismo , Microscopia Eletrônica de Varredura , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Poaceae/metabolismo , Poligalacturonase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA