Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 992
Filtrar
1.
Biochem Biophys Res Commun ; 727: 150309, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38936224

RESUMO

Versican is a large chondroitin sulfate proteoglycan in the extracellular matrix. It plays a pivotal role in the formation of the provisional matrix. S100a4, previously known as fibroblast-specific protein, functions as a calcium channel-binding protein. To investigate the role of versican expressed in fibroblasts, we generated conditional knockout mice in which versican expression is deleted in cells expressing S100a4. We found that S100a4 is expressed in adipose tissues, and these mice exhibit obesity under a normal diet, which becomes apparent as early as five months. The white adipose tissues of these mice exhibited decreased expression levels of S100a4 and versican and hypertrophy of adipocytes. qRT-PCR showed a reduced level of UCP1 in their white adipose tissues, indicating that the basic energy metabolism is diminished. These results suggest that versican in adipose tissues maintains the homeostasis of adipose tissues and regulates energy metabolism.

2.
Ann Endocrinol (Paris) ; 85(3): 184-189, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38871497

RESUMO

Brown adipose tissue (BAT) and beige adipose tissues are important contributors to cold-induced whole body thermogenesis in rodents. The documentation in humans of cold- and ß-adrenergic receptor agonist-stimulated BAT glucose uptake using positron emission tomography (PET) and of a decrease of this response in individuals with cardiometabolic disorders led to the suggestion that BAT/beige adipose tissues could be relevant targets for prevention and treatment of these conditions. In this brief review, we will critically assess this question by first describing the basic rationale for this affirmation, second by examining the evidence in human studies, and third by discussing the possible means to activate the thermogenic response of these tissues in humans.


Assuntos
Tecido Adiposo Bege , Tecido Adiposo Marrom , Termogênese , Humanos , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Termogênese/fisiologia , Tecido Adiposo Bege/metabolismo , Tecido Adiposo Bege/fisiologia , Animais , Tomografia por Emissão de Pósitrons , Agonistas Adrenérgicos beta/farmacologia , Obesidade/metabolismo , Obesidade/terapia , Temperatura Baixa
3.
Biochem Pharmacol ; : 116381, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909786

RESUMO

The escalating prevalence of obesity presents formidable challenges, necessitating the development of effective therapeutic strategies. In this study, we aimed to elucidate the preventive effects on obesity of tetrahydroberberrubine (THBru), a derivative of berberine (BBR) and to unravel its underlying mechanism. Using an obese mouse model induced by a high-fat diet (HFD), THBru was found to markedly ameliorate obesity, as evidenced by reduced body weight, decreased Lee's index, diminished fat mass in epididymal white adipose tissue (WAT) and brown adipose tissue (BAT), alongside improved dyslipidemia. Notably, at the same dose, THBru exhibited superior efficacy compared to BBR. RNA-sequencing and gene set enrichment analysis indicated THBru activated thermogenesis, which was further confirmed in WAT, BAT, and 3 T3-L1 cells. Bioinformatics analysis of RNA-sequencing data revealed the candidate gene Pgc1α, a key regulator involved in thermogenesis. Moreover, THBru was demonstrated to elevate the expression of PGC1α by stabilizing its mRNA in WAT, BAT and 3 T3-L1 cells. Furthermore, PGC1α knockdown blocked the pro-thermogenic and anti-obesity action of THBru both in vivo and in vitro. This study unravels the preventive effects of THBru on obesity through the activation of PGC1α-mediated thermogenesis, thereby delineating its potential therapeutic implications for obesity and associated disorders.

4.
Ann Anat ; 255: 152289, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38848928

RESUMO

BACKGROUND: Dermal white adipose tissue (dWAT) in humans can be characterized as a relaxed dermal skin compartment consisting of functionally interlinked adipocytes. dWAT is typically discerned both in terms of morphology and function from subcutaneous white adipose tissue (sWAT). In particular in human thigh, the dWAT appears as thin extensions from the adipose panniculus to the dermis, and it is primarily associated with pilosebaceous units, hair follicles, sebaceous glands, and erector pili muscles. In this work, human fat tissue samples obtained post-mortem from the gluteo-femoral region were analyzed focusing on the thin extensions of dWAT named dermal cones. This anatomical region was chosen to deepen the dWAT morphological features of this site which is interesting both for clinical applications and genetical studies. The purpose of this exploratory methodological study was to gain deeper insights into the morphological features of human dWAT through a multimodal imaging approach. METHODS: Optical microscopy, Magnetic Resonance Imaging (MRI) and Scanning Electron Microscopy (SEM), have been employed in this study. The cones' length and their distances were measured on the acquired images for optical microscopy and SEM. The cone's apparent regular distribution in MRI images was evaluated using a mathematical criterion, the conformity ratio, which is the ratio of the mean nearest-neighbor distance to its standard deviation. RESULTS: The imaging techniques revealed white adipocytes forming a layer, referred to as sWAT, with cones measuring nearly 2 mm in size measured on SEM and Optical images (2.1 ± 0.4 mm), with the lower part embedded in the sWAT and the upper part extending into the dermis. The distance between the cones results about 1 mm measured on MRI images and they show an overall semiregular distribution. CONCLUSIONS: MRI images demonstrated an orderly arrangement of cones, and their 3D reconstruction allowed to elucidate the dermal cones' disposition in the tissue sample and a more general comprehensive visualization of the entire fat structure within the dermis.

5.
Eur J Radiol ; 177: 111559, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38865759

RESUMO

PURPOSE: To delineate the alterations in adipose and muscle tissue composition and functionality among healthy young men across varying exercise intensities, which help to elucidate the impact of exercise intensity on weight management and inform fitness planning. METHOD: 3D Dixon MRI scans were performed on the neck and supraclavicular area in 10 high-intensity exercises (HIE) athletes, 20 moderate intensity exercises (MIE) athletes and 19 low-intensity exercises non-athlete male controls (NCM). Twelve imaging parameters, including the total volume of muscle, white adipose tissue (WAT), brown adipose tissue (BAT), and the mean fat-water fraction (FWF) within these tissues. Additionally, ratios of BAT or WAT to total fat (BATr or WATr) and the proportions of muscle, BAT, or WAT to total tissue volume (Musp, BATp, and WATp) were calculated. Parameters were compared across groups and correlated with Body Mass Index (BMI), waistline, and hipline. RESULTS: The HIE group exhibited the highest total muscle (totalMUS) and brown adipose tissue (totalBAT) volumes among the three groups. Conversely, the NCM group had significantly higher fwfFAT and fwfBAT values. The MUSp was higher in the HIE and MIE groups compared to NCM, while the BATp and WATp were lower. Furthermore, the BATr in HIE and MIE groups were higher than NCM group while the WATr were lower. Significant linear relationships were observed between totalBAT, totalWAT, MUSp, BATr, fwfFAT, and BMI, waistline (P < 0.05) across all groups. CONCLUSIONS: MIE is sufficient for the purpose of weight control, While HIE helps to further increase the muscle mass. All three physical indexes were significantly associated with the image parameters, with waistline emerging as the most effective indicator for detecting metabolic changes across all groups.

6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159525, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38876269

RESUMO

The functional differences between preadipocytes and fully differentiated mature adipocytes derived from stromal vascular fraction stem cells, as well as primary adipocytes have been analysed by evaluating their response to the obesogenic factor (a saturated fatty acid) and TNF-triggered inflammation. The analysis of single adipocytes shows that the saturated fatty acid (palmitic acid) accumulation is accompanied by inflammation and considerably dependent on the stage of the adipogenesis. In particular, preadipocytes show the exceptional potential for palmitic acid uptake resulting in their hypertrophy and the elevated cellular expression of the inflammation marker (ICAM-1). Our research provides new information on the impact of obesogenic factors on preadipocytes that is important in the light of childhood obesity prevention.

7.
Eur J Pharm Sci ; 199: 106820, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38821248

RESUMO

Obesity is a global public health problem and is related with fatal diseases such as cancer and cardiovascular and metabolic diseases. Medical and lifestyle-related strategies to combat obesity have their limitations. White adipose tissue (WAT) browning is a promising strategy for increasing energy expenditure in individuals with obesity. Uncoupling protein 1 (UCP1) drives WAT browning. We previously screened natural products that enable induction of Ucp1 and demonstrated that these natural products induced WAT browning and increased energy expenditure in mice with diet-induced obesity. In this study, we aimed to extensively optimise the structure of compound 1, previously shown to promote WAT browning. Compound 3 s exhibited a significantly higher ability to induce Ucp1 in white and brown adipocytes than did compound 1. A daily injection of compound 3 s at 5 mg/kg prevented weight gain by 13.6 % in high-fat diet-fed mice without any toxicological observation. In addition, compound 3 s significantly improved glucose homeostasis, decreased serum triacylglycerol levels, and reduced total cholesterol and LDL cholesterol levels, without altering dietary intake or physical activity. Pharmaceutical properties such as solubility, lipophilicity, and membrane permeability as well as metabolic stability, half-life (T1/2), and blood exposure ratio of i.p to i.v were significantly improved in compound 3 s when compared with those in compound 1. Regarding the mode of action of WAT browning, the induction of Ucp1 and Prdm4 by compounds 1 and 3 s was dependent on Akt1 in mouse embryonic fibroblasts. Therefore, this study suggests the potential of compound 3 s as a therapeutic agent for individuals with obesity and related metabolic diseases, which acts through the induction of WAT browning as well as brown adipose tissue activation.


Assuntos
Dieta Hiperlipídica , Metabolismo Energético , Resistência à Insulina , Camundongos Endogâmicos C57BL , Obesidade , Proteína Desacopladora 1 , Animais , Dieta Hiperlipídica/efeitos adversos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Metabolismo Energético/efeitos dos fármacos , Masculino , Camundongos , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Chalconas/farmacologia , Camundongos Obesos , Fármacos Antiobesidade/farmacologia , Células 3T3-L1
8.
Biochem Pharmacol ; 225: 116324, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815633

RESUMO

Obesity is characterized by adipose tissue expansion, extracellular matrix remodelling and unresolved inflammation that contribute to insulin resistance and fibrosis. Adipose tissue macrophages represent the most abundant class of immune cells in adipose tissue inflammation and could be key mediators of adipocyte dysfunction and fibrosis in obesity. Although macrophage activation states are classically defined by the M1/M2 polarization nomenclature, novel studies have revealed a more complex range of macrophage phenotypes in response to external condition or the surrounding microenvironment. Here, we discuss the plasticity of adipose tissue macrophages (ATMs) in response to their microenvironment in obesity, with special focus on macrophage infiltration and polarization, and their contribution to adipose tissue fibrosis. A better understanding of the role of ATMs as regulators of adipose tissue remodelling may provide novel therapeutic strategies against obesity and associated metabolic diseases.


Assuntos
Tecido Adiposo , Fibrose , Macrófagos , Obesidade , Humanos , Obesidade/metabolismo , Obesidade/patologia , Obesidade/imunologia , Macrófagos/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Macrófagos/fisiologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Tecido Adiposo/imunologia , Animais
9.
Mol Metab ; 85: 101956, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38735390

RESUMO

OBJECTIVE: Sulfonylureas (SUs) are still among the mostly prescribed antidiabetic drugs with an established mode of action: release of insulin from pancreatic ß-cells. In addition, effects of SUs on adipocytes by activation of the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) have been described, which might explain their insulin-sensitizing potential observed in patients. However, there is a discrepancy between the impact of SUs on antidiabetic action and their rather moderate in vitro effect on PPARγ transcriptional activity. Recent studies have shown that some PPARγ ligands can improve insulin sensitivity by blocking PPARγ Ser-273 phosphorylation without having full agonist activity. It is unknown if SUs elicit their antidiabetic effects on adipocytes by inhibition of PPARγ phosphorylation. Here, we investigated if binding of SUs to PPARγ can interfere with PPARγ Ser-273 phosphorylation and determined their antidiabetic actions in vitro in primary human white adipocytes and in vivo in high-fat diet (HFD) obese mice. METHODS: Primary human white preadipocytes were differentiated in the presence of glibenclamide, glimepiride and PPARγ ligands rosiglitazone and SR1664 to compare PPARγ Ser-273 phosphorylation, glucose uptake and adipokine expression. Transcriptional activity at PPARγ was determined by luciferase assays, quantification of PPARγ Ser-273 phosphorylation was determined by Western blotting and CDK5 kinase assays. In silico modelling was performed to gain insight into the binding characteristics of SUs to PPARγ. HFD mice were administered SUs and rosiglitazone for 6 days. PPARγ Ser-273 phosphorylation in white adipose tissue (WAT), body composition, glucose tolerance, adipocyte morphology and expression levels of genes involved in PPARγ activity in WAT and brown adipose tissue (BAT) were evaluated. RESULTS: SUs inhibit phosphorylation of PPARγ at Ser-273 in primary human white adipocytes and exhibit a positive antidiabetic expression profile, which is characterized by up regulation of insulin-sensitizing and down regulation of insulin resistance-inducing adipokines. We demonstrate that SUs directly bind to PPARγ by in silico modelling and inhibit phosphorylation in kinase assays to a similar extend as rosiglitazone and SR1664. In HFD mice SUs reduce PPARγ phosphorylation in WAT and have comparable effects on gene expression to rosiglitazone. In BAT SUs increase UCP1 expression and reduce lipid droplets sizes. CONCLUSIONS: Our findings indicate that a part of SUs extra-pancreatic effects on adipocytes in vitro and in vivo is probably mediated via their interference with PPARγ phosphorylation rather than via classical agonistic activity at clinical concentrations.


Assuntos
Adipócitos , Hipoglicemiantes , PPAR gama , Compostos de Sulfonilureia , PPAR gama/metabolismo , Animais , Fosforilação , Hipoglicemiantes/farmacologia , Camundongos , Compostos de Sulfonilureia/farmacologia , Humanos , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Masculino , Serina/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos , Células Cultivadas , Resistência à Insulina
10.
Biochem Biophys Res Commun ; 716: 149998, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38692012

RESUMO

The equilibrium between the hypertrophic growth of existing adipocytes and adipogenesis is vital in managing metabolic stability in white adipocytes when faced with overnutrition. Adipogenesis has been established as a key player in combating metabolic irregularities caused by various factors. However, the benefits of increasing adipogenesis-mediated white adipose tissue (WAT) expansion for metabolic health regulation remain uncertain. Our findings reveal an increase in Impdh2 expression during the adipogenesis phase, both in vivo and in vitro. Xmp enhances adipogenic potential by fostering mitotic clonal expansion (MCE). The conditional knockout of Impdh2 in adipocyte progenitor cells(APCs) in adult and aged mice effectively curbs white adipose tissue expansion, ameliorates glucose tolerance, and augments energy expenditure under high-fat diet (HFD). However, no significant difference is observed under normal chow diet (NCD). Concurrently, the knockout of Impdh2 in APCs significantly reduces the count of new adipocytes induced by HFD, without affecting adipocyte size. Mechanistically, Impdh2 regulates the proliferation of APCs during the MCE phase via Xmp. Exogenous Xmp can significantly offset the reduction in adipogenic abilities of APCs due to Impdh2 deficiency. In summary, we discovered that adipogenesis-mediated WAT expansion, induced by overnutrition, also contributes to metabolic abnormalities. Moreover, the pivotal role of Impdh2 in regulating adipogenesis in APCs offers a novel therapeutic approach to combat obesity.


Assuntos
Adipócitos , Adipogenia , Tecido Adiposo Branco , Dieta Hiperlipídica , Camundongos Knockout , Hipernutrição , Animais , Tecido Adiposo Branco/metabolismo , Adipogenia/genética , Hipernutrição/metabolismo , Hipernutrição/genética , Camundongos , Adipócitos/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Metabolismo Energético/genética , Deleção de Genes , Proliferação de Células , Células-Tronco/metabolismo , Células-Tronco/citologia , Células-Tronco/patologia
11.
Cells ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727299

RESUMO

The adipose organ adapts and responds to internal and environmental stimuli by remodeling both its cellular and extracellular components. Under conditions of energy surplus, the subcutaneous white adipose tissue (WAT) is capable of expanding through the enlargement of existing adipocytes (hypertrophy), followed by de novo adipogenesis (hyperplasia), which is impaired in hypertrophic obesity. However, an impaired hyperplastic response may result from various defects in adipogenesis, leading to different WAT features and metabolic consequences, as discussed here by reviewing the results of the studies in animal models with either overexpression or knockdown of the main molecular regulators of the two steps of the adipogenesis process. Moreover, impaired WAT remodeling with aging has been associated with various age-related conditions and reduced lifespan expectancy. Here, we delve into the latest advancements in comprehending the molecular and cellular processes underlying age-related changes in WAT function, their involvement in common aging pathologies, and their potential as therapeutic targets to influence both the health of elderly people and longevity. Overall, this review aims to encourage research on the mechanisms of WAT maladaptation common to conditions of both excessive and insufficient fat tissue. The goal is to devise adipocyte-targeted therapies that are effective against both obesity- and age-related disorders.


Assuntos
Adipogenia , Tecido Adiposo Branco , Envelhecimento , Obesidade , Humanos , Envelhecimento/patologia , Obesidade/patologia , Obesidade/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Adipócitos/metabolismo , Adipócitos/patologia
12.
bioRxiv ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38712190

RESUMO

Anorexia nervosa (AN) is an eating disorder observed primarily in girls and women, and is characterized by a low body mass index, hypophagia, and hyperactivity. The activity-based anorexia (ABA) paradigm models aspects of AN, and refers to the progressive weight loss, hypophagia, and hyperactivity developed by rodents exposed to time-restricted feeding and running wheel access. Recent studies identified white adipose tissue (WAT) as a primary location of the 'metabolic memory' of prior obesity, and implicated WAT-derived signals as drivers of recidivism to obesity following weight loss. Here, we tested whether an obese WAT transplant could attenuate ABA-induced weight loss in normal female mice. Recipient mice received a WAT transplant harvested from normal chow-fed, or HFD-fed obese mice; obese fat recipient (OFR) and control fat recipient (CFR) mice were then tested for ABA. During ABA, OFR mice survived longer than CFR mice, defined as maintaining 75% of their initial body weight. Next, we tested whether agouti-related peptide (AgRP) neurons, which regulate feeding behavior and metabolic sensing, mediate this effect of obese WAT transplant. CFR and OFR mice received either control or neonatal AgRP ablation, and were assessed for ABA. OFR intact mice maintained higher body weights longer than CFR intact mice, and this effect was abolished by neonatal AgRP ablation; further, ablation reduced survival in OFR, but not CFR mice. In summary, obese WAT transplant communicates with AgRP neurons to increase body weight maintenance during ABA. These findings encourage the examination of obese WAT-derived factors as potential treatments for AN.

13.
Adv Healthc Mater ; : e2401793, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804201

RESUMO

Protein-based drugs offer advantages such as high specificity, low toxicity, and minimal side effects compared to small molecule drugs. However, delivery of proteins to target tissues or cells remains challenging due to the instability, diverse structures, charges, and molecular weights of proteins. Polymers have emerged as a leading choice for designing effective protein delivery systems, but identifying a suitable polymer for a given protein is complicated by the complexity of both proteins and polymers. To address this challenge, we developed a fluorescence-based high-throughput screening platform called ProMatch to efficiently collect data on protein-polymer interactions, followed by in vivo and in vitro experiments with rational design. Using this approach to streamline polymer selection for targeted protein delivery, we identified candidate polymers from commercially available options and developed a polyhexamethylene biguanide (PHMB)-based system for delivering proteins to white adipose tissue as a treatment for obesity. We also developed a branched polyethylenimine (bPEI)-based system for neuron-specific protein delivery to stimulate optic nerve regeneration. Our high-throughput screening methodology expedites identification of promising polymer candidates for tissue-specific protein delivery systems, thereby providing a platform to develop innovative protein-based therapeutics. This article is protected by copyright. All rights reserved.

14.
Medicina (Kaunas) ; 60(5)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38792922

RESUMO

Background and Objectives: The hormonal state of hypoestrogenism is associated with the accumulation of white adipose tissue, which can induce an increase in pro-inflammatory markers, leading to progressive health complications. Melatonin can act on adipose tissue mass, promoting its reduction and influencing inflammation, reducing IL-6 and releasing IL-10, pro- and anti-inflammatory markers, respectively. However, the role of melatonin regarding such parameters under the context of hypoestrogenism remains unknown. The aim of this study was to determine the effect of 12 weeks of hypoestrogenism and melatonin on white adipose tissue mass and circulating levels of IL-6, IL-10, TGF-ß-1, and leukotriene C4 (LTC4). Materials and Methods: The animals (Wistar rats with sixteen weeks of age at the beginning of the experiment) under hypoestrogenism were submitted to the surgical technique of bilateral ovariectomy. The animals received melatonin (10 mg·kg-1) or vehicles by orogastric gavage every day for 12 weeks and administration occurred systematically 1 h after the beginning of the dark period. White adipose tissue (perigonadal, peritoneal, and subcutaneous) was collected for mass recording, while blood was collected for the serum determination of IL-6, IL-10, TGF-ß-1, and LTC4. Results: Hypoestrogenism increased the perigonadal and subcutaneous mass and IL-6 levels. Melatonin kept hypoestrogenic animals in physiological conditions similar to the control group and increased thymus tissue mass. Conclusions: Hypoestrogenism appears to have a negative impact on white adipose tissue mass and IL-6 and although melatonin commonly exerts a significant effect in preventing these changes, this study did not have a sufficiently negative impact caused by hypoestrogenism for melatonin to promote certain benefits.


Assuntos
Interleucina-6 , Melatonina , Ratos Wistar , Animais , Melatonina/análise , Melatonina/sangue , Ratos , Feminino , Interleucina-6/sangue , Interleucina-6/análise , Biomarcadores/sangue , Biomarcadores/análise , Tecido Adiposo/metabolismo , Tecido Adiposo/efeitos dos fármacos , Interleucina-10/sangue , Ovariectomia , Inflamação , Fator de Crescimento Transformador beta1/sangue , Fator de Crescimento Transformador beta1/análise , Estrogênios/sangue , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo
15.
Cell Rep Med ; 5(5): 101525, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38663398

RESUMO

Spinal cord injury (SCI) increases the risk of cardiometabolic disorders, including hypertension, dyslipidemia, and insulin resistance. Not only does SCI lead to pathological expansion of adipose tissue, but it also leads to ectopic lipid accumulation in organs integral to glucose and insulin metabolism. The pathophysiological changes that underlie adipose tissue dysfunction after SCI are unknown. Here, we find that SCI exacerbates lipolysis in epididymal white adipose tissue (eWAT). Whereas expression of the α2δ1 subunit of voltage-gated calcium channels increases in calcitonin gene-related peptide-positive dorsal root ganglia neurons that project to eWAT, conditional deletion of the gene encoding α2δ1 in these neurons normalizes eWAT lipolysis after SCI. Furthermore, α2δ1 pharmacological blockade through systemic administration of gabapentin also normalizes eWAT lipolysis after SCI, preventing ectopic lipid accumulation in the liver. Thus, our study provides insight into molecular causes of maladaptive sensory processing in eWAT, facilitating the development of strategies to reduce metabolic and cardiovascular complications after SCI.


Assuntos
Tecido Adiposo Branco , Homeostase , Lipólise , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Animais , Lipólise/efeitos dos fármacos , Masculino , Camundongos , Tecido Adiposo Branco/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Tecido Adiposo/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/patologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética
16.
Life Sci ; 345: 122607, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583857

RESUMO

Diabetes mellitus is a disorder characterised metabolic dysfunction that results in elevated glucose level in the bloodstream. Diabetes is of two types, type1 and type 2 diabetes. Obesity is considered as one of the major reasons intended for incidence of diabetes hence it turns out to be essential to study about the adipose tissue which is responsible for fat storage in body. Adipose tissues play significant role in maintaining the balance between energy stabilization and homeostasis. The three forms of adipose tissue are - White adipose tissue (WAT), Brown adipose tissue (BAT) and Beige adipose tissue (intermediate form). The amount of BAT gets reduced, and WAT starts to increase with the age. WAT when exposed to certain stimuli gets converted to BAT by the help of certain transcriptional regulators. The browning of WAT has been a matter of study to treat the metabolic disorders and to initiate the expenditure of energy. The three main regulators responsible for the browning of WAT are PRDM16, PPARγ and PGC-1α via various cellular and molecular mechanism. Presented review article includes the detailed elaborative aspect of genes and proteins involved in conversion of WAT to BAT.


Assuntos
Tecido Adiposo Marrom , Diabetes Mellitus Tipo 2 , Humanos , Tecido Adiposo Marrom/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Obesidade/metabolismo , Adiposidade , Fatores de Transcrição/metabolismo , Tecido Adiposo Branco/metabolismo , Termogênese/genética
17.
Sci Rep ; 14(1): 8128, 2024 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584196

RESUMO

Fat loss predicts adverse outcomes in advanced heart failure (HF). Disrupted circadian clocks are a primary cause of lipid metabolic issues, but it's unclear if this disruption affects fat expenditure in HF. To address this issue, we investigated the effects of disruption of the BMAL1/REV-ERBα circadian rhythmic loop on adipose tissue metabolism in HF.50 Wistar rats were initially divided into control (n = 10) and model (n = 40) groups. The model rats were induced with HF via monocrotaline (MCT) injections, while the control group received equivalent solvent injections. After establishing the HF model, the model group was further subdivided into four groups: normal rhythm (LD), inverted rhythm (DL), lentivirus vector carrying Bmal1 short hairpin RNA (LV-Bmal1 shRNA), and empty lentivirus vector control (LV-Control shRNA) groups, each with 10 rats. The DL subgroup was exposed to a reversed light-dark cycle of 8 h: 16 h (dark: light), while the rest adhered to normal light-dark conditions (light: dark 12 h: 12 h). Histological analyses were conducted using H&E, Oil Red O, and Picrosirius red stains to examine adipose and liver tissues. Immunohistochemical staining, RT-qPCR, and Western blotting were performed to detect markers of lipolysis, lipogenesis, and beiging of white adipose tissue (WAT), while thermogenesis indicators were detected in brown adipose tissue (BAT). The LD group rats exhibited decreased levels of BMAL1 protein, increased levels of REV-ERBα protein, and disrupted circadian circuits in adipose tissue compared to controls. Additionally, HF rats showed reduced adipose mass and increased ectopic lipid deposition, along with smaller adipocytes containing lower lipid content and fibrotic adipose tissue. In the LD group WAT, expression of ATGL, HSL, PKA, and p-PKA proteins increased, alongside elevated mRNA levels of lipase genes (Hsl, Atgl, Peripilin) and FFA ß-oxidation genes (Cpt1, acyl-CoA). Conversely, lipogenic gene expression (Scd1, Fas, Mgat, Dgat2) decreased, while beige adipocyte markers (Cd137, Tbx-1, Ucp-1, Zic-1) and UCP-1 protein expression increased. In BAT, HF rats exhibited elevated levels of PKA, p-PKA, and UCP-1 proteins, along with increased expression of thermogenic genes (Ucp-1, Pparγ, Pgc-1α) and lipid transportation genes (Cd36, Fatp-1, Cpt-1). Plasma NT-proBNP levels were higher in LD rats, accompanied by elevated NE and IL-6 levels in adipose tissue. Remarkably, morphologically, the adipocytes in the DL and LV-Bmal1 shRNA groups showed reduced size and lower lipid content, while lipid deposition in the liver was more pronounced in these groups compared to the LD group. At the gene/protein level, the BMAL1/REV-ERBα circadian loop exhibited severe disruption in LV-Bmal1 shRNA rats compared to LD rats. Additionally, there was increased expression of lipase genes, FFA ß oxidation genes, and beige adipocyte markers in WAT, as well as higher expression of thermogenic genes and lipid transportation genes in BAT. Furthermore, plasma NT-proBNP levels and adipose tissue levels of NE and IL-6 were elevated in LV-Bmal1 shRNA rats compared with LD rats. The present study demonstrates that disruption of the BMAL1/REV-ERBα circadian rhythmic loop is associated with fat expenditure in HF. This result suggests that restoring circadian rhythms in adipose tissue may help counteract disorders of adipose metabolism and reduce fat loss in HF.


Assuntos
Fatores de Transcrição ARNTL , Insuficiência Cardíaca , Ratos , Animais , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Monocrotalina , Gastos em Saúde , Interleucina-6/metabolismo , Ratos Wistar , Ritmo Circadiano/genética , Tecido Adiposo Marrom/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Lipase/metabolismo , RNA Interferente Pequeno/metabolismo , Lipídeos
18.
Immunol Rev ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683173

RESUMO

White adipose tissue (WAT) is a vital endocrine organ that regulates energy balance and metabolic homeostasis. In addition to fat cells, WAT harbors macrophages with distinct phenotypes that play crucial roles in immunity and metabolism. Nutrient demands cause macrophages to accumulate in WAT niches, where they remodel the microenvironment and produce beneficial or detrimental effects on systemic metabolism. Given the abundance of macrophages in WAT, this review summarizes the heterogeneity of WAT macrophages in physiological and pathological conditions, including their alterations in quantity, phenotypes, characteristics, and functions during WAT growth and development, as well as healthy or unhealthy expansion. We will discuss the interactions of macrophages with other cell partners in WAT including adipose stem cells, adipocytes, and T cells in the context of various microenvironment niches in lean or obese condition. Finally, we highlight how adipose tissue macrophages merge immunity and metabolic changes to govern energy balance for the organism.

19.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 499-506, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597441

RESUMO

OBJECTIVE: To investigate the effects of α7 nicotinic acetylcholine receptor (nAChR) agonist on ß3-adrenoceptor agonist-induced impairment of white fat homeostasis and beige adipose formation and heat production in obese mice. METHODS: Forty obese C57BL/6J mice were randomized into high-fat feeding group, ß3-adrenoceptor agonist-treated model group, α7 nAChR agonist group, and α7 nAChR inhibitor group (n=10), with another 10 mice with normal feeding as the blank control group. White adipose tissue from the epididymis of the mice were sampled for HE staining of the adipocytes. The expression levels of TNF-α, IL-1ß, IL-10 and TGF-ß in the white adipose tissue were determined by ELISA, and the mRNA levels of iNOS, Arg1, UCP-1, PRDM-16 and PGC-1α were detected using RT-qPCR. Western blotting was performed to detect the expression levels of NF-κB P65, p-JAK2, p-STAT3 in the white adipose tissue. RESULTS: Compared with those in the blank control group, the mice with high-fat feeding showed significantly increased body weight, more fat vacuoles in the white adipose tissue, increased volume of lipid droplets in the adipocytes, upregulated iNOS mRNA expression and protein expression of TNF-α and IL-1ß, and lowered expression of Arg-1 mRNA and IL-10 and TGF-ß proteins (P < 0.01). Treatment with α7 nAChR significantly reduced mRNA levels of PRDM-16, PGC-1α and UCP-1, lowered TNF-α and IL-1ß expressions, increased IL-10 and TGF-ß expressions, and reduced M1/M2 macrophage ratio in the white adipose tissues (P < 0.05 or 0.01). CONCLUSION: Activation of α7 nAchR improves white adipose tissue homeostasis impairment induced by ß3 agonist, promotes transformation of M1 to M2 macrophages, reduces inflammatory response in white adipose tissue, and promote beige adipogenesis and thermogenesis in obese mice.


Assuntos
Interleucina-10 , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Masculino , Camundongos , Adipogenia , Tecido Adiposo Branco/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Homeostase , Camundongos Endogâmicos C57BL , Camundongos Obesos , Receptores Adrenérgicos/metabolismo , RNA Mensageiro/metabolismo , Termogênese , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
20.
Mol Biol Rep ; 51(1): 562, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644407

RESUMO

BACKGROUND: Obesity is associated with a wide variety of metabolic disorders that impose significant burdens on patients and society. The "browning" phenomenon in white adipose tissue (WAT) has emerged as a promising therapeutic strategy to combat metabolic disturbances. However, though the anti-diabetic drug dapagliflozin (DAPA) is thought to promote "browning," the specific mechanism of this was previously unclear. METHODS: In this study, C57BL/6 J male mice were used to establish an obesity model by high-fat diet feeding, and 3T3-L1 cells were used to induce mature adipocytes and to explore the role and mechanism of DAPA in "browning" through a combination of in vitro and in vivo experiments. RESULTS: The results show that DAPA promotes WAT "browning" and improves metabolic disorders. Furthermore, we discovered that DAPA activated "browning" through the fibroblast growth factor receptors 1-liver kinase B1-adenosine monophosphate-activated protein kinase signaling pathway. CONCLUSION: These findings provide a rational basis for the use of DAPA in treating obesity by promoting the browning of white adipose tissue.


Assuntos
Tecido Adiposo Branco , Compostos Benzidrílicos , Glucosídeos , Proteínas Serina-Treonina Quinases , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Transdução de Sinais , Animais , Masculino , Camundongos , Células 3T3-L1 , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Compostos Benzidrílicos/farmacologia , Dieta Hiperlipídica , Glucosídeos/farmacologia , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Proteínas Serina-Treonina Quinases/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA