Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37685892

RESUMO

Due to the lack of studies on chestnut metabolites, this study was conducted to identify and quantify the major phenolic constituents in chestnuts. Data were compared with the three most commonly grown interspecific hybrids of C. sativa and C. crenata ('Bouche de Betizac', 'Marsol', and 'Maraval') and three "native" accessions of C. sativa. High-performance liquid chromatography coupled with mass spectrometry was used to identify and quantify these compounds. Four dicarboxylic acid derivatives, five hydroxybenzoic acids, nine hydroxycinnamic acids, and three flavanols were identified and quantified, most of them for the first time. Hydroxybenzoic acids were the major phenolic compounds in all chestnut cultivars/accessions, followed by flavanols, dicarboxylic acid derivatives, and hydroxycinnamic acids. Of all the compounds studied, the (epi)catechin dimer was the most abundant in chestnut. The assumption that cultivars from commercial hybrids have a better and different metabolic profile than "native" accessions was refuted.


Assuntos
Fagaceae , Fenóis , Fagaceae/química , Fenóis/análise , Fenóis/química , Fenóis/classificação , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos
2.
Front Plant Sci ; 14: 1144681, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035062

RESUMO

Grain amaranths are made up of three New World species of pseudo-cereals with C4 photosynthesis from the dicotyledonous family Amaranthaceae and the genus Amaranthus. They originate in two ecoregions of the Americas, namely, the inter-Andean valleys of South America and the volcanic axis and lowlands of Mexico and Central America. These correspond to two centers of domestications for Andean and Mesoamerican crops, with one cultivated species found in the first region and two found in the latter region. To date, no core collection has been made for the grain amaranths in the United States Department of Agriculture (USDA) germplasm system. In this study, our objective was to create a core for the 2,899 gene bank accessions with collection site data by town or farm site of which 1,090 have current geo-referencing of latitude and longitude coordinates. We constituted the core with 260 genotypes of Amaranthus, which we evaluated with 90 single-nucleotide polymorphism markers. Our goal was to distinguish between Andean and Mesoamerican gene pools of amaranths, including the cultivated species and three possible progenitor or wild relative ancestors along with two more species in an outgroup. Population structure, clustering, and discriminant analysis for principal components showed that Andean species Amaranthus caudatus and Amaranthus quitensis shared fewer alleles with Mesoamerican species Amaranthus cruentus and Amaranthus hypochondriacus, compared to each group individually. Amaranthus hybridus was a bridge species that shared alleles with both regions. Molecular markers have the advantage over morphological traits at quickly distinguishing the Andean and Mesoamerican cultivars and have the added benefit of being useful for following inter-species crosses and introgression.

3.
Front Microbiol ; 13: 857493, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966647

RESUMO

Potato zebra chip (ZC) disease, associated with the uncultured phloem-limited bacterium, Candidatus Liberibacter solanacearum (CLso), is transmitted by the potato psyllid Bactericera cockerelli. Potato ZC disease poses a significant threat to potato production worldwide. Current management practices mainly rely on the control of the psyllid to limit the spread of CLso. The present study investigated new sources of ZC resistance among wild Solanum species. A taxonomically diverse collection of tuber-bearing Solanum species was screened; one ZC-resistant accession and three ZC-tolerant accessions were identified among the 52 screened accessions. Further characterization of the resistant accession showed that the resistance was primarily associated with antibiosis effects due to differences in leaf trichome density and morphology of the wild accession, which could limit the psyllid feeding and oviposition. This germplasm offers a good resource for further understanding ZC and psyllid resistance mechanisms, contributing to potato breeding efforts to develop ZC resistance cultivars. Alternatively, it could be used as a potential trap crop to manage psyllid and control ZC disease.

4.
Plant Cell Environ ; 45(8): 2351-2365, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35642731

RESUMO

Similar to other cropping systems, few walnut cultivars are used as scion in commercial production. Germplasm collections can be used to diversify cultivar options and hold potential for improving crop productivity, disease resistance and stress tolerance. In this study, we explored the anatomical and biochemical bases of photosynthetic capacity and response to water stress in 11 Juglans regia accessions in the U.S. department of agriculture, agricultural research service (USDA-ARS) National Clonal Germplasm. Net assimilation rate (An ) differed significantly among accessions and was greater in lower latitudes coincident with higher stomatal and mesophyll conductances, leaf thickness, mesophyll porosity, gas-phase diffusion, leaf nitrogen and lower leaf mass and stomatal density. High CO2 -saturated assimilation rates led to increases in An under diffusional and biochemical limitations. Greater An was found in lower-latitude accessions native to climates with more frost-free days, greater precipitation seasonality and lower temperature seasonality. As expected, water stress consistently impaired photosynthesis with the highest % reductions in lower-latitude accessions (A3, A5 and A9), which had the highest An under well-watered conditions. However, An for A3 and A5 remained among the highest under dehydration. J. regia accessions, which have leaf structural traits and biochemistry that enhance photosynthesis, could be used as commercial scions or breeding parents to enhance productivity.


Assuntos
Juglans , Dióxido de Carbono , Desidratação , Genótipo , Juglans/genética , Células do Mesofilo/fisiologia , Fotossíntese/fisiologia , Folhas de Planta
5.
Mol Genet Genomics ; 296(6): 1337-1353, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34611751

RESUMO

Vigna is a large, pan-tropic and highly variable group of the legumes family which is known for its > 10 cultivated species having significant commercial value for their nutritious grains and multifarious uses. The wild vignas are considered a reservoir of numerous useful traits which can be deployed for introgression of resistance to biotic and abiotic stresses, seed quality and enhanced survival capability in extreme environments. Nonetheless, for their effective utilization through introgression breeding information on their genetic diversity, population structure and crossability is imperative. Keeping this in view, the present experiment was undertaken with 119 accessions including 99 wild Vigna accessions belonging to 19 species and 18 cultivated genotypes of Vigna and 2 of Phaseolus. Total 102 polymorphic SSRs were deployed to characterize the material at molecular level which produced 1758 alleles. The genotypes were grouped into four major clusters which were further sub-divided in nine sub-clusters. Interestingly, all cultivated species shared a single cluster while no such similarities were observed for the wild accessions as these were distributed in different groups of sub-clusters. The co-dominant allelic data of 114 accessions were then utilized for obtaining status of the accessions and their hybrid forms. The model-based population structure analysis categorized 114 accessions of Vigna into 6 genetically distinct sub-populations (K = 6) following admixture-model based simulation with varying levels of admixture. 91 (79.82%) accessions resembled their hierarchy and 23 (20.18%) accessions were observed as the admixture forms. Maximum number of accessions (25) were grouped in sub-population (SP) 6 and the least accessions were grouped in SP3 and SP5 (11 each). The population genetic structure, therefore, supported genetic diversity analysis and provided an insight into the genetic lineage of these species which will help in effective use of germplasm for development of cultivars following selective prebreeding activities.


Assuntos
Variação Genética/genética , Genética Populacional , Vigna/genética , Alelos , Grão Comestível/genética , Fabaceae/genética , Índia , Repetições de Microssatélites/genética , Melhoramento Vegetal , Locos de Características Quantitativas/genética , Vigna/classificação
6.
Plants (Basel) ; 9(10)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096943

RESUMO

Bacterial wilt caused by Ralstonia solanacerum is one of the most economically and destructive eggplant diseases in many tropical and subtropical areas of the world. The objectives of this study were to develop interspecific hybrids, as potential rootstocks, between the eggplant (Solanum melongena) bacterial wilt resistant line EG203 and four wild accessions (S. incanum UPV1, S. insanum UPV2, S.anguivi UPV3, and S. sisymbriifolium UPV4), and to evaluate interspecific hybrids along with parents for resistance to bacterial wilt strains Pss97 and Pss2016. EG203 was crossed successfully with wild accessions UPV2 and UPV3 and produced viable seeds that germinated when wild accessions were used as a maternal parent in the crosses. In addition, viable interspecific hybrids between EG203 and UPV1 were obtained in both directions of the hybridization, although embryo rescue had to be used. Hybridity was confirmed in the four developed interspecific hybrid combinations with three SSR markers. EG203 was resistant to both strains Pss97 and Pss2016, while UPV1 and UPV3 were, respectively, resistant and moderately resistant to Pss2016. The four interspecific hybrids with UPV2, UPV3, and UPV1 were susceptible to both bacterial wilt strains, indicating that the resistance of EG203, UPV1, and UPV3 behaves as recessive in interspecific crosses. However, given the vigor of interspecific hybrids between eggplant and the three cultivated wild species, these hybrids may be of interest as rootstocks. However, the development of interspecific hybrid rootstocks resistant to bacterial wilt will probably require the identification of new sources of dominant resistance to this pathogen in the eggplant wild relatives.

7.
3 Biotech ; 10(6): 265, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32509498

RESUMO

The epigenetic diversity of six genotype groups (commercial cultivars, S. officinarum, S. spontaneum, S. robustum, S. barberi, and Erianthus sp.) was assessed through methylation-sensitive amplification polymorphism (MSAP). A total of 1341 MSAP loci were analyzed, of which 1117 (83.29%) were susceptible to cytosine methylation and responsible for a higher proportion of overall diversity among genotypes. The MSAP selective primer combinations captured different proportions of internal and external cytosine methylation loci across genotype groups, while the average external cytosine frequency was higher for all genotype groups. The genotypes were divided into two subpopulations with a high differentiation index (φst = 0.086) based on epigenetic loci. The genotypes were clustered in three subgroups for both methylated and unmethylated loci, considering dissimilarity values. Four methylated fragments (MFs) were randomly selected and subsequently sequenced and compared with sugarcane public databases using BLASTN. MF alignments suggest that cytosine methylation occurs in sugarcane near CpG islands and tandem repeats within transcribed regions and putative cis-regulatory sequences, which assigned functions are associated with stress adaptation. These results provide the first insights about the distribution of this epigenetic mark in sugarcane genome, and suggest a biological relevance of methylated loci.

8.
Mol Plant ; 13(7): 1027-1046, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32305499

RESUMO

While the structures of plant primary metabolic pathways are generally well defined and highly conserved across species, those defining specialized metabolism are less well characterized and more highly variable across species. In this study, we investigated polyphenolic metabolism in the lycopersicum complex by characterizing the underlying biosynthetic and decorative reactions that constitute the metabolic network of polyphenols across eight different species of tomato. For this purpose, GC-MS- and LC-MS-based metabolomics of different tissues of Solanum lycopersicum and wild tomato species were carried out, in concert with the evaluation of cross-hybridized microarray data for MapMan-based transcriptomic analysis, and publicly available RNA-sequencing data for annotation of biosynthetic genes. The combined data were used to compile species-specific metabolic networks of polyphenolic metabolism, allowing the establishment of an entire pan-species biosynthetic framework as well as annotation of the functions of decoration enzymes involved in the formation of metabolic diversity of the flavonoid pathway. The combined results are discussed in the context of the current understanding of tomato flavonol biosynthesis as well as a global view of metabolic shifts during fruit ripening. Our results provide an example as to how large-scale biology approaches can be used for the definition and refinement of large specialized metabolism pathways.


Assuntos
Frutas/metabolismo , Polifenóis/metabolismo , Solanum lycopersicum/metabolismo , Cromatografia Líquida , Flavonoides/metabolismo , Frutas/crescimento & desenvolvimento , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Variação Genética , Glicosiltransferases/metabolismo , Solanum lycopersicum/genética , Espectrometria de Massas , Redes e Vias Metabólicas , Metabolômica , Anotação de Sequência Molecular , Especificidade da Espécie
9.
Curr Protoc Plant Biol ; 3(2): e20070, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29927119

RESUMO

A quarter of a century has passed since Lotus japonicus was proposed as a model legume because of its suitability for molecular genetic studies. Since then, a comprehensive set of genetic resources and tools has been developed, including recombinant inbred lines, a collection of wild accessions, published mutant lines, a large collection of mutant lines tagged with LORE1 insertions, cDNA clones with expressed sequence tag (EST) information, genomic clones with end-sequence information, and a reference genome sequence. Resource centers in Japan and Denmark ensure easy access to data and materials, and the resources have greatly facilitated L. japonicus research, thereby contributing to the molecular understanding of characteristic legume features such as endosymbiosis. Here, we provide detailed instructions for L. japonicus cultivation and describe how to order materials and access data using the resource center websites. The comprehensive overview presented here will make L. japonicus more easily accessible as a model system, especially for research groups new to L. japonicus research. © 2018 by John Wiley & Sons, Inc.


Assuntos
Lotus/crescimento & desenvolvimento , Banco de Sementes , Biblioteca Gênica , Genoma de Planta , Internet , Lotus/genética , Mutação , Sementes
10.
DNA Res ; 23(1): 53-65, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26685680

RESUMO

The present study used a whole-genome, NGS resequencing-based mQTL-seq (multiple QTL-seq) strategy in two inter-specific mapping populations (Pusa 1103 × ILWC 46 and Pusa 256 × ILWC 46) to scan the major genomic region(s) underlying QTL(s) governing pod number trait in chickpea. Essentially, the whole-genome resequencing of low and high pod number-containing parental accessions and homozygous individuals (constituting bulks) from each of these two mapping populations discovered >8 million high-quality homozygous SNPs with respect to the reference kabuli chickpea. The functional significance of the physically mapped SNPs was apparent from the identified 2,264 non-synonymous and 23,550 regulatory SNPs, with 8-10% of these SNPs-carrying genes corresponding to transcription factors and disease resistance-related proteins. The utilization of these mined SNPs in Δ (SNP index)-led QTL-seq analysis and their correlation between two mapping populations based on mQTL-seq, narrowed down two (Caq(a)PN4.1: 867.8 kb and Caq(a)PN4.2: 1.8 Mb) major genomic regions harbouring robust pod number QTLs into the high-resolution short QTL intervals (Caq(b)PN4.1: 637.5 kb and Caq(b)PN4.2: 1.28 Mb) on chickpea chromosome 4. The integration of mQTL-seq-derived one novel robust QTL with QTL region-specific association analysis delineated the regulatory (C/T) and coding (C/A) SNPs-containing one pentatricopeptide repeat (PPR) gene at a major QTL region regulating pod number in chickpea. This target gene exhibited anther, mature pollen and pod-specific expression, including pronounced higher up-regulated (∼3.5-folds) transcript expression in high pod number-containing parental accessions and homozygous individuals of two mapping populations especially during pollen and pod development. The proposed mQTL-seq-driven combinatorial strategy has profound efficacy in rapid genome-wide scanning of potential candidate gene(s) underlying trait-associated high-resolution robust QTL(s), thereby expediting genomics-assisted breeding and genetic enhancement of crop plants, including chickpea.


Assuntos
Cicer/genética , Genoma de Planta , Locos de Características Quantitativas , Mapeamento Cromossômico , Polimorfismo de Nucleotídeo Único
11.
New Phytol ; 209(4): 1781-94, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26526745

RESUMO

Here we studied the organization of genetic variation of the common bean (Phaseolus vulgaris) in its centres of domestication. We used 131 single nucleotide polymorphisms to investigate 417 wild common bean accessions and a representative sample of 160 domesticated genotypes, including Mesoamerican and Andean genotypes, for a total of 577 accessions. By analysing the genetic spatial patterns of the wild common bean, we documented the existence of several genetic groups and the occurrence of variable degrees of diversity in Mesoamerica and the Andes. Moreover, using a landscape genetics approach, we demonstrated that both demographic processes and selection for adaptation were responsible for the observed genetic structure. We showed that the study of correlations between markers and ecological variables at a continental scale can help in identifying local adaptation genes. We also located putative areas of common bean domestication in Mesoamerica, in the Oaxaca Valley, and the Andes, in southern Bolivia-northern Argentina. These observations are of paramount importance for the conservation and exploitation of the genetic diversity preserved within this species and other plant genetic resources.


Assuntos
Adaptação Fisiológica/genética , Variação Genética , Phaseolus/genética , Phaseolus/fisiologia , Arqueologia , Biomassa , Núcleo Celular/genética , Cloroplastos/genética , Geografia , Polimorfismo de Nucleotídeo Único/genética , Sementes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA