RESUMO
Objectives: We aimed to evaluate the usefulness and acceptability of CapsoCam Plus (CapsoCam) in Japanese patients. Methods: This retrospective single-center study enrolled 930 patients with suspected small-bowel bleeding (SSBB) who underwent capsule endoscopy. Thirty-three patients using CapsoCam and PillCam SB3 (SB3) were matched using propensity score matching. The diagnostic yield and the acceptability of CapsoCam were evaluated. Results: There was no SSBB case where capsule endoscopy was performed within 48 h of bleeding. CapsoCam had a significantly higher observation rate of the entire small bowel (97% vs. 73%, p = 0.006) and Vater's papilla (82% vs. 15%, p < 0.001) than SB3. The reading time of CapsoCam was significantly longer than that of SB3 (30 vs. 25 min, p < 0.001), and CapsoCam's time from the capsule endoscopy swallowing to read completion was longer than that of SB3 (37 vs. 12 h, p < 0.001). The two groups showed no difference in the capsule endoscopy findings according to the P classification. Notably, 85% of the patients using CapsoCam reported examination distress as "not at all" or "almost not," and 94% reported swallowing difficulty as "very easy" or "easy." Conclusions: CapsoCam took time to read; however, it is a well-tolerated examination with a high observation rate of Vater's papilla and entire small-bowel mucosa. Detectability of bleeding sources was comparable in both modalities for cases of occult SSBB and overt SSBB more than 48 h after bleeding. CapsoCam is a useful modality for patients with SSBB.
RESUMO
Agricultural practices significantly contribute to greenhouse gas (GHG) emissions, necessitating cleaner production technologies to reduce environmental pressure and achieve sustainable maize production. Plastic film mulching is commonly used in the Loess Plateau region. Incorporating slow-release fertilizers as a replacement for urea within this practice can reduce nitrogen losses and enhance crop productivity. Combining these techniques represents a novel agricultural approach in semi-arid areas. However, the impact of this integration on soil carbon storage (SOCS), carbon footprint (CF), and economic benefits has received limited research attention. Therefore, we conducted an eight-year study (2015-2022) in the semi-arid northwestern region to quantify the effects of four treatments [urea supplied without plastic film mulching (CK-U), slow-release fertilizer supplied without plastic film mulching (CK-S), urea supplied with plastic film mulching (PM-U), and slow-release fertilizer supplied with plastic film mulching (PM-S)] on soil fertility, economic and environmental benefits. The results revealed that nitrogen fertilizer was the primary contributor to total GHG emissions (≥71.97%). Compared to other treatments, PM-S increased average grain yield by 12.01%-37.89%, water use efficiency by 9.19%-23.33%, nitrogen accumulation by 27.07%-66.19%, and net return by 6.21%-29.57%. Furthermore, PM-S decreased CF by 12.87%-44.31% and CF per net return by 14.25%-41.16%. After eight years, PM-S increased SOCS (0-40 cm) by 2.46%, while PM-U decreased it by 7.09%. These findings highlight the positive effects of PM-S on surface soil fertility, economic gains, and environmental benefits in spring maize production on the Loess Plateau, underscoring its potential for widespread adoption and application.
Assuntos
Agricultura , Pegada de Carbono , Fertilizantes , Plásticos , Zea mays , Zea mays/crescimento & desenvolvimento , Agricultura/métodos , China , Solo/química , Gases de Efeito Estufa/análise , Nitrogênio/análiseRESUMO
As an energy and carbon saving process for nitrogen removal from wastewater, the partial nitrification and denitrification process (PN/D) has been extensively researched. However, achieving stable PN in municipal wastewater has always been challenging. In this study, a gel immobilized PN/D nitrogen removal process (GI-PN/D) was established. A 94 days pilot-scale experiment was conducted using real municipal wastewater with an ammonia concentration of 43.5 ± 5.3 mg N/L at a temperature range of 11.3-28.7â. The nitrogen removal performance and associated pathways, shifts in the microbial community as well as sludge yield were investigated. The results were as follows: the effluent TN and COD were 0.6 ± 0.4 mg/L and 31.1 ± 3.8 mg/L respectively, and the NAR exceeding 95%. GI-PN/D achieved deep nitrogen removal of municipal wastewater through stable PN without taking any other measures. The primary pathways for nitrogen removal were identified as denitrification, simultaneous nitrification-denitrification, and aerobic denitrification. High-throughput sequencing analysis revealed that the immobilized fillers facilitated the autonomous enrichment of functional bacteria in each reactor, effectively promoting the dominance and stability of the microbial communities. In addition, GI-PN/D had the characteristic of low sludge yield, with an average sludge yield of 0.029 kg SS/kg COD. This study provides an effective technical for nitrogen removal from municipal wastewater through PN.
Assuntos
Desnitrificação , Nitrificação , Nitrogênio , Eliminação de Resíduos Líquidos , Águas Residuárias , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Projetos Piloto , Poluentes Químicos da Água , Reatores Biológicos , Esgotos/microbiologia , Géis/químicaRESUMO
Introduction: In arid areas, exploring new "dry sowing wet emergence (DSWE)" water-saving irrigation techniques may become one of the most important ways to reduce agricultural irrigation water use and improve economic efficiency. Methods: The study was conducted in a two-year field trial in 2021 and 2022, setting up three seedling emergence rates (W1: 6 mm, W2: 10.5 mm, W3: 15 mm) and two drip frequencies (D1: 2 times, D2: 4 times) for a total of six irrigation combinations. Results and discussion: The results indicate that under the "DSWE" irrigation pattern, in contrast to the low frequency treatment, the photosynthetic efficiency of cotton leaves in the high-frequency treatment is significantly higher. The stomatal conductance of cotton leaves has increased by 6.67% within two years, and the net photosynthetic rate has risen by 12.22%. Compared with the CK treatment, there is no remarkable difference in the photosynthetic indicators of the W3D2 treatment, while the net photosynthetic rate has increased by 1.68%. The population physiological indicators of each treatment group exhibit a trend of initially increasing and then decreasing as the growth period prolongs. The differences in the group population physiological indicators of cotton at the seedling stage among different seedling water treatments are relatively minor. The high frequency treatment maintains a relatively high level throughout the growth period. Compared with the low-frequency treatment, the yields of lint cotton and seed cotton in the high-frequency treatment have increased by 14.77% and 20.89%, respectively. Compared with the winter irrigation technology, there are no significant differences in the cotton yield and quality indicators of the "DSWE" high-frequency and high-seedling water treatment (W3D2). Over two years, the average unit yields of lint and seed cotton have decreased by 1.95% and 3.01%, respectively. Nevertheless, irrigation water during the growth period declined by 38.46%. The appropriate "DSWE" irrigation technology (W3D2) can significantly enhance the physiological indicators of cotton, ensuring crop yield and quality while significantly reducing the amount of agricultural irrigation water.
RESUMO
Carboxylesterases (CXE, EC 3.1.1.1), a class of hydrolases with an α/ß folding domain, play important roles in plant growth and development and stress response. Here, we identified 32, 63, 41, and 45 CXE genes in Oryza sativa Japonica (Nipponbare), Oryza sativa Indica (93-11), Oryza sativa Indica (Xian-1B1 var.IR64), and Oryza sativa Japonica (Geng-sbtrp var.ChaoMeo), respectively. Then, we analyzed the chromosomal location, physical and chemical properties, subcellular localization, collinearity, and selection pressure of CXE genes in four rice varieties. We also analyzed the functional interaction network, cis-regulatory elements, evolutionary relationship, and protein tertiary structure, and performed gene expression profiling and qPCR verification under abiotic stress, as well as diversity analysis of 3010 gene-CDS-haplotype (gcHap) rice samples, aiming to understand the potential function of the 32 OsCXE genes. Our results indicated that fragment replication is the main reason for amplification of the CXE gene family in rice, and the gene family has undergone strong purification selection. OsCXE3.1, OsCXE3.2, OsCXE3.3, OsCXE5.1, and OsCXE7.3 may be used to improve the tolerance of rice to abiotic stress. OsCXE play important roles in rice population differentiation and improvement, and the major gcHaps at most OsCXE locus are significantly associated with yield traits. Therefore, natural variations of most OsCXE locus have great potential value for improvement of rice productivity.
RESUMO
Objective: The aim of this study was to determine the effect of rumen-protected rubber seed oil supplementation on feed digestibility, milk yield, and milk composition in tropical dairy cows. Methods: Twelve crossbred Holstien-Friesian dairy cows (75% Holstein-Friesian, 25% Thai native breed) with a mean body weight (BW) of 460 ± 30 kg and 20 ± 5 days in milk were randomly assigned to 1 of 3 treatments according to a completely randomized design. The treatments were as follows: a basal diet without rumen-protected fat (RPF) (control) or supplementation of rumen-protected palm oil (RPPO) at 300 g/h/d and rumen-protected rubber seed oil (RPRSO) at 300 g/h/d. Each cow was fed a total mixed ration ad libitum. Results: The nutrient intake was similar among treatments (p>0.05). Adding RPF did not affect nutrient digestibility, while organic matter digestibility increased in dairy cows receiving RPRSO (p<0.01). Blood urea nitrogen, total protein, or glucose did not alter among treatments (p>0.05), while triglycerides and cholesterol were increased when cows were fed RPPO (p<0.01). Adding RPF increases milk yield in cows (p<0.01). The supplementation of RPRSO increased milk fat (p=0.04). Milk fat yield was higher in RPPO and highest in RPRSO (p<0.01). The addition of RPF increased the oleic acid (OA, C18:1 cis-9) in milk (p=0.01). In addition, cows fed RPRSO increased linoleic acid (LA; C18:2ï·6 cis-9,12 + trans-9,12) and ï¡-linolenic acid (ALA; C18-3ï·3 cis-9,12,15) in milk (p<0.01). The addition of RPF increased milk unsaturated fatty acids (UFA) and monounsaturated fatty acids (MUFA) (P≤0.04). The PUFA in milk increased with RPRSO supplementation (p<0.01). Conclusion: Supplementation of RPRSO during early lactation can increase feed digestibility and the concentration of milk fat with PUFA (LA and ALA) in tropical dairy cows.
RESUMO
Huangjing is becoming a new generation of crop. Polygonatum kingianum var. grandifolium (XHJ) is a variant of P. kingianum (DHJ), and they are treated as Huangjing. Unlike other Polygonatum species, the rhizome bud of XHJ can germinate both in spring and autumn, which contributes to its high rhizome yield. However, the molecular mechanism of the autumn shooting of XHJ was still unknown. In the present study, cellular observation, comparative targeted metabolome of phytohormones, and transcriptome analysis between XHJ and DHJ in autumn were conducted. Interestingly, 'Diterpenoid biosynthesis' (ko00904) and 'Plant hormone signal transduction' (ko04075) were commonly enriched by differentially accumulated phytohormones (DAPs) and differentially expressed genes (DEGs) in all tissues, which indicated the high auxin content, low cytokinin (CTK) content, and low abscisic acid/gibberellin (ABA/GA) ratio might contribute to the XHJ rhizome buds' differentiation and germination in autumn. Moreover, according to the weighted gene co-expression network analysis (WCGNA), transcript factors (TFs) related to auxin, CTK, GA, and jasmonic acid (JA) metabolism were screened, such as AP2/ERFs, WRKY, and NAC, which deserve further research. In conclusion, we comprehensively illustrated the mechanism of XHJ natural autumn shooting through cytological, metabolic, and transcriptomic analysis, which improves our understanding of the high yield of XHJ rhizomes and the diversity of shooting mechanisms in Polygonatum to lay the foundation for the further development of the Huangjing industry.
RESUMO
Regulating the coupled relationship among water, nitrogen, and biochar is an effective strategy for increasing production and reducing emissions in greenhouse agriculture. However, a comprehensive evaluation model remains lacking. Toward this end, we aimed to evaluate the emission patterns of greenhouse gases and greenhouse tomato yield during the spring and autumn cultivation seasons as influenced by irrigation water use efficiency, nitrogen fertilizer partial productivity, and soil organic carbon (SOC). We applied three irrigation levels: 100% (W1), 80% (W2), and 60% (W3) of the reference crop evapotranspiration; three nitrogen application levels: 240, 192, and 144 kg ha-1, representing 100% (N1), 80% (N2), and 60% (N3) of the actual local application amount; and four biochar application gradients: B0, B1, B2, and B3 corresponding to 0, 30, 50, and 70 t ha-1, respectively. Interaction experiments were conducted based on the implementation the incomplete multifactorial design, using W1N1B0 as the control. The entropy weight method was used to calculate the main and sub-weights of the evaluation indicators. During the growing season, greenhouse gas emissions have a significant impact. The cumulative emissions of CO2, N2O, and CH4 from soil in spring are 24.4%, 42.18%, and 13.9% higher than those in autumn, respectively. Soil temperature was a key environmental factor influencing soil CO2 emissions, while soil moisture content and nitrogen fertilizer input efficiency were the main factors affecting soil N2O emissions, and the correlation between soil CH4 emissions and soil organic carbon content was most significant. Water-nitrogen-biochar interaction significantly affected yield and GHGI: adding biochar under the same water-nitrogen- and moderately deficient irrigation(W1) under the same nitrogen-biochar application modes increased yield and reduced GHGI. However, moderately reduced nitrogen application decreased(N2) both measures under the same water-biochar application mode. The VIKOR comprehensive evaluation method determined W2N2B2 as the most suitable water-nitrogen-biochar application mode for optimizing yield and GHGI. This study provides a theoretical basis for stable, low-carbon development in green-intensive agriculture.
RESUMO
Electrochemical reduction of nitrate to ammonia (NRA) offers a sustainable approach for NH3 production and NO3- removal but suffers from low NH3 yield rate (<1.20 mmol h-1 cm-2). We present bimetallic Cu11Ag3 nanotips with tailored local environment and tip-enhanced effects, which achieve an ultrahigh NH3 yield rate of 2.36 mmol h-1 cm-2 at a low applied potential of -0.33 V vs. RHE, a high Faradic efficiency (FE) of 98.8%, and long-term operation stability at 1800 mg-N L-1 NO3-, outperforming most of the recently reported catalysts. At a NO3- concentration as low as 15 mg-N L-1, it still delivers a high FE of 86.9% and an NH3 selectivity of 93.8%. Operando ATR-FTIR spectra, finite-element method, and DFT calculations reveal that the Cu11Ag3 exhibits reduced adsorption energy barrier of *N intermediates, favorable water dissociation for *H generation and high energy barrier for H2 formation, while its tip-enhanced enrichment promoting NO3- accumulation.
RESUMO
Phosphorus (P) fertilizer use efficiency in potato production is relatively low in semi-arid regions, wasting P resources and increasing environmental risks. Therefore, improving P use efficiency (PUE) is critical for sustainable potato production. The critical P dilution curve (CPDC) and P nutrition index (PNI) have proven to be robust diagnostic tools for assessing crop P status and aiding in improving P fertilizer management. Several potato CPDCs have been established, however, few studies have been conducted to establish a CPDC for potato (Solanum tuberosum L.) under ridge planting with drip irrigation, a planting pattern that has been increasingly adopted in semi-arid regions. In addition, the different CPDCs established using the conventional Jestus statistical model cannot discriminate the true variability across scenarios or have become linked to estimation errors. Therefore, the objectives of this study were to (1) establish a potato CPDC based on a Bayesian statistical method and (2) evaluate the relationship between potato yield and PNI. Three years of field experiments with five levels of P2O5 application (0, 80, 160, 240, 320 kg ha-1) were conducted in Inner Mongolia, China. No significant differences were found between CPDCs across the year × site for the assessed scenarios, and thus, a generic CPDC for potatoes in the region was derived as Pc = 0.616 DM-0.296, and it can be used to calculate the PNI. Further analysis showed that at each growth stage, the PNI exhibits a significant plateauing linear relationship with relative potato tuber yield. Thus, it provides a standard for diagnosing the P nutritional status in potatoes and lays a robust foundation for precise P recommendations in the region.
RESUMO
Introduction: Optimizing the dynamics of daylily (Hemerocallis citrina Baroni) growth under various planting patterns is critical for enhancing production efficiency. This study presents a comprehensive model to simulate daylily growth and optimize planting patterns to maximize bud yield while minimizing land resource utilization. Methods: The model incorporates source-sink relationship specific to daylilies into physiological process modeling, considering environmental factors such as micro-light and temperature climate, and CO2 concentration. Spatial factors, including planting pattern, row spacing, plant spacing, and plant density were examined for their impact on light interception, photosynthesis, and resource efficiency. Employing partial least square path modeling (PLS-PM), we analyzed the interrelations and causal relationships between planting configurations and physiological traits of daylily canopy leaves and buds. Through in situ simulations of 36 planting scenarios, we identified an optimal configuration (Scenario ID5) with a density of 83,000 plants·ha-1, row spacing of 0.8 m, and equidistant planting with a plant spacing of 0.15 m. Results and discussion: Our research findings indicate that increased Wide+Narrow row spacing can enhance yield to a certain extent. Although planting patterns influence daylily yield, their overall impact is relatively minor, and there is no clear pattern regarding the impact of plant spacing on individual plant yield. This modeling approach provides valuable insights into daylily plant growth dynamics and planting patterns optimization, offering practical guidance for both farmers and policymakers to enhance daylily productivity while minimizing land use.
RESUMO
Originating in South America, wheat blast disease has spread to both Asia and Africa and is considered a significant threat to food security. Bangladesh experienced the first outbreak of wheat blast outside of the Americas in 2016. Shortly thereafter, the blast-resistant variety BARI Gom 33 was released. Seeds of this variety are however not as widely available as required, although the disease threat remains. While varietal mixtures have been shown to mitigate some symptoms and yield losses associated with other fungal diseases in wheat, there is a complete research gap on this topic as it pertains to wheat blast. As such, we evaluated the potential of using BARI Gom 33 as a component of a variety mixture under high disease pressure in Bangladesh. During three cropping seasons, blast symptoms and yield were determined in a field experiment for the highly blast-susceptible variety BARI Gom 26, the moderately susceptible BARI Gom 30, the resistant BARI Gom 33, and seven mixture combinations of the three varieties using artificial inoculation to increase disease pressure. In addition to wheat blast, Bipolaris leaf blight (BpLB) symptoms were observed and evaluated. While yields of the susceptible varieties were severely affected by blast even after fungicide application, disease-inflicted yield loss without fungicide was only 15% for sole BARI Gom 33 and did not differ significantly from yield losses in BARI Gom 33 and BARI Gom 30 mixtures. Furthermore, in the mixture containing 67% BARI Gom 33 and 33% BARI Gom 30, blast incidence and severity were reduced by 25% and 16%, respectively, in comparison to weighted values in sole stands. Conversely, mixing varieties tended to increase the symptoms of BpLB. Under high wheat blast pressure, fungicide protection against blast was relatively weak, underscoring the importance of resistant varieties. Although variety mixtures did not increase yield, the yield advantage of BARI Gom 33 was maintained when its seeds were mixed with the less resistant BARI Gom 30. This study confirms recommendations that farmers should use BARI Gom 33 as a first line of defense against wheat blast in Bangladesh. Yet where farmers cannot access sufficient BARI Gom 33 seed for planting, our data suggest that agricultural extension services can recommend this variety with non-resistant cultivars as interim strategy without significant risk of yield loss.
RESUMO
Data from breeding, including phenotypic information, may improve the efficiency of breeding. Historical data from breeding trials accumulated over a long time are also useful. Here, by organizing data accumulated in the National Agriculture and Food Research Organization (NARO) rice breeding program, we developed a historical phenotype dataset, which includes 6052 records obtained for 667 varieties in yield trials in 1991-2018 at six NARO research stations. The best linear unbiased predictions (BLUPs) and principal component analysis (PCA) were used to determine the relationships with various factors, including the year of cultivar release, for 15 traits, including yield. Yield-related traits such as the number of grains per panicle, plant weight, grain yield, and thousand-grain weight increased significantly with time, whereas the number of panicles decreased significantly. Ripening time significantly increased, whereas the lodging degree and protein content of brown rice significantly decreased. These results suggest that panicle-weight-type high-yielding varieties with excellent lodging resistance have been selected. These trends differed slightly among breeding locations, indicating that the main breeding objectives may differ among them. PCA revealed a higher diversity of traits in newer varieties.
RESUMO
Pork primal weight and primal yield are important indicators for pig breeding, feeding management, commercial distribution systems, and meat processing. Here, we aimed to determine whether primal weight and primal yield could be predicted through non-destructive measurements of pork carcass traits. A total of 4397 carcasses (1958 gilts and 2439 barrows) from eight major meat processing centers were used, and the mean primal weight and primal yield were 56.0 kg and 73.9%, respectively. Significant sex differences were observed for all primal and carcass traits (P < 0.001), except for carcass weight. A maximum of 12 variables were examined, and primal weight was predicted with very high accuracy (R = 0.95, RMSE = 1.7, RPD = 3.0) using four variables. Primal yield was predicted with relatively good accuracy (R = 0.71, RMSE = 2.3, RPD = 1.4) using three variables, and these same variables were also effective for predicting primal weight. These prediction formulas were sufficiently accurate without accounting for the effect of sex. Overall, our results demonstrate that primal weight and primal yield can be accurately predicted using four variables, "carcass weight," "backfat thickness above M. gluteus medius," "spinous process length of 13th thoracic vertebra," and "length from 1st thoracic vertebra to backfat," without accounting for the effect of sex.
Assuntos
Peso Corporal , Animais , Masculino , Feminino , Suínos , Japão , Carne de Porco/análise , Caracteres Sexuais , Carne Vermelha/análise , Manipulação de Alimentos/métodos , Fatores Sexuais , Carne/análiseRESUMO
On the basis of comparisons between bovine and ovine genome mapping information, the aim of the study was to analyze the genetic diversity of selected DNA microsatellites from the bovine genome and to investigate their correlation with the average daily milk yield in Awassi sheep. 18 informative microsatellite markers were selected from the significant QTL regions affecting milk yield identified in the bovine genome in previous studies. The selected microsatellite markers were then amplified by PCR as reciprocal amplifications on the genomic DNA of Awassi sheep, with standard daily milk yield records. Thus, in this study, 18 microsatellite markers associated with milk yield in the bovine genome were examined for both determination of genetic polymorphism within the flock and the effects of marker loci on average daily milk yield in Awassi sheep. Allele frequencies of markers were determined based on the results of fragment analysis. The analysis of variance showed that the 123 bp allele at the marker locus BMS1341 on BTA2 significantly influenced the average daily milk yield of Ivesi sheep (P < 0.01). On the other hand, the BMS381 locus with a 115 bp allele on BTA2, the MCM140 locus with a 185 bp allele on BTA6, the BMS2721 locus with a 155 bp allele, the BM1237 locus with 174 and 180 bp alleles on BTA7, and finally, the BMS1967 locus with a 117 bp allele, the BM4208 locus with 176 and 182 bp alleles, and the INRA locus with a185 bp allele on BTA8 showed moderately significant effects on the average daily milk yield of Ivesi ewes (P < 0.05).
Assuntos
Repetições de Microssatélites , Leite , Animais , Feminino , Turquia , Leite/metabolismo , Leite/química , Carneiro Doméstico/genética , Carneiro Doméstico/fisiologia , Locos de Características Quantitativas , Lactação , Frequência do Gene , Polimorfismo Genético , Reação em Cadeia da Polimerase/veterinária , Ovinos/genética , Bovinos/genética , Bovinos/fisiologiaRESUMO
Soybean, the most important legume crop, plays a crucial role in food security and sustainable agriculture. Recently, Zhong et al. demonstrated that a moderate increase in nodule number in soybean improves field yield and protein content. Their findings propose a potential strategy to enhance yield performance in other legume crops.
RESUMO
Introduction: Long-term application of excessive nitrogen (N) not only leads to low N use efficiency (NUE) but also exacerbates the risk of environmental pollution due to N losses. Substituting partial chemical N with organic fertilizer (SP) is an environmentally friendly and sustainable fertilization practice. However, the appropriate rate of SP in rainfed maize cropping systems in semi-arid regions of China is unknown. Methods: Therefore, we conducted a field experiment between 2021 and 2022 in a semi-arid region of Northern China to investigate the effects of SP on maize growth, carbon and N metabolism (C/NM), and NUE. The following treatments were used in the experiment: no N application (CK), 100% chemical N (SP0, 210 kg N ha-1), and SP substituting 15% (SP1), 30% (SP2), 45% (SP3), and 60% (SP4) of the chemical N. The relationship between these indicators and grain yield (GY) was explored using the Mantel test and structural equation modeling (SEM). Results and discussion: The results found that the SP1 and SP2 treatments improved the assimilates production capacity of the canopy by increasing the leaf area index, total chlorophyll content, and net photosynthetic rate, improving dry matter accumulation (DMA) by 6.2%-10.6%, compared to the SP0 treatment. SP1 and SP2 treatments increased total soluble sugars, starch, free amino acids, and soluble protein contents in ear leaves via increasing the enzymatic reactions related to C/NM in ear leaves during the reproductive growth stage compared with SP0 treatment. The highest plant nitrogen uptake (PNU) and nitrogen recovery efficiency were obtained under the SP2 treatment, and the GY and nitrogen agronomic efficiency were higher than the SP0 treatment by 9.2% and 27.8%. However, SP3 and SP4 treatments reduced DMA and GY by inhibiting C/NM in ear leaves compared to SP0 treatment. Mantel test and SEM results revealed that SP treatments indirectly increased GY and PNU by directly positively regulating C/NM in maize ear leaves. Therefore, in the semi-arid regions, substituting 30% of the chemical N with SP could be considered. This fertilizer regime may avoid GY reduction and improve NUE. This study provides new insights into sustainable cultivation pathways for maize in semi-arid regions.
RESUMO
BACKGROUND: Endoscopic ultrasound-guided fine needle biopsy (FNB) is the gold standard in tissue acquisition of pancreatic ductal adenocarcinoma (PDAC). There is a paucity of evidence of the impact of needle type or size on the genetic yield and quality. METHODS: Patients 18 years and older with PDAC who underwent FNB were retrospectively identified from a single database from 2016 to 2021. Genetic quantity is measured in micrograms (µg) and quality defined by RNA or DNA integrity number (RIN and DIN). FNB needles examined were Acquire 22 gauge (Boston Scientific, Marlborough, MA, USA) and ProCore 22 and 20 gauges (Cook Medical, Bloomington, IN, USA). RESULTS: Two hundred seventy-seven patients were identified. ProCore 20G needle procured higher RNA quantity (4125.8µg, IQR: 2003.8, 5954.8, p = 0.012) compared to ProCore 22G (2050µg IQR: 966.4, 3181.6) and Acquire 22G (2310.6µg, IQR: 1439.3, 4312). Median DNA quantity was 3340.5µg (Acquire 22G), 2610.4µg (ProCore 22G) and 3499.7µg (ProCore 20G) (p = 0.763). Median DIN was 7.3 (Acquire 22G and ProCore 22G) and 7.4 (ProCore 20G) (p = 0.449). Median RIN was 3.0 (Acquire 22G and ProCore 22G) and 2.7 (ProCore 20G) (p = 0.886). CONCLUSION: ProCore 20G was associated with higher quantity of RNA. There were no differences in the quality acquired by different needles.
RESUMO
Eggplant (Solanum melongena) is moderately sensitive to salinity. Seed priming and exogenous supplementation are technique that enhances germination, growth, and crop yield by overcoming salt stress. Therefore, this study was designed to understand the role of seed priming and copper (Cu) supplementation in modulating salt tolerance in eggplant. When exposed to salt stress, eggplant seedlings showed significantly higher Na+ content, an increased Na/K ratio, prolonged mean germination time, higher relative water loss, more days to flower bud initiation and first flowering, along with decreased germination rate, growth factors, water content, photosynthetic pigments, ionic contents (K+, Ca2+, Mg2+), and yield. The results demonstrated that the germination rate, final germination percentage, germination index, germination energy, and seed vigor index significantly improved, while the mean germination time decreased in Cu-primed seeds. The results also revealed that Cu supplementations increased seedling traits, leaf water content, photosynthetic pigment contents, ionic contents (K+, Ca2+, and Mg2+), and yield while decreasing the contents of Na+, and Na/K ratio, mean germination time, relative water loss, days to flower bud initiation, and days to 1st flowering under salt stress. Germination of seeds, seedlings growth traits, plant water status, plant pigments, yield, and ionic contents with the NaCl and Cu treatments were found to substantially interact with each other according to both hierarchical clustering and PCA. Overall, Cu seed priming and exogenous supplementation emerged as a promising strategy to enhance salt tolerance and promote germination, growth, and yield by regulating water status, photosynthetic pigments, and ion homeostasis in eggplant seedlings under NaCl stress. These findings provide valuable insights into the mechanisms of Cu-mediated stress alleviation in eggplant, with implications for sustainable crop production in saline environments.
Assuntos
Cobre , Germinação , Homeostase , Fotossíntese , Estresse Salino , Solanum melongena , Água , Solanum melongena/fisiologia , Solanum melongena/crescimento & desenvolvimento , Solanum melongena/efeitos dos fármacos , Solanum melongena/metabolismo , Cobre/metabolismo , Fotossíntese/efeitos dos fármacos , Água/metabolismo , Germinação/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Plântula/efeitos dos fármacos , Íons , Tolerância ao SalRESUMO
The taproot of Glycyrrhiza uralensis is globally appreciated for its medicinal and commercial value and is one of the most popular medicinal plants. With the decline of wild G. uralensis resources, cultivated G. uralensis has become a key method to ensure supply. However, soil salinization poses challenges to G. uralensis cultivation and affects the yield and quality of it. In this study, the inhibitory effects of NaCl and Na2SO4 on yield and quality of G. uralensis were comprehensively evaluated in a three-year large-scale pot experiment, and the alleviating effects of supplementation with lanthanum nitrate (La (NO3)3) on G. uralensis were further evaluated under salt stress. The findings indicate that La (NO3)3 significantly strengthened the plant's salt tolerance by enhancing photosynthetic capacity, osmolyte accumulation, antioxidant defenses, and cellular balance of ions, which led to a substantial increase in root biomass and accumulation of major medicinal components. In comparison to the NaCl-stress treatment, the 0.75 M La (NO3)3 + NaCl treatment resulted in a 20% and 34% increase in taproot length and biomass, respectively, alongside a 52% and 43% rise in glycyrrhizic acid and glycyrrhizin content, respectively. Similar improvements were observed with 0.75 M La (NO3)3 + Na2SO4 treatment, which increased root length and biomass by 14% and 26%, respectively, and glycyrrhizic acid and glycyrrhizin content by 40% and 38%, respectively. The combined showed that application of La (NO3)3 not only significantly improved the salt resilience of G. uralensis, but also had a more pronounced alleviation of growth inhibition induced by NaCl compared to Na2SO4 stress except in the gas exchange parameters and root growth. This study provides a scientific basis for high-yield and high-quality cultivation of G. uralensis in saline soils and a new approach for other medicinal plants to improve their salt tolerance.