RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Dipteryx alata Vogel., popularly known as "baru", is a native species of Brazilian cerrado used by "Ribeirinhos" in the North Araguaia microregion. In the traditional medicine, maceration of barks or leaves infusion are used to treat back and muscle pain, osteoporosis and rheumatism. However, few studies have demonstrated the pharmacological effects of this species. AIM OF THE STUDY: The goal of this study was to perform phytochemicals studies of lyophilized infusion of D. alata leaves (LI-DA), as well as obtaining ethyl acetate fraction (EAF-DA) and hydromethanolic fraction (HMF-DA), and isolated flavonoids. The antioxidant of LI-DA, EAF-DA and HMF-DA, anti-inflammatory effects of LI-DA and quercetin-3-O-ß-glucoside-7-O-α-rhamnoside (DA-1) and quercetin-7-O-α-rhamnoside (DA-2) were performed while in silico tests were used for absorption, distribution, metabolism, excretion and toxicity predictions of DA-1 and DA-2. MATERIALS AND METHODS: LI-DA, EAF-DA and HMF-DA were evaluated in antioxidant assays (2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid - ABTS; 2,2-diphenyl-1-picrylhydrazyl - DPPH; hydrogen peroxide - H2O2; reducing power and oxidation of ß-carotene). The DA-1 and DA-2 were isolated from EAF-DA using chromatographic methods and characterized by Nuclear Magnetic Resonance (NMR) spectrometer. The Programs ProTox 3.0 and ADMETlab 2.0 were used for the prediction studies of DA-1 and DA-2. Mice received a single dose of LI-DA (3, 30, and 100 mg/kg), DA-1 (3 mg/kg) and DA-2 (3 mg/kg) and were subjected to inflammation induced by Complete Freund's Adjuvant (CFA) and in the zymosan-induced articular inflammation model. RESULTS: DA-1 and DA-2 have been identified for the first time in the leaves of D. alata. LI-DA, EAF-DA and HMF-DA demonstrated a high level of antioxidant activity as measured by ABTS (IC50 ≤ 5.62 µg/mL) and DPPH (IC50 ≤ 11.45 µg/mL). Oral administration of LI-DA (3, 30 and 100 mg/kg), DA-1 (3 mg/kg) and DA-2 (3 mg/kg) showed significantly reduced edema, cold and mechanical allodynia in the CFA-induced inflammation model (24 hours). LI-DA (3, 30, and 100 mg/kg) and DA-1 (3 mg/kg) reduced leukocytes migration into the joint cavity, mechanical allodynia, edema and NO production in mice (24 hours) in the zymosan-induced articular inflammation model. Additionally, DA-2 (3 mg/kg) reduced leukocyte migration and LI-DA (30 mg/kg) reduced protein exudation (24 hours) in zymosan model. DA-1 and DA-2 showed good oral bioavailability and low toxicity predicted by the ProTox model. CONCLUSION: This is the first chemical and biological study performed of D. alata infusion and two quercetin glycoside derivatives. The results indicated promising potential for the treatment of inflammation, pain, and rheumatism, supporting the traditional use of the infusion obtained from the leaves of D. alata.
RESUMO
Non-septic shock is a serious condition leading to multiple organ dysfunction. Although targeting the mammalian target of the rapamycin complex 1 (mTORC1) signaling pathway exerts potent anti-inflammatory activity, little is known about mTORC2's contribution to non-septic shock. Thus, our research aims to investigate mTORC2's contribution and associated changes of IκB kinase (IKKα)/inhibitor κB (IκB-α)/nuclear factor-ĸB (NF-κB) pathway on Zymosan (ZYM)-induced non-septic rat model using the novel mTORC2 selective inhibitor JR-AB2-011. Rats were given saline (4ml/kg), dimethylsulfoxide (DMSO) (4ml/kg), ZYM (500mg/kg), and (or) JR-AB2-011 (1mg/kg). Mean arterial pressure (MAP) and heart rate (HR) of rats were recorded. JR-AB2-011 reversed both ZYM-induced reduction in MAP and increase in HR. Protein expression and/or phosphorylation of rictor, protein kinase B (Akt), IκB-α, IKKα, NF-κB p65, inducible nitric oxide synthase (iNOS), nitrotyrosine, cyclooxygenase 2 (COX-2), tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, besides prostaglandin (PG) E2 levels were measured. The enhanced expression of the proteins mentioned above has been inhibited by JR-AB2-011. These data suggest mTORC2's promising role in ZYM-induced hypotension and systemic inflammation mediated via IKKα/IκB-α/NF-κB pathway.
RESUMO
Irritable bowel syndrome (IBS) is a gastrointestinal (GI) disease accompanied by changes in bowel habits without any specific cause. Gintonin is a newly isolated glycoprotein from ginseng that is a lysophosphatidic acid (LPA) receptor ligand. To investigate the efficacy and mechanisms of action of gintonin in IBS, we developed a zymosan-induced IBS murine model. In addition, electrophysiological experiments were conducted to confirm the relevance of various ion channels. In mice, gintonin restored colon length and weight to normal and decreased stool scores, whilst food intake remained constant. Colon mucosal thickness and inflammation-related tumor necrosis factor-α levels were decreased by gintonin, along with a reduction in pain-related behaviors. In addition, the fecal microbiota from gintonin-treated mice had relatively more Lactobacillaceae and Lachnospiraceae and less Bacteroidaceae than microbiota from the control mice. Moreover, gintonin inhibited transient receptor potential vanilloid (TRPV) 1 and TRPV4 associated with visceral hypersensitivity and voltage-gated Na+ 1.5 channels associated with GI function. These results suggest that gintonin may be one of the effective components in the treatment of IBS.
RESUMO
Zymosan is a ß-glucan-rich component derived from the cell walls of Saccharomyces cerevisiae extensively used in research for its potent immunomodulatory properties. It can prompt inflammatory responses such as peritonitis and arthritis, and is particularly used to study the immune response to fungal particles. Although the zymosan induced-release of the proinflammatory cytokine IL-1ß by macrophages is an essential mechanism for combating fungal infection and inducing inflammation, the exact processes leading to its release remain not well understood. In this study, we uncover the intracellular mechanisms involved in zymosan induced-release of active IL-1ß by peritoneal macrophages. Zymosan initiates pro-IL-1ß formation through TLR2/MyD88 activation; however, Dectin-1 activation only amplify the conversion of pro-IL-1ß into its active form. The conversion of inactive to active IL-1ß upon zymosan stimulation depends on the NLRP3, ASC, and caspase-1 driven by the decrease in intracellular potassium ions. Notably, zymosan-induced activation of caspase-1 does not require phagocytosis. Instead, zymosan induces a rapid drop in the intracellular ATP concentration, which occurs concomitant with caspase-1 and IL-1ß activation. Accordingly, disruption of glycolytic flux during zymosan stimulation promotes an additional reduction of intracellular ATP and concurrently amplifies the activation of caspase-1 and IL-1ß. These results reveal that fungal recognition by macrophages results in a metabolic dysfunction, leading to a decrease of intracellular ATP associated with inflammasome activation.
RESUMO
We previously reported that myeloperoxidase-deficient (MPO-/-) mice develop more severe neutrophil-rich lung inflammation than wild-type mice following intranasal Zymosan administration. Interestingly, we found that these mutant mice with severe lung inflammation also displayed pronounced neutrophilia and anemia, characterized by increased granulopoiesis and decreased erythropoiesis in the bone marrow, compared to wild-type mice. This condition was associated with higher concentrations of granulocyte-colony stimulating factor (G-CSF) in both the lungs and serum, a factor known to enhance granulopoiesis. Neutrophils accumulating in the lungs of MPO-/- mice produced greater amounts of G-CSF than those in wild-type mice, indicating that they are a significant source of G-CSF. In vitro experiments using signal transduction inhibitors and Western blot analysis revealed that MPO-/- neutrophils express higher levels of G-CSF mRNA in response to Zymosan, attributed to the upregulation of the IκB kinase/nuclear factor (NF)-κB pathway and the extracellular-signal-regulated kinase/NF-κB pathway. These findings highlight MPO as a critical regulator of granulopoiesis and erythropoiesis in inflamed tissues.
Assuntos
Anemia , Eritropoese , Fator Estimulador de Colônias de Granulócitos , Camundongos Knockout , Neutrófilos , Peroxidase , Pneumonia , Zimosan , Animais , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peroxidase/metabolismo , Anemia/etiologia , Pneumonia/etiologia , Pneumonia/metabolismo , Pneumonia/imunologia , Fator Estimulador de Colônias de Granulócitos/metabolismo , Transdução de Sinais , NF-kappa B/metabolismo , Granulócitos/metabolismo , Granulócitos/imunologia , Pulmão/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BLRESUMO
Pattern recognition receptors (PRRs) such as C-type lectin receptors (CLRs) and Toll-like receptors (TLRs) are used by hosts to recognize pathogen-associated molecular patterns (PAMPs) in microorganisms and to initiate innate immune responses. While PRRs exist across invertebrate and vertebrate species, the functional homology of many of these receptors is still unclear. In this study, we investigate the innate immune response of zebrafish larvae to zymosan, a ß-glucan-containing particle derived from fungal cell walls. Macrophages and neutrophils robustly respond to zymosan and are required for zymosan-induced activation of the NF-κB transcription factor. Full activation of NF-κB in response to zymosan depends on Card9/Syk and Myd88, conserved CLR and TLR adaptor proteins, respectively. Two putative CLRs, Clec4c and Sclra, are both required for maximal sensing of zymosan and NF-κB activation. Altogether, we identify conserved PRRs and PRR signaling pathways in larval zebrafish that promote recognition of fungal PAMPs. These results inform modeling of human fungal infections in zebrafish and increase our knowledge of the evolution and conservation of PRR pathways in vertebrates.
RESUMO
Objective: Rheumatoid arthritis causes inflammation, pain, and joint degradation, necessitating treatment with anti-inflammatory drugs and corticosteroids, posing various challenges. We aimed to evaluate the effects of photobiomodulation (PBM) at two different doses associated to platelet-rich plasma (PRP) in an in vivo model of induced acute arthritis in Wistar rats' knee. Methods: Eighty-four Wistar rats were assigned into seven groups, including animals treated with PBM and/or PRP. On day 0, arthritis was induced in sham and treated groups through the intra-articular injection of zymosan (200 µg). Twenty-four hours after induction, the PBM groups were treated with an AsGaAl laser, whereas the PRP-treated groups received intra-articular injections with a concentration of 8 × 105 platelets obtained from another four animals. After 3 days, the animals were euthanized, and the interleukin (IL)-6 and complement C3 gene and protein expression levels were analyzed. Statistical analysis was performed using the mean ± SD with analysis of variance and Tukey's posttest, with a significance level set at 5% (p < 0.05). Results: Synovial inflammation decreased in PBM-treated groups; however, PRP alone showed no significant difference. Gene expression analysis revealed a significant difference in IL-6 and C3 levels in the PBM and PBM+PRP-treated groups. Meanwhile, the PRP alone group exhibited significance for IL-6. Moreover, the PBM and PBM+PRP-treated groups showed a significant difference in C3 protein expression levels, whereas the PRP alone group showed no difference. Conclusion: The increase in cellular activity in the synovial membrane and the decrease protein expression levels are owing to the reduction in proinflammatory mediators following PBM therapy.
Assuntos
Artrite Reumatoide , Interleucina-6 , Terapia com Luz de Baixa Intensidade , Plasma Rico em Plaquetas , Ratos Wistar , Animais , Ratos , Feminino , Artrite Reumatoide/terapia , Artrite Reumatoide/radioterapia , Artrite Reumatoide/sangue , Interleucina-6/metabolismo , Interleucina-6/sangue , Artrite Experimental/terapia , Artrite Experimental/radioterapia , Modelos Animais de Doenças , Injeções Intra-Articulares , Complemento C3/metabolismoRESUMO
Deciphering the complex and redundant process of acute inflammation remains challenging. The failure of numerous clinical trials assessing anti-inflammation agents which had promising preclinical effects inevitably questions the validity of current animal models of inflammation. This study aimed to better understand the process of immune inflammatory response and to select more suitable models to evaluate the effect of potential anti-inflammatory drugs. Zymosan and λ-carrageenan are the most used representatives of particulate and soluble irritants that trigger acute inflammation in the air pouch inflammation model. When zymosan was used, the number of exudate cells first increased at 4 h-8 h, followed by a drop at 12 h-24 h. While, the changes in number of leukocytes in peripheral blood and proportion of neutrophils in bone marrow have the opposite trend. Meanwhile, neutrophils released neutrophil extracellular traps (NETs) to clean zymosan particles. In contrast, the cell migration response to carrageenan increased during 4 h to 24 h, no obvious NETs were observed, and the number of leukocytes in peripheral blood increased and the proportion of neutrophils in bone marrow decreased slightly. This study indicated that although both zymosan and carrageenan are sterile irritants, the characteristics of the inflammatory response induced by each other were different. In the acute phase of inflammation, zymosan-stimulated neutrophils were mobilized, recruited, and engulfed, and then died by NETs. Carrageenan stimulated the production of cytokines/chemokines by neutrophils or macrophages, but did not lead to an obvious death by releasing NETs.
RESUMO
BACKGROUND: Since the 1990s, evidence has accumulated that macrophages promote peripheral nerve regeneration and are required for enhancing regeneration in the conditioning lesion (CL) response. After a sciatic nerve injury, macrophages accumulate in the injury site, the nerve distal to that site, and the axotomized dorsal root ganglia (DRGs). In the peripheral nervous system, as in other tissues, the macrophage response is derived from both resident macrophages and recruited monocyte-derived macrophages (MDMs). Unresolved questions are: at which sites do macrophages enhance nerve regeneration, and is a particular population needed. METHODS: Ccr2 knock-out (KO) and Ccr2gfp/gfp knock-in/KO mice were used to prevent MDM recruitment. Using these strains in a sciatic CL paradigm, we examined the necessity of MDMs and residents for CL-enhanced regeneration in vivo and characterized injury-induced nerve inflammation. CL paradigm variants, including the addition of pharmacological macrophage depletion methods, tested the role of various macrophage populations in initiating or sustaining the CL response. In vivo regeneration, measured from bilateral proximal test lesions (TLs) after 2 d, and macrophages were quantified by immunofluorescent staining. RESULTS: Peripheral CL-enhanced regeneration was equivalent between crush and transection CLs and was sustained for 28 days in both Ccr2 KO and WT mice despite MDM depletion. Similarly, the central CL response measured in dorsal roots was unchanged in Ccr2 KO mice. Macrophages at both the TL and CL, but not between them, stained for the pro-regenerative marker, arginase 1. TL macrophages were primarily CCR2-dependent MDMs and nearly absent in Ccr2 KO and Ccr2gfp/gfp KO mice. However, there were only slightly fewer Arg1+ macrophages in CCR2 null CLs than controls due to resident macrophage compensation. Zymosan injection into an intact WT sciatic nerve recruited Arg1+ macrophages but did not enhance regeneration. Finally, clodronate injection into Ccr2gfp KO CLs dramatically reduced CL macrophages. Combined with the Ccr2gfp KO background, depleting MDMs and TL macrophages, and a transection CL, physically removing the distal nerve environment, nearly all macrophages in the nerve were removed, yet CL-enhanced regeneration was not impaired. CONCLUSIONS: Macrophages in the sciatic nerve are neither necessary nor sufficient to produce a CL response.
Assuntos
Macrófagos , Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Receptores CCR2 , Degeneração Walleriana , Animais , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Regeneração Nervosa/fisiologia , Degeneração Walleriana/patologia , Receptores CCR2/metabolismo , Receptores CCR2/genética , Receptores CCR2/deficiência , Traumatismos dos Nervos Periféricos/patologia , Traumatismos dos Nervos Periféricos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropatia Ciática/patologia , Axônios/patologia , Camundongos Transgênicos , Modelos Animais de Doenças , Nervo Isquiático/lesões , Nervo Isquiático/patologia , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismoRESUMO
Nitric oxide (NO) is gaseous bioactive molecule that is synthesized by NO synthase (NOS). Inducible NOS (iNOS) expression occurs in response to pathogenic challenges, resulting in the production of large amounts of NO. However, there is a lack of knowledge regarding neuronal NOS (nNOS) and endothelial NOS (eNOS) in birds during pathogenic challenge. Therefore, the present study was conducted to determine the influence of intraperitoneal (IP) injection of zymosan (cell wall component of yeast) and lipopolysaccharide (LPS, a cell wall component of gram-negative bacteria) on NOS expression in chicks (Gallus gallus). Furthermore, the effect of NOS inhibitors on the corresponding behavioral and physiological parameters was investigated. Zymosan and LPS injections induced iNOS mRNA expression in several organs. Zymosan had no effect on eNOS mRNA expression in the organs investigated, whereas LPS increased its expression in the pancreas. Zymosan and LPS decreased nNOS mRNA expression in the lung, heart, kidney, and pancreas. The decreased nNOS mRNA expression in pancreas was probably associated with the NO from iNOS provided that such effect was reproduced by IP injection of sodium nitroprusside, which is a NO donor. Furthermore, pancreatic nNOS mRNA expression decreased following subcutaneous injection of corticosterone. Furthermore, IP injections of a nonspecific NOS inhibitor, NG-nitro-L-arginine methyl ester, and an nNOS-specific inhibitor, 7-nitroindazole, resulted in the significant decreases in food intake, cloacal temperature, and feed passage via the digestive tract in chicks. Collectively, the current findings imply the decreased nNOS expression because of fungal and bacterial infections, which affects food intake, body temperature, and the digestive function in birds.
Assuntos
Galinhas , Lipopolissacarídeos , Óxido Nítrico Sintase Tipo I , Zimosan , Animais , Zimosan/farmacologia , Lipopolissacarídeos/farmacologia , Galinhas/imunologia , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Masculino , Indazóis/farmacologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismoRESUMO
Aeromonas salmonicida is one of the most harmful pathogens in finfish aquaculture worldwide. Immunostimulants such as ß-glucans are used to enhance the immunity of cultured fish. However, their effects on fish physiology are not completely understood. In the present work, we evaluated the effect of a single intraperitoneal (ip) injection of zymosan A on fish survival against A. salmonicida infection. A single administration of this compound protected fish against A. salmonicida challenge and reduce the bacterial load in the head kidney one week after its administration. Transcriptome analyses of head kidney samples revealed several molecular mechanisms involved in the protection conferred by zymosan A and their regulation by long noncoding RNAs. The transcriptome profile of turbot exposed only to zymosan A was practically unaltered one week after ip injection. However, the administration of this immunostimulant induced significant transcriptomic changes once the fish were in contact with the bacteria and increased the survival of the infected turbot. Our results suggest that the restraint of the infection-induced inflammatory response, the management of apoptotic cell death, cell plasticity and cellular processes involving cytoskeleton dynamics support the protective effects of zymosan A. All this information provides insights on the cellular and molecular mechanisms involved in the protective effects of this widely used immunostimulant.
Assuntos
Aeromonas salmonicida , Doenças dos Peixes , Linguados , Infecções por Bactérias Gram-Negativas , RNA Longo não Codificante , Animais , Zimosan , Aeromonas salmonicida/fisiologia , Inflamação , Perfilação da Expressão Gênica , Adjuvantes ImunológicosRESUMO
OBJECTIVE: Despite some knowledge gaps in scientific evidence, MgCl2 is largely used for pain relief in musculoskeletal diseases. Mg salts were shown to provide analgesia postoperatively in orthopedic surgery and low Mg levels were linked to arthritis development and severity. We determined the anti-inflammatory activity of MgCl2 in an acute arthritis model. METHODS: Mice received 0.1 mg/25µL Zymosan (Zy) or saline into the knees. Joint pain was evaluated using von Frey test; cell influx, and interleukin (IL)-1 level were assessed in joint lavage at 6 h. Synovia were excised for histopathology and analysis of immunoexpression of nuclear factor kappa B (NFκB) and tumor necrosis factor (TNF)-α. Groups (n = 6/group) received either 90 mg/kg MgCl2/100 µL or saline per os (systemic) or 500 µg/25 µL MgCl2 or saline intra-articularly (i.a.) 30 min prior to Zy. RESULTS: MgCl2 given either systemically or locally significantly reduced cell influx (p = 0.0012 and p = 0.0269, respectively), pain (p = 0.0005 and p = 0.0038, respectively), and intra-articular IL-1 level (p = 0.0391), as compared to saline. Systemic MgCl2 significantly decreased NFκB (p < 0.05) immmunoexpression, as compared to saline. CONCLUSION: MgCl2 given systemically or locally displayed anti-inflammatory activity in a severe acute arthritis model reducing cell influx, pain, and cytokine release. MgCl2 operates at least partially via inhibiting NFκB activation. This is the first in vivo demonstration that MgCl2 decreases cytokine release in arthritis, prompting reduction of inflammation and pain relief.
Assuntos
Artrite Experimental , Ratos , Humanos , Camundongos , Animais , Cloreto de Magnésio/uso terapêutico , Ratos Wistar , Artrite Experimental/tratamento farmacológico , Citocinas , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Fator de Necrose Tumoral alfa , Interleucina-1 , DorRESUMO
Zymosan is a ß-glucan isolated from Saccharomyces cerevisiae that could be employed for drug delivery. We synthesized zymosan nanoparticles and measured their structural and morphological properties using XRD, UV-Vis spectroscopy, TEM and AFM. The loading of doxorubicin (DOX) onto the nanoparticles was confirmed by FT-IR, and the DOX release was shown to be pH-dependent. The effect of these agents on C26 cell viability was evaluated by MTT tests and the expression of genes connected with the Wnt/ß-catenin pathway and apoptosis were analyzed by RT-qPCR and Western blotting. Treatments were able to suppress the proliferation of C26 cells, and the zymosan nanocarriers loaded with DOX enhanced the anti-proliferative effect of DOX in a synergistic manner. Zymosan nanoparticles were able to suppress the expression of cyclin D1, VEGF, ZEB1, and Twist mRNAs. Treatment groups upregulated the expression of caspase-8, while reducing the Bax/Bcl-2 ratio, thus promoting apoptosis. In conclusion, zymosan nanoparticles as DOX nanocarriers could provide a more targeted drug delivery through pH-responsiveness, and showed synergistic cytotoxicity by modifying Wnt/ß-catenin signaling and apoptosis.
Assuntos
Neoplasias Colorretais , Nanopartículas , Humanos , Doxorrubicina/química , beta Catenina/metabolismo , Zimosan , Via de Sinalização Wnt , Espectroscopia de Infravermelho com Transformada de Fourier , Apoptose , Nanopartículas/química , Neoplasias Colorretais/tratamento farmacológicoRESUMO
Abstract Objective Despite some knowledge gaps in scientific evidence, MgCl2 is largely used for pain relief in musculoskeletal diseases. Mg salts were shown to provide analgesia postoperatively in orthopedic surgery and low Mg levels were linked to arthritis development and severity. We determined the anti-inflammatory activity of MgCl2 in an acute arthritis model. Methods Mice received 0.1 mg/25μL Zymosan (Zy) or saline into the knees. Joint pain was evaluated using von Frey test; cell influx, and interleukin (IL)-1 level were assessed in joint lavage at 6 h. Synovia were excised for histopathology and analysis of immunoexpression of nuclear factor kappa B (NFκB) and tumor necrosis factor (TNF)-α. Groups (n = 6/group) received either 90 mg/kg MgCl2/100 μL or saline per os (systemic) or 500 μg/25 μL MgCl2 or saline intra-articularly (i.a.) 30 min prior to Zy. Results MgCl2 given either systemically or locally significantly reduced cell influx (p = 0.0012 and p = 0.0269, respectively), pain (p = 0.0005 and p = 0.0038, respectively), and intra-articular IL-1 level (p = 0.0391), as compared to saline. Systemic MgCl2 significantly decreased NFκB (p < 0.05) immmunoexpression, as compared to saline. Conclusion MgCl2 given systemically or locally displayed anti-inflammatory activity in a severe acute arthritis model reducing cell influx, pain, and cytokine release. MgCl2 operates at least partially via inhibiting NFκB activation. This is the first in vivo demonstration that MgCl2 decreases cytokine release in arthritis, prompting reduction of inflammation and pain relief.
RESUMO
Purpose: Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic pain disorder. Patients with IC/BPS often experience "flares" of symptom exacerbation throughout their lifetime, initiated by triggers, such as urinary tract infections. This study sought to determine whether neonatal bladder inflammation (NBI) alters the sensitivity of adult rat bladders to microbial antigens. Methods: Female NBI rats received intravesical zymosan treatments on postnatal days P14-P16 while anesthetized; Neonatal Control Treatment (NCT) rats were anesthetized. In adults, bladder and spinal cord Toll-like receptor type 2 and 4 (TLR2, TLR4) contents were determined using ELISAs. Other rats were injected intravesically with lipopolysaccharide (LPS; mimics an E. coli infection; 25, 50, 100, or 200 µg/mL) or Zymosan (mimics yeast infection; 0.01, 0.1, 1, and 10 mg/mL) solutions on the following day. Visceromotor responses (VMRs; abdominal contractions) to graded urinary bladder distention (UBD, 10-60 mm Hg, 20s) were quantified as abdominal electromyograms (EMGs). Results: Bladder TLR2 and TLR4 protein levels increased in NBI rats. These rats displayed statistically significant, dose-dependent, robustly augmented VMRs following all but the lowest doses of LPS and Zymosan tested, when compared with their adult treatment control groups. The NCT groups showed minimal responses to LPS in adults and minimally increased EMG measurements following the highest dose of Zymosan. Conclusion: The microbial antigens LPS and Zymosan augmented nociceptive VMRs to UBD in rats that experienced NBI but had little effect on NCT rats at the doses tested. The greater content of bladder TLR2 and TLR4 proteins in the NBI group was consistent with increased responsiveness to their agonists, Zymosan and LPS, respectively. Given that patients with IC/BPS have a higher incidence of childhood urinary tract infections, this increased responsiveness to microbial antigens may explain the flares in symptoms following "subclinical" tract infections.
RESUMO
The pathogen-associated molecular patterns (PAMPs) lipopolysaccharide (LPS) and zymosan, derived from gram-negative bacteria and fungi, respectively, activate the innate immune system and cause injury to multiple organs, including the liver and intestine, in mammals. In rodents, PAMP-induced injury has been demonstrated to be potentiated by co-administration of D-galactosamine (D-GalN) in rodents. However, whether PAMPs and D-GalN collectively cause organ injury in birds remains unclear. The present study aimed to measure the effects of intraperitoneal injection of D-GalN with LPS or zymosan on parameters related to hepatic injury in chicks (Gallus gallus). Plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) activities were not affected by intraperitoneal injection of D-GalN alone. Although these activities were not affected by LPS injection alone, they were increased by combining LPS with D-GalN. In contrast, plasma AST, ALT, and LDH activities were not affected by zymosan, both alone and with D-GalN. The expression of mRNAs for interleukin-6 (IL-6) and inducible nitric oxide synthase (iNOS) in the liver was significantly increased by the combination of LPS and D-GalN. In contrast, combining zymosan with D-GalN significantly increased iNOS mRNA expression, irrespective of hepatic injury. These results suggest that IL-6 may be the cause and/or result of hepatic injury in chicks. Additionally, chicks are tolerant to the hepatic effects of D-GalN, LPS, or zymosan alone.
RESUMO
Fucans from marine algae have been the object of many studies that demonstrated a broad spectrum of biological activities, including anti-inflammatory effects. The aim of this study was to verify the protective effects of a fucan extracted from the brown algae Spatoglossum schröederi in animals submitted to a generalized inflammation model induced by zymosan (ZIGI). BALB/c mice were first submitted to zymosan-induced peritonitis to evaluate the treatment dose capable of inhibiting the induced cellular migration in a simple model of inflammation. Mice were treated by the intravenous route with three doses (20, 10, and 5 mg/kg) of our fucan and, 1 h later, were inoculated with an intraperitoneal dose of zymosan (40 mg/kg). Peritoneal exudate was collected 24 h later for the evaluation of leukocyte migration. Doses of the fucan of Spatoglossum schröederi at 20 and 10 mg/kg reduced peritoneal cellular migration and were selected to perform ZIGI experiments. In the ZIGI model, treatment was administered 1 h before and 6 h after the zymosan inoculation (500 mg/kg). Treatments and challenges were administered via intravenous and intraperitoneal routes, respectively. Systemic toxicity was assessed 6 h after inoculation, based on three clinical signs (bristly hair, prostration, and diarrhea). The peritoneal exudate was collected to assess cellular migration and IL-6 levels, while blood samples were collected to determine IL-6, ALT, and AST levels. Liver tissue was collected for histopathological analysis. In another experimental series, weight loss was evaluated for 15 days after zymosan inoculation and fucan treatment. The fucan treatment did not present any effect on ZIGI systemic toxicity; however, a fucan dose of 20 mg/kg was capable of reducing the weight loss in treated mice. The treatment with both doses also reduced the cellular migration and reduced IL-6 levels in peritoneal exudate and serum in doses of 20 and 10 mg/kg, respectively. They also presented a protective effect in the liver, with a reduction in hepatic transaminase levels in both doses of treatment and attenuated histological damage in the liver at a dose of 10 mg/kg. Fucan from S. schröederi presented a promising pharmacological activity upon the murine model of ZIGI, with potential anti-inflammatory and hepatic protective effects, and should be the target of profound and elucidative studies.
Assuntos
Peritonite , Phaeophyceae , Camundongos , Animais , Zimosan/toxicidade , Interleucina-6 , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Peritonite/induzido quimicamente , Peritonite/tratamento farmacológico , Anti-Inflamatórios/efeitos adversos , Ascite , Redução de PesoRESUMO
Chronic inflammation and oxidative stress play a pivotal role in the pathophysiology of most challenging illnesses, including cancer, Alzheimer's, cardiovascular and autoimmune diseases. The present study aimed to investigate the anti-inflammatory potential of a new sulfadimethoxine derivative N-(4-(N-(2,6-dimethoxypyrimidin-4-yl) sulfamoyl) phenyl) dodecanamide (MHH-II-32). The compound was characterised by applying 1H-, 13C-NMR, EI-MS and HRFAB-MS spectroscopic techniques. The compound inhibited zymosan-induced oxidative bursts from whole blood phagocytes and isolated polymorphonuclear cells with an IC50 value of (2.5 ± 0.4 and 3.4 ± 0.3 µg/mL), respectively. Furthermore, the inhibition of nitric oxide with an IC50 (3.6 ± 2.2 µg/mL) from lipopolysaccharide-induced J774.2 macrophages indicates its in vitro anti-inflammatory efficacy. The compound did not show toxicity towards normal fibroblast cells. The observational findings, gross anatomical analysis of visceral organs and serological tests revealed the non-toxicity of the compound at the highest tested intraperitoneal (IP) dose of 100 mg/kg in acute toxicological studies in Balb/c mice. The compound treatment (100 mg/kg) (SC) significantly (P < 0.001) downregulated the mRNA expression of inflammatory markers TNF-α, IL-1ß, IL-2, IL-13, and NF-κB, which were elevated in zymosan-induced generalised inflammation (IP) in Balb/c mice while upregulated the expression of anti-inflammatory cytokine IL-10, which was reduced in zymosan-treated mice. No suppressive effect was observed at the dose of 25 mg/kg. Ibuprofen was taken as a standard drug. The results revealed that the new acyl derivative of sulfadimethoxine has an immunomodulatory effect against generalised inflammatory response with non-toxicity both in vitro and in vivo, and has therapeutic potential for various chronic inflammatory illnesses.
Assuntos
Explosão Respiratória , Sulfadimetoxina , Animais , Camundongos , Zimosan/farmacologia , Sulfadimetoxina/efeitos adversos , Sulfadimetoxina/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Anti-Inflamatórios/uso terapêutico , Citocinas/metabolismo , NF-kappa B/metabolismo , Fagócitos/metabolismo , Modelos Animais de Doenças , Óxido Nítrico/metabolismo , Lipopolissacarídeos/farmacologiaRESUMO
Retrotransposon Gag-like (RTL) genes play a variety of essential and important roles in the eutherian placenta and brain. It has recently been demonstrated that RTL5 and RTL6 (also known as sushi-ichi retrotransposon homolog 8 (SIRH8) and SIRH3) are microglial genes that play important roles in the brain's innate immunity against viruses and bacteria through their removal of double-stranded RNA and lipopolysaccharide, respectively. In this work, we addressed the function of RTL9 (also known as SIRH10). Using knock-in mice that produce RTL9-mCherry fusion protein, we examined RTL9 expression in the brain and its reaction to fungal zymosan. Here, we demonstrate that RTL9 plays an important role, degrading zymosan in the brain. The RTL9 protein is localized in the microglial lysosomes where incorporated zymosan is digested. Furthermore, in Rtl9 knockout mice expressing RTL9ΔC protein lacking the C-terminus retroviral GAG-like region, the zymosan degrading activity was lost. Thus, RTL9 is essentially engaged in this reaction, presumably via its GAG-like region. Together with our previous study, this result highlights the importance of three retrovirus-derived microglial RTL genes as eutherian-specific constituents of the current brain innate immune system: RTL9, RTL5 and RTL6, responding to fungi, viruses and bacteria, respectively.
Assuntos
Antifúngicos , Eutérios , Gravidez , Feminino , Camundongos , Animais , Zimosan , Eutérios/genética , Retroviridae/genética , Retroelementos/genética , Imunidade Inata , Encéfalo , Camundongos KnockoutRESUMO
Introduction: Mutations in the Leucine Rich Repeat Kinase 2 (LRRK2) gene cause autosomal dominant Parkinson's disease (PD) with the most common causative mutation being the LRRK2 p.G2019S within the kinase domain. LRRK2 protein is highly expressed in the human brain and also in the periphery, and high expression of dominant PD genes in immune cells suggest involvement of microglia and macrophages in inflammation related to PD. LRRK2 is known to respond to extracellular signalling including TLR4 resulting in alterations in gene expression, with the response to TLR2 signalling through zymosan being less known. Methods: Here, we investigated the effects of zymosan, a TLR2 agonist and the potent and specific LRRK2 kinase inhibitor MLi-2 on gene expression in microglia from LRRK2-WT and LRRK2 p.G2019S knock-in mice by RNA-Sequencing analysis. Results: We observed both overlapping and distinct zymosan and MLi-2 mediated gene expression profiles in microglia. At least two candidate Genome-Wide Association (GWAS) hits for PD, CathepsinB (Ctsb) and Glycoprotein-nmb (Gpnmb), were notably downregulated by zymosan treatment. Genes involved in inflammatory response and nervous system development were up and downregulated respectively with zymosan treatment while MLi-2 treatment particularly exhibited upregulated genes for ion transmembrane transport regulation. Furthermore, we observed the top twenty most significantly differentially expressed genes in LRRK2 p.G2019S microglia show enriched biological processes in iron transport and response to oxidative stress. Discussion: Overall, these results suggest that microglial LRRK2 may contribute to PD pathogenesis through altered inflammatory pathways. Our findings should encourage future investigations of these putative avenues in the context of PD pathogenesis.