Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.968
Filtrar
1.
Braz. J. Biol. ; 83: 1-9, 2023. mapas, ilus, tab, graf
Artigo em Inglês | VETINDEX, VETINDEX | ID: vti-765447

RESUMO

The present study was conducted to evaluate the diversity, distribution (C) and relative abundance (RA) of the mosquito fauna (Diptera: Culicidae) of Malakand and Dir Lower, Pakistan. Collection of specimens (n = 1087) was made during September 2018 to July 2019 at six different habitats including freshwater bodies, rice fields, animal sheds, indoors, drains and sewage waters. Specimens were collected through light traps, pyrethrum spray, aspirators and nets and subsequently killed, preserved and then arranged in entomological boxes for identification. Three genera were identified namely Culex, Anopheles and Aedes. A total of fourteen species were identified namely: Cx. quinquefasciatus (Say, 1823), An. stephensi (Liston, 1901), Cx. tritaeniorhynchus (Giles, 1901), Ae. vittatus (Bigot, 1861), An. maculatus (Theobald, 1901), An. fluviatilis (James, 1902), Cx. vishnui (Theobald, 1901), Ae. aegypti (Linnaeus, 1762) An. subpictus (Grassi, 1899), An. dthali (Patton, 1905), An. culicifascies (Giles, 1901), An. pallidus (Theobald, 1901), Ae. albopictus (Skuse, 1894) and An. annularis (van der Wulp, 1884). Cx. quinquefasciatus was found constantly distributed in the study area with RA = 16.5% and C = 100%. An. annularis was found as a satellite species, sporadically distributed in the study area having RA = 0.9% and C = 17%. Diversity indices of mosquitoes in the studied habitats were found as, Shannon-Wiener Index (2.415), Simpson Index (9.919), Fisher's Index (2.269) and Margalef's Index (1.859). A statistically significant difference was recorded in mosquito diversity in the six habitats (Kruskal-Wallis, chi-squared, H = 17.5, df = 5, P = 0.003 at α = 0.05). The present study encompasses [...].(AU)


O presente estudo foi conduzido para avaliar a diversidade, distribuição (C) e abundância relativa (RA) da fauna de mosquitos (Diptera: Culicidae) de Malakand e Dir Lower, Paquistão. A coleta de espécimes (n = 1087) foi feita durante o período de setembro de 2018 a julho de 2019 em seis habitats diferentes, incluindo corpos dágua, campos de arroz, galpões de animais, ambientes internos, ralos e águas residuais. Os espécimes foram coletados por meio de armadilhas luminosas, spray de piretro, aspiradores e redes e posteriormente mortos, preservados e depois dispostos em caixas entomológicas para identificação. Três gêneros foram identificados, nomeadamente Culex, Anopheles e Aedes. Um total de 14 espécies foi identificado, a saber: Cx. quinquefasciatus (Say, 1823), An. stephensi (Liston, 1901), Cx. tritaeniorhynchus (Giles, 1901), Ae. vittatus (Bigot, 1861), An. maculatus (Theobald, 1901), An. fluviatilis (James, 1902), Cx. vishnui (Theobald, 1901), Ae. aegypti (Linnaeus, 1762), An. subpictus (Grassi, 1899), An. dthali (Patton, 1905), An. culicifascies (Giles, 1901), An. pallidus (Theobald, 1901), Ae. albopictus (Skuse, 1894) e An. annularis (Van der Wulp, 1884). Cx. quinquefasciatus foi encontrado constantemente distribuído na área de estudo com AR = 16,5% e C = 100%. A. annularis foi encontrada como espécie satélite, distribuída esporadicamente na área de estudo com RA = 0,9% e C = 17%. Os índices de diversidade de mosquitos nos habitats estudados foram encontrados como índice de Shannon-Wiener (2,415), índice de Simpson (9,919), índice de Fisher (2,269) e índice de Margalef (1,859). Uma diferença estatisticamente significativa foi registrada na diversidade de mosquitos nos seis habitats (Kruskal-Wallis, qui-quadrado, H = 17,5, df = 5, P = 0,003 em α = 0,05). O presente estudo abrange a fauna de mosquitos de Malakand, Paquistão, com respeito à diversidade, abundância relativa e distribuição em [...].(AU)


Assuntos
Animais , Culicidae , Biodiversidade , Aedes/classificação , Anopheles/classificação , Culex/classificação
2.
Braz. j. biol ; 83: e247374, 2023. tab, graf
Artigo em Inglês | MEDLINE, LILACS, VETINDEX | ID: biblio-1285623

RESUMO

Abstract The present study was conducted to evaluate the diversity, distribution (C) and relative abundance (RA) of the mosquito fauna (Diptera: Culicidae) of Malakand and Dir Lower, Pakistan. Collection of specimens (n = 1087) was made during September 2018 to July 2019 at six different habitats including freshwater bodies, rice fields, animal sheds, indoors, drains and sewage waters. Specimens were collected through light traps, pyrethrum spray, aspirators and nets and subsequently killed, preserved and then arranged in entomological boxes for identification. Three genera were identified namely Culex, Anopheles and Aedes. A total of fourteen species were identified namely: Cx. quinquefasciatus (Say, 1823), An. stephensi (Liston, 1901), Cx. tritaeniorhynchus (Giles, 1901), Ae. vittatus (Bigot, 1861), An. maculatus (Theobald, 1901), An. fluviatilis (James, 1902), Cx. vishnui (Theobald, 1901), Ae. aegypti (Linnaeus, 1762) An. subpictus (Grassi, 1899), An. dthali (Patton, 1905), An. culicifascies (Giles, 1901), An. pallidus (Theobald, 1901), Ae. albopictus (Skuse, 1894) and An. annularis (van der Wulp, 1884). Cx. quinquefasciatus was found constantly distributed in the study area with RA = 16.5% and C = 100%. An. annularis was found as a satellite species, sporadically distributed in the study area having RA = 0.9% and C = 17%. Diversity indices of mosquitoes in the studied habitats were found as, Shannon-Wiener Index (2.415), Simpson Index (9.919), Fisher's Index (2.269) and Margalef's Index (1.859). A statistically significant difference was recorded in mosquito diversity in the six habitats (Kruskal-Wallis, chi-squared, H = 17.5, df = 5, P = 0.003 at α = 0.05). The present study encompasses mosquito fauna of Malakand, Pakistan with respect to diversity, relative abundance and distribution in diverse habitats and all seasons of the year. This will assist scientists working in various fields related with epidemiology, medical and veterinary entomology, ecology and allied areas of biological sciences.


Resumo O presente estudo foi conduzido para avaliar a diversidade, distribuição (C) e abundância relativa (RA) da fauna de mosquitos (Diptera: Culicidae) de Malakand e Dir Lower, Paquistão. A coleta de espécimes (n = 1087) foi feita durante o período de setembro de 2018 a julho de 2019 em seis habitats diferentes, incluindo corpos d'água, campos de arroz, galpões de animais, ambientes internos, ralos e águas residuais. Os espécimes foram coletados por meio de armadilhas luminosas, spray de piretro, aspiradores e redes e posteriormente mortos, preservados e depois dispostos em caixas entomológicas para identificação. Três gêneros foram identificados, nomeadamente Culex, Anopheles e Aedes. Um total de 14 espécies foi identificado, a saber: Cx. quinquefasciatus (Say, 1823), An. stephensi (Liston, 1901), Cx. tritaeniorhynchus (Giles, 1901), Ae. vittatus (Bigot, 1861), An. maculatus (Theobald, 1901), An. fluviatilis (James, 1902), Cx. vishnui (Theobald, 1901), Ae. aegypti (Linnaeus, 1762), An. subpictus (Grassi, 1899), An. dthali (Patton, 1905), An. culicifascies (Giles, 1901), An. pallidus (Theobald, 1901), Ae. albopictus (Skuse, 1894) e An. annularis (Van der Wulp, 1884). Cx. quinquefasciatus foi encontrado constantemente distribuído na área de estudo com AR = 16,5% e C = 100%. A. annularis foi encontrada como espécie satélite, distribuída esporadicamente na área de estudo com RA = 0,9% e C = 17%. Os índices de diversidade de mosquitos nos habitats estudados foram encontrados como índice de Shannon-Wiener (2,415), índice de Simpson (9,919), índice de Fisher (2,269) e índice de Margalef (1,859). Uma diferença estatisticamente significativa foi registrada na diversidade de mosquitos nos seis habitats (Kruskal-Wallis, qui-quadrado, H = 17,5, df = 5, P = 0,003 em α = 0,05). O presente estudo abrange a fauna de mosquitos de Malakand, Paquistão, com respeito à diversidade, abundância relativa e distribuição em diversos habitats e em todas as estações do ano. Isso ajudará os cientistas que trabalham em vários campos relacionados com a epidemiologia, entomologia médica e veterinária, ecologia e áreas afins das ciências biológicas.


Assuntos
Animais , Culicidae , Paquistão , Estações do Ano , Ecossistema , Ecologia
3.
Public Health Rep ; : 333549221090263, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35532006

RESUMO

This case study examined current trends in the prevalence of vector-borne diseases and the impact of climate change on disease distribution. Our findings indicate that the dynamics of the Anopheles mosquito population in particular has changed dramatically in the past decade and now poses an increasing threat to human populations previously at low risk for malaria transmission. Given their geographic location and propensity for sustaining vector-borne disease outbreaks, southeastern states are particularly vulnerable to climate-induced changes in vector populations. We demonstrate the need to strengthen our hospital and laboratory infrastructure prior to further increases in the incidence of vector-borne diseases by discussing a case of uncomplicated malaria in a patient who arrived in one of our hospitals in Louisiana. This case exemplifies a delay in diagnosis and obtaining appropriate treatment in a timely manner, which suggests that our current health care infrastructure, especially in areas heavily affected by climate change, may not be adequately prepared to protect patients from vector-borne diseases. We conclude our discussion by examining current laboratory protocols in place with suggestions for future actions to combat this increasing threat to public health in the United States.

4.
Molecules ; 27(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35566029

RESUMO

Alteration of insect growth regulators by the action of inhibitors is becoming an attractive strategy to combat disease-transmitting insects. In the present study, we investigated the larvicidal effect of 1,2,3-triazolyl-pyrimidinone derivatives against the larvae of the mosquito Anopheles arabiensis, a vector of malaria. All compounds demonstrated insecticidal activity against mosquito larvae in a dose-dependent fashion. A preliminary study of the structure-activity relationship indicated that the electron-withdrawing substituent in the para position of the 4-phenyl-pyrimidinone moiety enhanced the molecules' potency. A docking study of these derivatives revealed favorable binding affinity for the sterol carrier protein-2 receptor, a protein present in the intestine of the mosquito larvae. Being effective insecticides against the malaria-transmitting Anopheles arabiensis, 1,2,3-triazole-based pyrimidinones represent a starting point to develop novel inhibitors of insect growth regulators.

5.
Ecohealth ; 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35553290

RESUMO

Several vector-borne pathogens of primates have potential for human spillover. An example is the simian malaria Plasmodium knowlesi which is now a major public health problem in Malaysia. Characterization of exposure to mosquito vectors is essential for assessment of the force of infection within wild simian populations, however few methods exist to do so. Here we demonstrate the use of thermal imaging and mosquito magnet independence traps (MMIT) to assess the abundance, diversity and infection rates in mosquitoes host seeking near long-tailed macaque (Macaca fasicularis) sleeping sites in the Lower Kinabatangan Wildlife Sanctuary, Malaysian Borneo. The primary Plasmodium knowlesi vector, Anopheles balabacensis, was trapped at higher abundance near sleeping sites than control trees. Although none of the An. balabacensis collected (n = 15) were positive for P. knowlesi by PCR screening, two were infected with another simian malaria Plasmodium inui. Analysis of macaque stools from sleeping sites confirmed a high prevalence of Plasmodium infection, suspected to be P. inui. Recently, natural transmission of P. inui has been detected in humans and An. cracens in Peninsular Malaysia. The presence of P. inui in An. balabacensis here and previously in human-biting collections highlight its potential for spillover from macaques to humans in Sabah. We advocate the use of MMITs for non-invasive sampling of mosquito vectors that host seek on wild simian populations.

6.
BMC Bioinformatics ; 23(1): 170, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35534830

RESUMO

BACKGROUND: Gene co-expression networks (GCNs) can be used to determine gene regulation and attribute gene function to biological processes. Different high throughput technologies, including one and two-channel microarrays and RNA-sequencing, allow evaluating thousands of gene expression data simultaneously, but these methodologies provide results that cannot be directly compared. Thus, it is complex to analyze co-expression relations between genes, especially when there are missing values arising for experimental reasons. Networks are a helpful tool for studying gene co-expression, where nodes represent genes and edges represent co-expression of pairs of genes. RESULTS: In this paper, we establish a method for constructing a gene co-expression network for the Anopheles gambiae transcriptome from 257 unique studies obtained with different methodologies and experimental designs. We introduce the sliding threshold approach to select node pairs with high Pearson correlation coefficients. The resulting network, which we name AgGCN1.0, is robust to random removal of conditions and has similar characteristics to small-world and scale-free networks. Analysis of network sub-graphs revealed that the core is largely comprised of genes that encode components of the mitochondrial respiratory chain and the ribosome, while different communities are enriched for genes involved in distinct biological processes. CONCLUSION: Analysis of the network reveals that both the architecture of the core sub-network and the network communities are based on gene function, supporting the power of the proposed method for GCN construction. Application of network science methodology reveals that the overall network structure is driven to maximize the integration of essential cellular functions, possibly allowing the flexibility to add novel functions.


Assuntos
Redes Reguladoras de Genes , Transcriptoma , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA
7.
Med Vet Entomol ; 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35521949

RESUMO

Constant assessment of insecticide resistance levels is mandatory to implement adequate malaria control tools, but little information is available on the annual dynamics of resistance. We, therefore, monitored variations in resistance in Anopheles gambiae s.l. over four seasons during 2 years in two localities of Yaoundé: urban Etoa-Meki and peri-urban Nkolondom. Mosquitoes were collected seasonally at larval stage and reared to adults for insecticide susceptibility tests and molecular analysis of resistance mechanisms. Anopheles coluzzii was found in Etoa-Meki and An. gambiae in Nkolondom. Low mortalities to pyrethroids were observed (permethrin <10%, deltamethrin <21%), and resistance extended to 5× and 10× diagnostic doses, revealing a marked increase compared to previous studies. A seasonal variation in resistance was observed with the highest levels within dry seasons in Etoa-Meki and rainy seasons in Nkolondom. The 1014F kdr allele shows a high frequency (0.9), associated with overexpression of metabolic genes (Cyp6M2, Cyp6P4, Cyp9K1, Cyp6Z1, and Cyp6Z2) varying significantly seasonally. This study reveals an escalation in resistance to pyrethroids in Yaoundé's malaria vectors with seasonal variations. An adequate choice of the implementation period of punctual vector control actions according to the resistance profile will help to potentiate the desired effect and thus improve its efficiency.

8.
Parasit Vectors ; 15(1): 160, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526068

RESUMO

BACKGROUND: Different trapping devices and attractants are used in the mosquito surveillance programs currently running in Europe. Most of these devices target vector species belonging to the genera Culex or Aedes, and no studies have yet evaluated the effectiveness of different trapping devices for the specific targeting of Anopheles mosquito species, which are potential vectors of malaria in Europe. This study aims to fill this gap in knowledge by comparing the performance of trapping methods that are commonly used in European mosquito surveillance programs for Culex and Aedes for the specific collection of adults of species of the Anopheles maculipennis complex. METHODS: The following combinations of traps and attractants were used: (i) BG-Sentinel 2 (BG trap) baited with a BG-Lure cartridge (BG + lure), (ii) BG trap baited with a BG-Lure cartridge and CO2 (BG + lure + CO2), (iii) Centers for Disease Control and Prevention-like trap (CDC trap) baited with CO2 (CDC + CO2), (iv) CDC trap used with light and baited with BG-Lure and CO2 (CDC light + lure + CO2). These combinations were compared in the field using a 4 × 4 Latin square study design. The trial was conducted in two sites in northeastern Italy in 2019. Anopheles species were identified morphologically and a sub-sample of An. maculipennis complex specimens were identified to species level by molecular analysis. RESULTS: Forty-eight collections were performed on 12 different trapping days at each site, and a total of 1721 An. maculipennis complex specimens were captured. The molecular analysis of a sub-sample comprising 254 specimens identified both Anopheles messeae/Anopheles daciae (n = 103) and Anopheles maculipennis sensu stricto (n = 8) at site 1, while at site 2 only An. messeae/An. daciae (n = 143) was found. The four trapping devices differed with respect to the number of An. messeae/An. daciae captured. More mosquitoes were caught by the BG trap when it was used with additional lures (i.e. BG + lure + CO2) than without the attractant, CO2 [ratioBG+lure vs BG+lure+CO2 = 0.206, 95% confidence interval (CI) 0.101-0.420, P < 0.0001], while no significant differences were observed between CDC + CO2 and CDC light + lure + CO2 (P = 0.321). The addition of CO2 to BG + lure increased the ability of this combination to capture An. messeae/An. daciae by a factor of 4.85, and it also trapped more mosquitoes of other, non-target species (Culex pipiens, ratioBG+lure vs BG+lure+CO2 = 0.119, 95% CI 0.056-0.250, P < 0.0001; Ochlerotatus caspius, ratioBG+lure vs BG+lure+CO2 = 0.035, 95% CI 0.015-0.080, P < 0.0001). CONCLUSIONS: Our results show that both the BG-Sentinel and CDC trap can be used to effectively sample An. messeae/An. daciae, but that the combination of the BG-Sentinel trap with the BG-Lure and CO2 was the most effective means of achieving this. BG + lure + CO2 is considered the best combination for the routine monitoring of host-seeking An. maculipennis complex species such as An. messeae/An. daciae. The BG-Sentinel and CDC traps have value as alternative methods to human landing catches and manual aspiration for the standardized monitoring of Anopheles species in Europe.


Assuntos
Aedes , Anopheles , Culex , Malária , Animais , Dióxido de Carbono , Centers for Disease Control and Prevention, U.S. , Europa (Continente) , Humanos , Malária/prevenção & controle , Controle de Mosquitos/métodos , Mosquitos Vetores , Estados Unidos
9.
Parasit Vectors ; 15(1): 163, 2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35527275

RESUMO

BACKGROUND: Malaria remains one of the most devastating diseases globally, and the control of mosquitoes as the vector is mainly dependent on chemical insecticides. Elevated temperatures associated with future warmer climates could affect mosquitoes' metabolic enzyme expression and increase insecticide resistance, making vector control difficult. Understanding how mosquito rearing temperatures influence their susceptibility to insecticide and expression of metabolic enzymes could aid in the development of novel tools and strategies to control mosquitoes in a future warmer climate. This study evaluated the effects of temperature on the susceptibility of Anopheles gambiae sensu lato (s.l.) mosquitoes to pyrethroids and their expression of metabolic enzymes. METHODS: Anopheles gambiae s.l. eggs obtained from laboratory-established colonies were reared under eight temperature regimes (25, 28, 30, 32, 34, 36, 38, and 40 °C). Upon adult emergence, 3- to 5-day-old female non-blood-fed mosquitoes were used for susceptibility tests following the World Health Organization (WHO) bioassay protocol. Batches of 20-25 mosquitoes from each temperature regime (25-34 °C) were exposed to two pyrethroid insecticides (0.75% permethrin and 0.05% deltamethrin). In addition, the levels of four metabolic enzymes (α-esterase, ß-esterase, glutathione S-transferase [GST], and mixed-function oxidase [MFO]) were examined in mosquitoes that were not exposed and those that were exposed to pyrethroids. RESULTS: Mortality in An. gambiae s.l. mosquitoes exposed to deltamethrin and permethrin decreased at temperatures above 28 °C. In addition, mosquitoes reared at higher temperatures were more resistant and had more elevated enzyme levels than those raised at low temperatures. Overall, mosquitoes that survived after being exposed to pyrethroids had higher levels of metabolic enzymes than those that were not exposed to pyrethroids. CONCLUSIONS: This study provides evidence that elevated temperatures decreased An. gambiae s.l. mosquitoes' susceptibility to pyrethroids and increased the expression of metabolic enzymes. This evidence suggests that elevated temperatures projected in a future warmer climate could increase mosquitoes' resistance to insecticides and complicate malaria vector control measures. This study therefore provides vital information, and suggests useful areas of future research, on the effects of temperature variability on mosquitoes that could guide vector control measures in a future warmer climate.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Esterases , Feminino , Resistência a Inseticidas , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Mosquitos Vetores , Permetrina/farmacologia , Piretrinas/farmacologia , Temperatura
10.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 34(2): 117-119, 2022 Apr 11.
Artigo em Chinês | MEDLINE | ID: mdl-35537831

RESUMO

Malaria caused a heavy disease, economic and social burdens in China. Following 70-year concerted efforts, China has been awarded a malaria-free certification by the WHO on June 2021. This paper summarizes the control strategies of Anopheles vectors from malaria control to post-elimination stages in China, emphasizes the risk of imported malaria cases caused re-transmission and the challenges of Anopheles control after malaria elimination in China. Sustainable and precise vector control is still required in China during the post-elimination stage to consolidate malaria elimination achievements in the country. In addition, China's innovative vector control strategies, technologies and experiences will contribute to global malaria control and elimination programs.


Assuntos
Anopheles , Malária , Animais , China/epidemiologia , Malária/epidemiologia , Malária/prevenção & controle , Mosquitos Vetores
11.
Infect Dis Poverty ; 11(1): 54, 2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562786

RESUMO

BACKGROUND: Vector control is an important approach to preventing and controlling malaria. From the malaria epidemic to malaria elimination in China, vector control has played an essential and irreplaceable role in the historical process. This review systematically summarizes the evolution, adjustment, and optimization of vector control strategy towards elimination and discusses the challenges ahead. MAIN TEXT: This review first summarizes the evolution of vector control strategies during different stages of malaria epidemic, control, elimination, and post-elimination in China. We then distill the vector control experience and lessons in different stages. We discuss the current and future challenges and propose future research directions and developments for novel malaria vector control strategies. RESULTS: Vector control has played an invaluable role in achieving malaria elimination. China adopted different prevention and control measures in response to the different malaria-endemic situations and vector distributions. Firstly, baseline surveys were initiated to establish the entomological data and helped clarify the prevention priorities and targets. Secondly, targeted and adjusted vector control strategies were conducted in various regions according to the local epidemic characteristics and different vector species. Thirdly, scientific research facilitated efficient vector-control strategies. In addition, the overall economic and social development have promoted environmental improvement, personal protection, and health care. Prediction of the vector distribution was integrated into risk assessment strategies, allowing for sustaining achievements in risk areas. CONCLUSIONS: The tailored and adapted vector control strategies have played a critical role in China's malaria prevention, control, and elimination. Achievements and lessons learned on vector control from this progress would provide a practical reference in coping with the challenges and potential barriers other countries face in the global effort to eliminate malaria.

12.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35563020

RESUMO

Recent discoveries of reversible N6-methyladenosine (m6A) methylation on messenger RNA (mRNA) and mapping of m6A methylomes in many species have revealed potential regulatory functions of this RNA modification by m6A players-writers, readers, and erasers. Here, we first profile transcriptome-wide m6A in female and male Anopheles sinensis and reveal that m6A is also a highly conserved modification of mRNA in mosquitoes. Distinct from mammals and yeast but similar to Arabidopsis thaliana, m6A in An. sinensis is enriched not only around the stop codon and within 3'-untranslated regions but also around the start codon and 5'-UTR. Gene ontology analysis indicates the unique distribution pattern of m6A in An. sinensis is associated with mosquito sex-specific pathways such as tRNA wobble uridine modification and phospholipid-binding in females, and peptidoglycan catabolic process, exosome and signal recognition particle, endoplasmic reticulum targeting, and RNA helicase activity in males. The positive correlation between m6A deposition and mRNA abundance indicates that m6A can play a role in regulating gene expression in mosquitoes. Furthermore, many spermatogenesis-associated genes, especially those related to mature sperm flagellum formation, are positively modulated by m6A methylation. A transcriptional regulatory network of m6A in An. sinensis is first profiled in the present study, especially in spermatogenesis, which may provide a new clue for the control of this disease-transmitting vector.

13.
Proc Natl Acad Sci U S A ; 119(21): e2104282119, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35576470

RESUMO

SignificanceTransmission of malarial parasites occurs via the bites of Anopheles mosquitoes, whose blood-feeding behavior modulates the risk of infection. In many malaria endemic regions, eradication strategies rely on reducing transmission by targeting nocturnal blood-feeding Anopheles with insecticidal nets. However, a proportion of mosquitoes may naturally feed when humans are not protected by nets, setting a ceiling to the efficacy of massive net-based interventions. In Bangui, Central African Republic, 20 to 30% of daily exposure to indoor bites occurs during daytime, and this fraction may correspond to mosquitoes escaping exposure to current vector control measures. Knowledge about the daily rhythmicity of mosquito biting is therefore crucial to adjust vector control tactics to protect people at places where they spend daytime.

14.
Med Vet Entomol ; 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35579271

RESUMO

Understanding the environmental factors affecting the microbiota in malaria vectors may help in the development of novel vector control interventions, similar to paratransgenesis. This study evaluated seasonal and geographical variations in the microbial community of the two major malaria vectors. Adult Anopheles mosquitoes were collected across two different eco-geographical settings in Cameroon, during the dry and wet seasons. DNA was extracted from the whole individual mosquitoes from each group and processed for microbial analysis using Illumina Miseq sequencing of the V3-V4 region of the 16S rRNA gene. Data analysis was performed using QIIME2 and R software programs. A total of 1985 mosquitoes were collected and among them, 120 were selected randomly corresponding to 30 mosquitoes per season and locality. Overall, 97 bacterial taxa were detected across all mosquito samples, with 86 of these shared between dry and wet seasons in both localities and species. There were significant differences in bacterial composition between both seasons, with a clear separation observed between the dry and wet seasons (PERMANOVA comparisons of beta diversity, Pseudo-F = 10.45; q-value = 0.01). This study highlights the influence of seasonal variation on microbial communities and this variation's impact on mosquito biology and vectorial capacity should be further investigated.

15.
Parasit Vectors ; 15(1): 155, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505366

RESUMO

BACKGROUND: Myanmar is one of the six countries in the Greater Mekong Subregion (GMS) of Southeast Asia. Malaria vectors comprise many Anopheles species, which vary in abundance and importance in malaria transmission among different geographical locations in the GMS. Information about the species composition, abundance, and insecticide resistance status of vectorial systems in Myanmar is scarce, hindering our efforts to effectively control malaria vectors in this region. METHODS: During October and November 2019, larvae and adult females of Anopheles mosquitoes were collected in three sentinel villages of Banmauk township in northern Myanmar. Adult female mosquitoes collected by cow-baited tent collection (CBTC) and adults reared from field-collected larvae (RFCL) were used to determine mortality rates and knockdown resistance (kdr) against deltamethrin using the standard WHO susceptibility test. Molecular species identification was performed by multiplex PCR and ITS2 PCR, followed by DNA sequencing. The kdr mutation at position 1014 of the voltage-gated sodium channel gene was genotyped by DNA sequencing for all Anopheles species tested. RESULTS: A total of 1596 Anopheles mosquitoes from seven morphologically identified species groups were bioassayed. Confirmed resistance to deltamethrin was detected in the populations of An. barbirostris (s.l.), An. hyrcanus (s.l.), and An. vagus, while possible resistance was detected in An. annularis (s.l.), An. minimus, and An. tessellatus. Anopheles kochi was found susceptible to deltamethrin. Compared to adults collected by CBTC, female adults from RFCL had significantly lower mortality rates in the four species complexes. A total of 1638 individuals from 22 Anopheles species were molecularly identified, with the four most common species being An. dissidens (20.5%) of the Barbirostris group, An. peditaeniatus (19.4%) of the Hyrcanus group, An. aconitus (13.4%) of the Funestus group, and An. nivipes (11.5%) of the Annularis group. The kdr mutation L1014F was only detected in the homozygous state in two An. subpictus (s.l.) specimens and in a heterozygous state in one An. culicifacies (s.l.) specimen. CONCLUSIONS: This study provides updated information about malaria vector species composition and insecticide resistance status in northern Myanmar. The confirmed deltamethrin resistance in multiple species groups constitutes a significant threat to malaria vector control. The lack or low frequency of target-site resistance mutations suggests that other mechanisms are involved in resistance. Continual monitoring of the insecticide resistance of malaria vectors is required for effective vector control and insecticide resistance management.


Assuntos
Anopheles , Malária , Animais , Anopheles/genética , Bovinos , Feminino , Resistência a Inseticidas/genética , Malária/prevenção & controle , Mosquitos Vetores/genética , Mianmar
16.
Pest Manag Sci ; 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484862

RESUMO

BACKGROUND: Anopheles sinensis is the most widely distributed mosquito species and is the main transmitter of Plasmodium vivax malaria in China. Most previous research has focused on the mechanistic understanding of biological processes in An. sinensis and novel ways of interrupting malaria transmission. However, the development of functional genomics and genetics-based vector control strategies against An. sinensis remain limited because of insufficient site-specific genome editing tools. RESULTS: We report the first successful application of the CRISPR/Cas9 mediated knock-in for highly efficient, site-specific mutagenesis in An. sinensis. The EGFP marker gene driven by the 3 × P3 promoter was precisely integrated into the odorant receptor co-receptor (Orco) by direct injections of Cas9 protein, double-stranded DNA donor, and Orco-gRNA. We achieved a mutation rate of 3.77%, similar to rates in other mosquito species. Precise knock-in at the intended locus was confirmed by polymerase chain reaction (PCR) amplification and sequencing. The Orco mutation severely impaired mosquito sensitivity to some odors and their ability to locate and discriminate a human host. CONCLUSION: Orco was confirmed as a key mediator of multiple olfactory-driven behaviors in the An. sinensis life cycle, highlighting the importance of Orco as a key molecular target for malaria control. The results also demonstrated that CRISPR/Cas9 was a simple and highly efficient genome editing technique for An. sinensis and could be used to develop genetic control tools for this vector. © 2022 Society of Chemical Industry.

17.
Pestic Biochem Physiol ; 183: 105061, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35430064

RESUMO

Pyrethroid resistance in the malaria vector Anopheles albimanus presents an obstacle to malaria elimination in the Americas. Here, An. albimanus CYP6P5 (the most overexpressed P450 in a Peruvian population) was functionally characterized. Recombinant CYP6P5 metabolized the type II pyrethroids, deltamethrin and α-cypermethrin with comparable affinities (KM of 3.3 µM ± 0.4 and 3.6 µM ± 0.5, respectively), but exhibited a 2.7-fold higher catalytic rate for α-cypermethrin (kcat of 6.02 min-1 ± 0.2) versus deltamethrin (2.68 min-1 ± 0.09). Time-course assays revealed progressive depletion of the above pyrethroids with production of four HPLC-detectable metabolites. Low depletion was obtained with type I pyrethroid, permethrin. Transgenic expression in Drosophila melanogaster demonstrated that overexpression of CYP6P5 alone conferred type II pyrethroid resistance, with only 16% and 55.3% mortalities in flies exposed to 0.25% α-cypermethrin and 0.15% deltamethrin, respectively. Synergist bioassays using P450 inhibitor piperonylbutoxide significantly recovered susceptibility (mortality = 73.6%, p < 0.001) in synergized flies exposed to 4% piperonylbutoxide, plus 0.25% α-cypermethrin, compared to non-synergized flies (mortality = 4.9%). Moderate resistance was also observed towards 4% DDT. These findings established the preeminent role of CYP6P5 in metabolic resistance in An. albimanus, highlighting challenges associated with deployment of insecticide-based control tools in the Americas.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Anopheles/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Drosophila melanogaster/metabolismo , Resistência a Inseticidas/genética , Inseticidas/metabolismo , Inseticidas/farmacologia , Controle de Mosquitos , Mosquitos Vetores/genética , Piretrinas/metabolismo , Piretrinas/farmacologia
18.
J Med Entomol ; 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35452118

RESUMO

Higher temperatures expected in a future warmer climate could adversely affect the growth and development of mosquitoes. This study investigated the effects of elevated temperatures on longevity, gonotrophic cycle length, biting rate, fecundity, and body size of Anopheles gambiae (s.l.) (Diptera: Culicidae) mosquitoes. Anopheles gambiae (s.l.) eggs obtained from laboratory established colonies were reared under eight temperature regimes (25, 28, 30, 32, 34, 36, 38, and 40°C), and 80 ± 10% RH. All adults were allowed to feed on a 10% sugar solution soaked in cotton wool; however, some mosquitoes were provided blood meal using guinea pig. Longevity was estimated for both blood-fed and non-blood-fed mosquitoes and analyzed using the Kaplan-Meier survival analysis. One-way ANOVA was used to test the effect of temperature on gonotrophic cycle length, biting rate, and fecundity. Adult measurement data were log-transformed and analyzed using ordinary least square regression with robust standard errors. Increasing temperature significantly decreased the longevity of both blood-fed (Log-rank test; X2(4) = 904.15, P < 0.001) and non-blood-fed (Log-rank test; X2(4) = 1163.60, P < 0.001) mosquitoes. In addition, the fecundity of mosquitoes decreased significantly (ANOVA; F(2,57) = 3.46, P = 0.038) with an increase in temperature. Body size (ß = 0.14, 95% CI, 0.16, 0.12, P < 0.001) and proboscis length (ß = 0.13, 95% CI, 0.17, 0.09, P < 0.001) significantly decreased with increasing temperature from 25 to 34°C. Increased temperatures expected in a future warmer climate could cause some unexpected effects on mosquitoes by directly influencing population dynamics and malaria transmission.

19.
Genes (Basel) ; 13(4)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35456432

RESUMO

Metabolic-based resistance to insecticides limit the control of medically important pests, and it is extremely detrimental in the ongoing struggle to control disease vectors. Elucidating the fitness cost of metabolic resistance in major malaria vectors is vital for successful resistance management. We established the fitness cost of the 6.5kb structural variant (6.5kb-sv) between the duplicated CYP6P9a/b P450s using the hybrid strain generated from the crossing between two An. funestus laboratory strains. Furthermore, we assessed the cumulative impact of this marker with the duplicated P450 genes. We established that individuals that were homozygote for the resistant structural variant (SV) presented reduced fecundity and slow development relative to those that were homozygote for the susceptible SV. Furthermore, we observed that 6.5kb act additively with CYP6P9a and CYP6P9b to exacerbate the reduced fecundity and the increased development time of resistant mosquitoes since double/triple homozygote susceptible (SS/SS/SS) significantly laid more eggs and developed faster than other genotypes. Moreover, a restoration of susceptibility was noted over 10 generations in the insecticide-free environment with an increased proportion of susceptible individuals. This study highlights the negative impact of multiple P450-based resistance on the key physiological traits of malaria vectors. Such high fitness costs suggest that in the absence of selection pressure, the resistant individuals will be outcompeted in the field. Therefore, this should encourage future strategies based on the rotation of insecticides to reduce selection pressure and to slow the spread of pyrethroid resistance.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Anopheles/genética , Anopheles/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Malária/genética , Mosquitos Vetores/genética , Piretrinas/metabolismo , Piretrinas/farmacologia
20.
Parasit Vectors ; 15(1): 143, 2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461301

RESUMO

BACKGROUND: The olfactory system plays a crucial role in regulating insect behaviors. The detection of odorants is mainly mediated by various odorant receptors (ORs) that are expressed in the dendrites of olfactory neurons of chemosensilla. Anopheles sinensis is a major malaria vector in Eastern Asia and its genome has recently been successfully sequenced and annotated. In this study, we present genome-wide identification and expression profiling of OR genes in different chemosensory tissues of An. sinensis. METHODS: The OR genes were identified using the available genome sequences of An. sinensis. A series of bioinformatics analyses were conducted to investigate the structure, genome distribution, selective pressure and phylogenetic relationships of OR genes, the conserved domains and specific functional sites in the OR amino acid sequences. The expression levels of OR genes were analyzed from transcriptomic data from An. sinensis antennae, proboscis and maxillary palps of both sexes. RESULTS: A total of 59 putative OR genes have been identified and characterized in An. sinensis. This number is significantly less than that in An. gambiae. Whether this difference is caused by the contraction or expansion of OR genes after divergence of the two species remains unknown. The RNA-seq analysis showed that AsORs have obvious tissue- and sex-specific expression patterns. Most AsORs are highly expressed in the antennae and the expression pattern and number of AsORs expressed in antennae are similar in males and females. However, the relative levels of AsOR transcripts are much higher in female antennae than in male antennae, which indicates that the odor sensitivity is likely to be increased in female mosquitoes. Based on the expression patterns and previous studies, we have speculated on the functions of some OR genes but this needs to be validated by further behavioral, molecular and electrophysiological studies. Further studies are necessary to compare the olfactory-driven behaviors and identify receptors that respond strongly to components of human odors that may act in the process of human recognition. CONCLUSIONS: This is the first genome-wide analysis of the entire repertoire of OR genes in An. sinensis. Characterized features and profiled expression patterns of ORs suggest their involvement in the odorous reception of this species. Our findings provide a basis for further research on the functions of OR genes and additional genetic and behavioral targets for more sustainable management of An. sinensis in the future.


Assuntos
Anopheles , Malária , Receptores Odorantes , Animais , Anopheles/fisiologia , Antenas de Artrópodes/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Masculino , Mosquitos Vetores/genética , Filogenia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA