Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Braz. j. biol ; 84: e257473, 2024. tab, graf, ilus
Artigo em Inglês | LILACS-Express | VETINDEX | ID: biblio-1374639


Feathers make up 7% of the total weight of adult chickens and keratin protein makes up 85% of the feathers. Today, the keratinase enzymes of some Bacillus strains are used to degrade and process raw keratin waste for animal and poultry feed. According to various studies, the probiotic properties of some spore-shaped Bacillus have also been proven. The study aimed to isolation of the keratinolytic Bacillus bacteria that they have probiotic properties for using in the livestock and poultry feed industry. We were able to isolate 8 strains of Bacillus licheniformis with kreatin degrading properties from the soil of Baharan chicken slaughterhouse (Qom city, Iran) applying heat shock, alcohol- and keratin-rich culture medium, and after microscopic and biochemical analysis, 16S rDNA gene was isolated. The measurement results of keratinase activity showed that the three strains of Bacillus licheniformis pvkr6, pvkr 15, and pvkr41 had the highest activity with 124.08, 101.1, and 100.18 U/ml. The results of probiotic properties evaluation also revealed that among all the isolates, only Bacillus licheniformis pvkr15 and Bacillus licheniformis PTCC 1595 (positive control) were γ-hemolytic strains. The percentage of surface hydrophobicity of the strains was obtained from 3.27 to 30.57. It was also shown that, on average, all the strains had acceptable susceptibility to the tested antibiotics except penicillin G. Bacillus licheniformis pvkr15 with highest keratinase activity (101.1U/ml) was considered an optional probiotics due to its abilities such as (biofilm formation, being safe cause of γ-hemolytic activity, high susceptibility to antibiotics such as streptomycin, gentamicin, cefixime, amoxicillin, tetracycline, vancomycin, erythromycin and having a moderate hydrophilic (hydrophobicity: 19.09%), high survivability in pH 2, 2.5 and 3, strong resistance to bile salts and moderate antagonistic activity against pathogenic bacterium like Proteus mirabilis and the ability to grow under anaerobic conditions). By using this strain, after hydrolysis of keratin protein in the feather structure, to replace part of the protein of livestock and poultry feed, not only is no need to separate bacteria from the feed, but also the strain play role of an useful and effective additive in animal growth.

As penas representam 7% do peso total das galinhas adultas e a proteína de queratina compõe 85% das penas. Hoje, as enzimas queratinase de algumas cepas de Bacillus são usadas para degradar e processar resíduos de queratina brutos para alimentação de animais e aves. De acordo com vários estudos, as propriedades probióticas de alguns Bacillus em forma de esporos também foram comprovadas. O estudo teve como objetivo o isolamento das bactérias queratinolíticas Bacillus que possuem propriedades probióticas para uso na indústria de ração animal e avícola. Conseguimos isolar 8 cepas de Bacillus licheniformis com propriedades degradantes de creatina do solo do abatedouro de frangos de Baharan (cidade de Qom, Irã) aplicando choque térmico, meio de cultura rico em álcool e queratina e, após análise microscópica e bioquímica, o gene 16S rDNA foi isolado. Os resultados da medição da atividade da queratinase mostraram que as três cepas de Bacillus licheniformis pvkr6, pvkr15 e pvkr41 tiveram a maior atividade com 124,08, 101,1 e 100,18 U/ml. Os resultados da avaliação das propriedades probióticas também revelaram que dentre todos os isolados apenas Bacillus licheniformis pvkr15 e Bacillus licheniformis PTCC 1595 (controle positivo) eram cepas γ-hemolíticas. A porcentagem de hidrofobicidade superficial das cepas foi obtida de 3,27 a 30,57. Também foi demonstrado que, em média, todas as cepas apresentaram suscetibilidade aceitável aos antibióticos testados, exceto penicilina G. Bacillus licheniformis pvkr15 com maior atividade de queratinase (101,1U/ml) foi considerado um probiótico opcional devido às suas habilidades como formação de biofilme, sendo causa segura de atividade γ-hemolítica, alta suscetibilidade a antibióticos como estreptomicina, gentamicina, cefixima, amoxicilina, tetraciclina, vancomicina, eritromicina e ter uma hidrofílica moderada (hidrofobicidade: 19,09%), alta capacidade de sobrevivência em pH 2, 2,5 e 3, forte resistência aos sais biliares e atividade antagonista moderada contra bactérias patogênicas como Proteus mirabilis e a capacidade de crescer em condições anaeróbicas. Ao utilizar esta cepa, após a hidrólise da proteína queratina na estrutura da pena, para substituir parte da proteína da ração de gado e aves, não só não há necessidade de separar as bactérias da ração, mas também a cepa desempenha um papel útil e eficaz aditivo no crescimento animal.

Animais , Solo , Resíduos , Probióticos , Bacillus licheniformis , Queratinas , Ração Animal
FEMS Microbiol Ecol ; 95(5)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30985888


The use of feathers as nest material has been proposed as a kind of self-medication strategy because antimicrobial-producing microorganisms living on feathers may defend offspring against pathogenic infections. In this case, it is expected that density of antimicrobial-producing bacteria, and their antimicrobial effects, are higher in feathers that line the nests than in eggshells. Moreover, we know that feather pigmentation and breeding activity may influence density and antimicrobial production of bacteria. To test these predictions, we analyzed bacterial densities and antimicrobial activity of bacterial colonies isolated from bird eggshells and nest-lining feathers against bacterial strains comprising potential pathogens. Samples were collected from spotless starling (Sturnus unicolor) nests, and from artificial nests to isolate the effects of breeding activity on bacterial communities. The composition of feathers lining the nests was experimentally manipulated to create groups of nests with pigmented feathers, with unpigmented feathers, with both types of feathers or without feathers. Although we did not detect an effect of experimental feather treatments, we found that bacterial colonies isolated from feathers were more active against the tested bacterial strains than those isolated from eggshells. Moreover, bacterial density on feathers, keratinolytic bacteria on eggshells and antimicrobial activity of colonies isolated were higher in starling nests than in artificial nests. These results suggest that antimicrobial activity of bacteria growing on nest-lining feathers would be one of the mechanisms explaining the previously detected antimicrobial effects of this material in avian nests, and that breeding activity results in nest bacterial communities with higher antimicrobial activity.

Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Plumas/química , Passeriformes/fisiologia , Animais , Bactérias/crescimento & desenvolvimento , Cruzamento , Casca de Ovo/química , Casca de Ovo/microbiologia , Plumas/microbiologia , Feminino , Masculino , Passeriformes/microbiologia
Waste Manag ; 84: 269-276, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30691901


The objective of this study was to evaluate the effect of keratinolytic B. cereus PCM 2849 inoculum on the process of composting pig bristles, in the mixture with sawdust and lignite dust. The process was conducted in closed, static and dynamic reactors. The impact of the composting technique and inoculum on the mineralization and maturity indices during active stage of composting was evaluated. A beneficial effect of the inoculum was confirmed during composting with the application of a static technique and with the dynamic technique. The introduction of bacterial inoculum enhanced transformation of mineral compounds and had a positive effect on maturity, as established with maturity indexes i.e. C/N ratio, carbon solubility, oxidation index of mineral forms of nitrogen, humification ratio or content of humic and fulvic acids. Products after the active stage of composting, especially inoculated compost variants, were characterized by beneficial contents of minerals and met safety standards regarding occurrence of heavy metals. Moreover, inoculated variants, left on prisms for further maturation, reached a more advanced level of matter decomposition and stabilization, as compared to composts obtained after the active phase of composting. The use of B. cereus inoculum for composting pig bristles turned out to be an effective method for accelerating the biodegradation of this hard-to-degrade waste and enabled to produce a valuable fertilizing product.

Compostagem , Bactérias , Esterco , Nitrogênio , Solo , Suínos
J Basic Microbiol ; 59(1): 4-13, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30353928


Feathers account for 5-7% of the total weight of chicken have become one of the major pollutants due to their recalcitrant nature. Feather which is constituted of 90% keratin can be a good source of peptides, amino acids, and minerals for use as organic fertilizer. Traditional feather degradation methods consume large amount of energy and reduces the overall quality of the proteins. However, degradation of keratin by keratinolytic bacteria may represent as an alternative for the development of cheap, cost effective, eco-friendly, and easily available nitrogen (N) and minerals rich source as potential organic fertilizers. Keratinase enzymes from bacteria are serine-type proteases showing optimal activity at pH 6 to 9 and 30 to 50 °C. Mechanism of degradation includes, sulfitolysis, proteolysis, followed by deamination. Keratinolytic bacteria showing antagonism against important plant pathogens may act as biocontrol agent. Feather hydrolyzate can also be employed as nitrogenous fertilizers for plant growth. Tryptophan release from the feather degradation can act as precursor for plant phytohormone, indole-3-acetic acid (IAA). Solubilization of inorganic phosphate (P) by keratinolytic bacteria may further elevate the growth of plant. Application of hydrolyzate increases the water holding capacity, N, carbon (C) and mineral content of the soil. It elevates protein, amino acids, and chlorophyll content of plant. Feather hydrolyzate enhances seed germination and growth of plant. Soil application further increases the population of beneficial bacteria. The use of keratinolytic bacteria having antagonistic and plant growth promoting activities, and feather hydrolyzate can emerge as sustainable and alternative tools to promote and improve organic farming, agro-ecosystem, environment, human health, and soil biological activities.

Agricultura , Bactérias/metabolismo , Plumas/metabolismo , Fertilizantes , Queratinas/metabolismo , Animais , Biodegradação Ambiental , Carbono/metabolismo , Galinhas , Plumas/química , Germinação , Ácidos Indolacéticos/metabolismo , Nitrogênio/metabolismo , Peptídeo Hidrolases , Desenvolvimento Vegetal , Sementes/crescimento & desenvolvimento , Solo , Microbiologia do Solo