Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Braz. J. Biol. ; 83: 1-15, 2023. tab, graf, ilus
Artigo em Inglês | VETINDEX, VETINDEX | ID: vti-765481

RESUMO

Background: The brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. Aim: The study examined the expression of Neuroglobin (Ngb) and Hypoxia-inducible factor-1α (Hif-1α) in adult and young yak brain tissues, and provided researchers with meaningful insight into the anatomy, physiology, and biochemistry of this mammal. Method: The study employed immunohistochemistry (IHC), quantitative real-time PCR (qRT-PCR), and Western blot (WB) to obtain the results. Results: Ngb and Hif-1α were significantly (P<0.05) expressed in the cerebellar cortex, piriform lobe, medulla, and corpus callosum of the adult yak while in the young yak brain tissues, the protein expressions were significantly found in the white matter of the cerebellum, pineal gland, corpus callosum, and cerebellar cortex. The Ngb and Hif-1α expression showed similarities and differences. This may have resulted from similar animal species, source of nutrition, age factors, brain size, emotional activities, and communication. The findings documented that Ngb and Hif-1α are commonly expressed in various adult and young yak brain tissues. Multiple roles in the brain tissues of the adult and young yaks are involved in the expression and distribution and are proposed to play a significant role in the adaptation of the yak to the high altitude environment. Conclusion: This study provides meaningful data to understand the adaptive mechanism to hypoxia and recommended researchers to expand on the adaptive mechanism and brain tissues that are not recorded.(AU)


Contexto: O cérebro é um órgão que funciona como o centro do sistema nervoso em todos os animais vertebrados e na maioria dos invertebrados. Objetivo: O estudo examinou a expressão de neuroglobina (Ngb) e fator-1α indutível por hipóxia (Hif-1α) em tecidos cerebrais de iaques adultos e jovens e forneceu aos pesquisadores uma visão significativa da anatomia, fisiologia e bioquímica desse mamífero. Método: O estudo utilizou imuno-histoquímica (IHC), PCR quantitativo em tempo real (qRT-PCR) e western blot (WB) para a obtenção dos resultados. Resultados: Ngb e Hif-1α foram significativamente (P < 0,05) expressos no córtex cerebelar, lobo piriforme, medula e corpo caloso do iaque adulto, enquanto nos tecidos cerebrais do iaque jovem as expressões proteicas foram encontradas significativamente na substância branca do cerebelo, glândula pineal, corpo caloso e córtex cerebelar. A expressão de Ngb e Hif-1α apresentou semelhanças e diferenças. Isso pode ter resultado de espécies animais semelhantes, fonte de nutrição, fatores de idade, tamanho do cérebro, atividades emocionais e comunicação. Os resultados documentaram que o Ngb e o Hif-1α são comumente expressos em vários tecidos cerebrais de iaques adultos e jovens. Múltiplos papéis nos tecidos cerebrais de iaques adultos e jovens estão envolvidos na expressão e distribuição e são propostos para desempenhar um papel significativo na adaptação do iaque ao ambiente de alta altitude. Conclusão: Este estudo fornece dados significativos para compreender o mecanismo adaptativo à hipóxia e recomendou que os pesquisadores expandissem o mecanismo adaptativo e os tecidos cerebrais que não foram registrados.(AU)


Assuntos
Animais , Adulto Jovem , Adulto , Bovinos , Bovinos , Cérebro/anatomia & histologia , Cérebro/fisiologia , Fenômenos Bioquímicos , Neuroglobina/análise , Fator 1 Induzível por Hipóxia/análise
2.
Braz. j. biol ; 83: e245330, 2023. tab, graf
Artigo em Inglês | MEDLINE, LILACS, VETINDEX | ID: biblio-1339394

RESUMO

Abstract Background The brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. Aim The study examined the expression of Neuroglobin (Ngb) and Hypoxia-inducible factor-1α (Hif-1α) in adult and young yak brain tissues, and provided researchers with meaningful insight into the anatomy, physiology, and biochemistry of this mammal. Method The study employed immunohistochemistry (IHC), quantitative real-time PCR (qRT-PCR), and Western blot (WB) to obtain the results. Results Ngb and Hif-1α were significantly (P<0.05) expressed in the cerebellar cortex, piriform lobe, medulla, and corpus callosum of the adult yak while in the young yak brain tissues, the protein expressions were significantly found in the white matter of the cerebellum, pineal gland, corpus callosum, and cerebellar cortex. The Ngb and Hif-1α expression showed similarities and differences. This may have resulted from similar animal species, source of nutrition, age factors, brain size, emotional activities, and communication. The findings documented that Ngb and Hif-1α are commonly expressed in various adult and young yak brain tissues. Multiple roles in the brain tissues of the adult and young yaks are involved in the expression and distribution and are proposed to play a significant role in the adaptation of the yak to the high altitude environment. Conclusion This study provides meaningful data to understand the adaptive mechanism to hypoxia and recommended researchers to expand on the adaptive mechanism and brain tissues that are not recorded.


Resumo Contexto O cérebro é um órgão que funciona como o centro do sistema nervoso em todos os animais vertebrados e na maioria dos invertebrados. Objetivo O estudo examinou a expressão de neuroglobina (Ngb) e fator-1α indutível por hipóxia (Hif-1α) em tecidos cerebrais de iaques adultos e jovens e forneceu aos pesquisadores uma visão significativa da anatomia, fisiologia e bioquímica desse mamífero. Método O estudo utilizou imuno-histoquímica (IHC), PCR quantitativo em tempo real (qRT-PCR) e western blot (WB) para a obtenção dos resultados. Resultados Ngb e Hif-1α foram significativamente (P < 0,05) expressos no córtex cerebelar, lobo piriforme, medula e corpo caloso do iaque adulto, enquanto nos tecidos cerebrais do iaque jovem as expressões proteicas foram encontradas significativamente na substância branca do cerebelo, glândula pineal, corpo caloso e córtex cerebelar. A expressão de Ngb e Hif-1α apresentou semelhanças e diferenças. Isso pode ter resultado de espécies animais semelhantes, fonte de nutrição, fatores de idade, tamanho do cérebro, atividades emocionais e comunicação. Os resultados documentaram que o Ngb e o Hif-1α são comumente expressos em vários tecidos cerebrais de iaques adultos e jovens. Múltiplos papéis nos tecidos cerebrais de iaques adultos e jovens estão envolvidos na expressão e distribuição e são propostos para desempenhar um papel significativo na adaptação do iaque ao ambiente de alta altitude. Conclusão Este estudo fornece dados significativos para compreender o mecanismo adaptativo à hipóxia e recomendou que os pesquisadores expandissem o mecanismo adaptativo e os tecidos cerebrais que não foram registrados.


Assuntos
Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Hipóxia , Encéfalo , RNA Mensageiro , Bovinos , Neuroglobina
3.
Front Neurol ; 13: 885323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463129

RESUMO

Objective: Stroke is closely related to dementia, but there are few prospective studies on cognitive decline after stroke in patients with cerebral hemorrhage. Neuroglobin is an oxygen-binding protein mainly expressed in brain neurons. The aim of our current study was to determine whether neuroglobin could serve as a biomarker for cognitive prognosis in patients with intracerebral hemorrhage (ICH). Methods: Three hundred and sixteen patients with ICH were consecutively enrolled in a prospective study. Baseline data such as age and gender of ICH patients on admission were recorded. Serum neuroglobin concentrations were determined by enzyme-linked immunosorbent assay (ELISA). All ICH patients 3 months after onset were divided into post-stroke cognitive impairment group (PSCI) and non-PSCI group according to MoCA assessment results. Results: The PSCI and Non-PSCI groups had serum neuroglobin concentrations of (4.7 ± 0.9) and (7.5 ± 1.1) ng/ml, respectively, with a statistically significant difference between the two groups (p < 0.05). Age, gender, LDL, FBG, SBP, DBP, NHISS, and Hematoma volume were found to be adversely connected with MoCA (p < 0.05), while education, HDL, and serum neuroglobin were found to be positively correlated with MoCA (p < 0.05). After controlling for baseline data, regression analysis revealed that serum neuroglobin was remained an efficient biomarker for predicting cognitive performance in individuals with ICH (p < 0.05). The diagnostic accuracy of blood neuroglobin concentration for PSCI in ICH patients was 72.6%, the sensitivity was 67.4%, and the specificity was 75.5%, according to receiver operating characteristic (ROC) curve analysis. Conclusions: Serum neuroglobin may serve as a potential biomarker to predict cognitive decline after ICH.

4.
Acta Trop ; 231: 106433, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35364046

RESUMO

Schistosomes are blood-dwelling parasites that are constantly exposed to high-level oxidative stress arising from parasite-intrinsic and host defense mechanisms. To survive in their hosts, schistosomes require an antioxidant system to minimize with oxidative stress. Several schistosome antioxidant enzymes have been identified and have been suggested to play indispensable antioxidant roles for the parasite. In addition to antioxidant enzymes, non-enzymatic antioxidants including small molecules, peptides, and proteins have been identified and characterized. Neuroglobin (Ngb), a nervous system-specific heme-binding protein, has been classified as a non-enzymatic antioxidant and is capable of scavenging a variety of free radical species. The antioxidant activity of Ngb has been well-studied in humans. Ngb is involved in cellular oxygen homeostasis and reactive oxygen/nitrogen scavenging in the central and peripheral nervous systems, but its functions in schistosome parasites have not yet been characterized. In this study, we aimed to characterize the molecular properties and functions of Schistosoma mekongi Ngb (SmeNgb) using bioinformatic, biochemical, and molecular biology approaches. The amino acid sequence of Ngb was highly conserved among schistosomes as well as closely related trematodes. SmeNgb was abundantly localized in the gastrodermis, vitelline, and ovary of adult female S. mekongi worms as well as in the tegument of adult male worms. Assessment of antioxidant activity demonstrated that recombinant SmeNgb had Fe2+ chelating and hydrogen peroxide scavenging activities. Intriguingly, siRNA silencing of SmeNgb gene expression resulted in tegument pathology. Understanding the properties and functions of SmNgb will help in future development of effective treatments and vaccines against S. mekongi, other schistosome parasites, and other platyhelminths.

5.
Brain Res Bull ; 183: 142-152, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35289299

RESUMO

Sevoflurane, a commonly used inhaled anesthetic, causes endogenous apoptosis in fetal rats. Microglia polarization is associated with inflammation, and the IL-10/STAT3/SOCS3 pathway is involved in this process. Neuroglobin (Ngb) is a neuroprotective protein which exhibits an anti-inflammatory effect. The purpose of this study was to investigate whether neurotoxicity induced by sevoflurane exposure in prenatal rats correlates with neuroinflammation and microglia polarization and whether Ngb can moderate this response. We found that exposure to sevoflurane on the 20th day of gestation (G20) induced discernable inflammation in postnatal day 0 (P0) rats, promoted M1 polarization of microglia, and inhibited M2 polarization. Hemin-mediated Ngb elevation inhibited sevoflurane-induced neuroinflammation. Additionally, elevated Ngb inhibited M1 polarization and promoted M2 polarization of microglia. We also found that elevated Ngb could alleviate the effect of sevoflurane on the expression of Interleukin-10 (IL-10), phosphorylated-signal transduction and activators of transcription 3 (P-STAT3), and suppressor of cytokine signaling 3 (SOCS3). Furthermore, we found that elevated Ngb ameliorated the effects of sevoflurane on long-term exploratory behavior and learning and memory in the offspring. Our results show that Ngb alleviates the neurotoxicity of sevoflurane to fetal rats by inhibiting neuroinflammation and affecting microglial polarization, a process which may involve the IL-10/STAT3/SOCS3 pathway.


Assuntos
Microglia , Síndromes Neurotóxicas , Animais , Feminino , Microglia/metabolismo , Neuroglobina/metabolismo , Neuroglobina/farmacologia , Síndromes Neurotóxicas/metabolismo , Gravidez , Ratos , Sevoflurano/farmacologia
6.
Data Brief ; 41: 107843, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35128003

RESUMO

In this article, we present data on the proteome of human neuroblastoma cells stably overexpressing Neuroglobin (NGB). The neuroprotective role of NGB is clearly established, nevertheless the related mechanistic processes, which are dependent on NGB overexpression, are not known. To address this question, we performed shotgun label-free quantification (LFQ) proteomics using an SH-SY5Y cell model of neuroblastoma that overexpresses an NGB-FLAG construct, and wild type cells transfected with an empty vector as control (CTRL). The proteomes from six biological samples per condition were digested using the S-Trap sample preparation followed by LC-MS/MS analysis with a LTQ-Orbitrap XL mass spectrometer. The quantitative analysis was performed using the LFQ algorithm of MaxQuant, leading to 1654 correctly quantified proteins over 2580 identified proteins. Finally, the statistic comparison of the two analyzed groups within Perseus platform identified 178 differential proteins (107 up- and 71 down-regulated). In addition, multivariate statistical analysis was carried out using MetaboAnalyst 5.0 software. MS proteomics data are available via ProteomeXchange with the dataset identifier PXD029012.

7.
Reprod Biol ; 22(1): 100595, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35121559

RESUMO

Leydig cells are responsible for testosterone production in male testis upon stimulation by luteinizing hormone. Inflammation and oxidative stress related Leydig cell dysfunction is one of the major causes of male infertility. Cytoglobin (CYGB) and Neuroglobin (NGB) are two globin family member proteins which protect cells against oxidative stress. In the current study, we established a Lipopolysaccharide (LPS)-induced inflammation model in TM3 Leydig cell culture to study the function of CYGB and NGB proteins under inflammatory conditions. CYGB and NGB were downregulated using siRNA and shRNA based experimental strategies. Overexpression was conducted using lentiviral pLenti-III-CYGB-2A-GFP, and pLenti-III-NGB-2A-GFP vector systems. As testicular macrophages regulate immune function upon inflammation and steroidogenesis of Leydig cells, we generated direct/indirect co-culture systems of TM3 and mouse macrophage (RAW264.7) cells ex vivo. Downregulation of CYGB and NGB induced nitride oxide (NO) release, blocked cell cycle progression, reduced testosterone production and increased inflammatory and apoptotic pathway gene expression in the presence and absence of LPS. On the other hand, CYGB and NGB overexpression reduced TNFα and COX-2 protein expressions and increased the expression of testosterone biogenesis pathway genes upon LPS stimulation. In addition, CYGB and NGB overexpression upregulated testosterone production. The present study successfully established an inflammatory interaction model of TM3 and RAW264.7 cells. Suppression of CYGB and NGB in TM3 cells changed macrophage morphology, enhanced macrophage cell number and NO release in co-culture experiments upon LPS exposure. In summary, these results demonstrate that globin family members might control LPS induced inflammation by regulating apoptotic mechanisms and macrophage response.


Assuntos
Células Intersticiais do Testículo , Lipopolissacarídeos , Animais , Citoglobina , Inflamação/induzido quimicamente , Células Intersticiais do Testículo/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroglobina
8.
Proteins ; 90(5): 1152-1158, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34982478

RESUMO

Human neuroglobin (Ngb) contains a heme group and three Cys residues (Cys46, Cys55, and Cys120) in the polypeptide chain. By introducing an additional Cys at position 15, the X-ray structure of A15C Ngb mutant was solved at a high resolution of 1.35 Å, which reveals the formation of both the native (C46C55) and the engineered (C15C120) disulfide bonds, likely playing a functional and structural role, respectively, according to the geometry analysis. Unexpectedly, 1,4-dioxane from the crystallization reagents was bound not only to the protein surface, but also to the heme distal pocket, providing insights into protein-ligand interactions for the globin and guiding the design of functional heme enzymes.


Assuntos
Globinas , Proteínas do Tecido Nervoso , Sítios de Ligação , Dissulfetos/química , Globinas/química , Globinas/genética , Globinas/metabolismo , Heme/química , Humanos , Ligantes , Proteínas do Tecido Nervoso/química , Neuroglobina , Raios X
9.
Mol Neurobiol ; 59(2): 916-931, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34797521

RESUMO

Microglia are the immune competent cell of the central nervous system (CNS), promoting brain homeostasis and regulating inflammatory response against infection and injury. Chronic or exacerbated neuroinflammation is a cause of damage in several brain pathologies. Endogenous carbon monoxide (CO), produced from the degradation of heme, is described as anti-apoptotic and anti-inflammatory in several contexts, including in the CNS. Neuroglobin (Ngb) is a haemoglobin-homologous protein, which upregulation triggers antioxidant defence and prevents neuronal apoptosis. Thus, we hypothesised a crosstalk between CO and Ngb, in particular, that the anti-neuroinflammatory role of CO in microglia depends on Ngb. A novel CO-releasing molecule (ALF826) based on molybdenum was used for delivering CO in microglial culture.BV-2 mouse microglial cell line was challenged with lipopolysaccharide (LPS) for triggering inflammation, and after 6 h ALF826 was added. CO exposure limited inflammation by decreasing inducible nitric oxide synthase (iNOS) expression and the production of nitric oxide (NO) and tumour necrosis factor-α (TNF-α), and by increasing interleukine-10 (IL-10) release. CO-induced Ngb upregulation correlated in time with CO's anti-inflammatory effect. Moreover, knocking down Ngb reversed the anti-inflammatory effect of CO, suggesting that dependents on Ngb expression. CO-induced Ngb upregulation was independent on ROS signalling, but partially dependent on the transcriptional factor SP1. Finally, microglial cell metabolism is also involved in the inflammatory response. In fact, LPS treatment decreased oxygen consumption in microglia, indicating a switch to glycolysis, which is associated with a proinflammatory. While CO treatment increased oxygen consumption, reverting LPS effect and indicating a metabolic shift into a more oxidative metabolism. Moreover, in the absence of Ngb, this phenotype was no longer observed, indicating Ngb is needed for CO's modulation of microglial metabolism. Finally, the metabolic shift induced by CO did not depend on alteration of mitochondrial population. In conclusion, neuroglobin emerges for the first time as a key player for CO signalling against exacerbated inflammation in microglia.


Assuntos
Monóxido de Carbono , Microglia , Animais , Monóxido de Carbono/metabolismo , Monóxido de Carbono/farmacologia , Inflamação/patologia , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/metabolismo , Neuroglobina/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
10.
Anat Rec (Hoboken) ; 305(2): 254-264, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34358403

RESUMO

Bilirubin encephalopathy (BE) is a neurological syndrome in newborns, mainly caused by neuronal injury due to excessive oxidative stress produced by unconjugated bilirubin (UCB). Neuroglobin (NGB) can protect the brain by removing oxidative stress species, but its expression and significance in BE are not clear. To address this question, the neonatal BE model was established by injecting UCB into the cerebellomedullary cistern of 7-day-old SD rats. Rats were divided into a sham and BE 6 hr group, BE 12 hr group, BE 24 hr group, and BE 7 d group according to UCB action times. Hematoxylin/eosin and Nissl staining, and electron microscopy were employed to observe the pathological and ultrastructural changes of nerve cells in each group. Immunofluorescence staining was used to detect NGB expression sites and cell types. Western blotting and quantitative PCR served to detect NGB expression and test the mitochondrial apoptosis signal pathway. The results confirm that UCB can lead to pathological damage and ultrastructural changes in rats' temporal cortex, increasing the expression of apoptosis-related proteins Bax, Bcl-2, Cyt c, Caspase-3, and neuronal NGB. UCB promotes NGB expression with an increase in action time and reach a peak at 12 hr. In summary, brain damage induced by UCB will cause an increase in NGB expression, the increasing NGB can inhibit neuron apoptosis in early BE phases. Therefore, promoting the expression of endogenous NGB, to act as a neuroprotective agent may be a potential treatment strategy for BE.


Assuntos
Globinas , Kernicterus , Animais , Globinas/genética , Globinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglobina , Ratos , Ratos Sprague-Dawley , Lobo Temporal/metabolismo
11.
Mol Aspects Med ; 84: 101055, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34876274

RESUMO

Neuroglobin is expressed in vertebrate brain and belongs to a branch of the globin family that diverged early in evolution. Sequence conservation and presence in nervous cells of several taxa suggests a relevant role in the nervous system, with tight structural restraints. Twenty years after its discovery, a rich scientific literature provides convincing evidence of the involvement of neuroglobin in sustaining neuron viability in physiological and pathological conditions however, a full and conclusive picture of its specific function, or set of functions is still lacking. The difficulty of unambiguously assigning a precise mechanism and biochemical role to neuroglobin might arise from the participation to one or more cell mechanism that redundantly guarantee the functioning of the highly specialized and metabolically demanding central nervous system of vertebrates. Here we collect findings and hypotheses arising from recent biochemical, biophysical, structural, in cell and in vivo experimental work on neuroglobin, aiming at providing an overview of the most recent literature. Proteins are said to have jobs and hobbies, it is possible that, in the case of neuroglobin, evolution has selected for it more than one job, and support to cover for its occasional failings. Disentangling the mechanisms and roles of neuroglobin is thus a challenging task that might be achieved by considering data from different disciplines and experimental approaches.


Assuntos
Globinas , Proteínas do Tecido Nervoso , Animais , Encéfalo/metabolismo , Globinas/química , Globinas/genética , Humanos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Neuroglobina/metabolismo , Neurônios/metabolismo
12.
Mol Med Rep ; 25(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34751416

RESUMO

Oxidative stress­induced neuronal cell death contributes significantly to the physiological processes of a number of neurological disorders. Polydatin (PD) has been reported to protect against Alzheimer's disease (AD), ischemic stroke and traumatic brain injury. However, the underlying neuroprotective mechanisms remain to be elucidated. The current study suggested that PD activates AKT/cAMP response element­binding protein (CREB) signaling and induces neuroglobin (Ngb) to protect neuronal cells from hydrogen peroxide (H2O2) in vitro. PD inhibited the H2O2­induced neuronal cell death of primary mouse cortical neurons and N2a cells. Functional studies showed that PD attenuated H2O2­induced mitochondrial dysfunction and mitochondrial reactive oxygen species production. Mechanistically, PD was verified to induce the phosphorylation of AKT and CREB and increase the protein level of Ngb. The luciferase assay results showed that Ngb transcriptional activity was activated by CREB, especially after PD treatment. It was further indicated that PD increased the transcription of Ngb by enhancing the binding of CREB to the promoter region of Ngb. Finally, Ngb knockdown largely attenuated the neuroprotective role of PD against H2O2. The results indicated that PD protected neuronal cells from H2O2 by activating CREB/Ngb signaling in neuronal cells, indicating that PD has a neuroprotective effect against neurodegenerative diseases.


Assuntos
Glucosídeos/farmacologia , Neurônios/metabolismo , Estilbenos/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Glucosídeos/metabolismo , Peróxido de Hidrogênio/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroglobina/efeitos dos fármacos , Neuroglobina/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio , Transdução de Sinais/efeitos dos fármacos , Estilbenos/metabolismo
13.
Cells ; 10(12)2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34943907

RESUMO

Neuroglobin (NGB) is an O2-binding globin mainly expressed in the central and peripheral nervous systems and cerebrospinal fluid. Previously, it was demonstrated that NGB overexpression protects cells from hypoxia-induced death. To investigate processes promoted by NGB overexpression, we used a cellular model of neuroblastoma stably overexpressing an NGB-FLAG construct. We used a proteomic approach to identify the specific profile following NGB overexpression. To evaluate the role of NGB overexpression in increasing energetic metabolism, we measured oxygen consumption rate (OCR) and the extracellular acidification rate through Seahorse XF technology. The effect on autophagy induction was evaluated by analyzing SQSTM1/p62 and LC3-II expression. Proteomic analysis revealed several differentially regulated proteins, involved in oxidative phosphorylation and integral mitochondrial proteins linked to energy metabolism. The analysis of mitochondrial metabolism demonstrated that NGB overexpression increases mitochondrial ATP production. Indeed, NGB overexpression enhances bioenergetic metabolism, increasing OCR and oxygen consumption. Analysis of autophagy induction revealed an increase of LC3-II together with a significant decrease of SQSTM1/p62, and NGB-LC3-II association during autophagosome formation. These results highlight the active participation of NGB in several cellular processes that can be upregulated in response to NGB overexpression, playing a role in the adaptive response to stress in neuroblastoma cells.


Assuntos
Autofagia/genética , Proteínas Associadas aos Microtúbulos/genética , Neuroblastoma/genética , Neuroglobina/genética , Proteína Sequestossoma-1/genética , Trifosfato de Adenosina/genética , Linhagem Celular Tumoral , Metabolismo Energético/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Mitocôndrias/genética , Neuroblastoma/patologia , Consumo de Oxigênio/genética , Proteoma/genética
14.
Cells ; 10(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34943874

RESUMO

Neuroglobin (Ngb), the third member of the globin family, was discovered in human and murine brains in 2000. This monomeric globin is structurally similar to myoglobin (Mb) and hemoglobin (Hb) α and ß subunits, but it hosts a bis-histidyl six-coordinated heme-Fe atom. Therefore, the heme-based reactivity of Ngb is modulated by the dissociation of the distal HisE7-heme-Fe bond, which reflects in turn the redox state of the cell. The high Ngb levels (~100-200 µM) present in the retinal ganglion cell layer and in the optic nerve facilitate the O2 buffer and delivery. In contrast, the very low levels of Ngb (~1 µM) in most tissues and organs support (pseudo-)enzymatic properties including NO/O2 metabolism, peroxynitrite and free radical scavenging, nitrite, hydroxylamine, hydrogen sulfide reduction, and the nitration of aromatic compounds. Here, structural and (pseudo-)enzymatic properties of Ngb, which are at the root of tissue and organ protection, are reviewed, envisaging a possible role in the protection from neuronal degeneration of the retina and the optic nerve.


Assuntos
Neuroglobina/química , Neuroglobina/metabolismo , Neuroproteção , Animais , Sequestradores de Radicais Livres/metabolismo , Heme/metabolismo , Humanos , Oxirredução
15.
Cells ; 10(11)2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34831423

RESUMO

Retinal neurodegeneration affects an increasing number of people worldwide causing vision impairments and blindness, reducing quality of life, and generating a great economic challenge. Due to the complexity of the tissue, and the diversity of retinal neurodegenerative diseases in terms of etiology and clinical presentation, so far, there are no cures and only a few early pathological markers have been identified. Increasing efforts have been made to identify and potentiate endogenous protective mechanisms or to abolish detrimental stress responses to preserve retinal structure and function. The discovering of the intracellular monomeric globin neuroglobin (NGB), found at high concentration in the retina, has opened new possibilities for the treatment of retinal disease. Indeed, the NGB capability to reversibly bind oxygen and its neuroprotective function against several types of insults including oxidative stress, ischemia, and neurodegenerative conditions have raised the interest in the possible role of the globin as oxygen supplier in the retina and as a target for retinal neurodegeneration. Here, we provide the undercurrent knowledge on NGB distribution in retinal layers and the evidence about the connection between NGB level modulation and the functional outcome in terms of retinal neuroprotection to provide a novel therapeutic/preventive target for visual pathway degenerative disease.


Assuntos
Terapia de Alvo Molecular , Neuroglobina/antagonistas & inibidores , Degeneração Retiniana/tratamento farmacológico , Animais , Humanos , Modelos Biológicos , Neuroglobina/genética , Neuroglobina/metabolismo , Fármacos Neuroprotetores/farmacologia , Retina/efeitos dos fármacos , Retina/patologia
16.
Cells ; 10(8)2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34440755

RESUMO

The expression of the α-subtype of Estrogen Receptor (ERα) characterizes most breast cancers (more than 75%), for which endocrine therapy is the mainstay for their treatment. However, a high percentage of ERα+ breast cancers are de novo or acquired resistance to endocrine therapy, and the definition of new targets for improving therapeutic interventions and the prediction of treatment response is demanding. Our previous data identified the ERα/AKT/neuroglobin (NGB) pathway as a common pro-survival process activated in different ERα breast cancer cell lines. However, no in vivo association between the globin and the malignity of breast cancer has yet been done. Here, we evaluated the levels and localization of NGB in ERα+ breast ductal carcinoma tissue of different grades derived from pre-and post-menopausal patients. The results indicate a strong association between NGB accumulation, ERα, AKT activation, and the G3 grade, while no association with the menopausal state has been evidenced. Analyses of the data set (e.g., GOBO) strengthen the idea that NGB accumulation could be linked to tumor cell aggressiveness (high grade) and resistance to treatment. These data support the view that NGB accumulation, mainly related to ER expression and tumor grade, represents a compensatory process, which allows cancer cells to survive in an unfavorable environment.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/química , Carcinoma Ductal de Mama/química , Receptor alfa de Estrogênio/análise , Neuroglobina/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Neoplasias da Mama/terapia , Carcinoma Ductal de Mama/mortalidade , Carcinoma Ductal de Mama/patologia , Carcinoma Ductal de Mama/terapia , Estudos de Casos e Controles , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Gradação de Tumores , Intervalo Livre de Progressão , Proteínas Proto-Oncogênicas c-akt/análise , Transdução de Sinais , Microambiente Tumoral
17.
Neurobiol Dis ; 159: 105483, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34400304

RESUMO

Mitochondrial diseases are among the most prevalent groups of inherited neurological disorders, affecting up to 1 in 5000 adults. Despite the progress achieved on the identification of gene mutations causing mitochondrial pathologies, they cannot be cured so far. Harlequin mice, a relevant model of mitochondrial pathology due to apoptosis inducing factor depletion, suffer from progressive disappearance of retinal ganglion cells leading to optic neuropathy. In our previous work, we showed that administering adeno-associated virus encompassing the coding sequences for neuroglobin, (a neuroprotective molecule belonging to the globin family) or apoptosis-inducing factor, before neurodegeneration onset, prevented retinal ganglion cell loss and preserved visual function. One of the challenges to develop an effective treatment for optic neuropathies is to consider that by the time patients become aware of their handicap, a large amount of nerve fibers has already disappeared. Gene therapy was performed in Harlequin mice aged between 4 and 5 months with either a neuroglobin or an apoptosis-inducing factor vector to determine whether the increased abundance of either one of these proteins in retinas could preserve visual function at this advanced stage of the disease. We demonstrated that gene therapy, by preserving the connectivity of transduced retinal ganglion cells and optic nerve bioenergetics, results in the enhancement of visual cortex activity, ultimately rescuing visual impairment. This study demonstrates that: (a) An increased abundance of neuroglobin functionally overcomes apoptosis-inducing factor absence in Harlequin mouse retinas at a late stage of neuronal degeneration; (b) The beneficial effect for visual function could be mediated by neuroglobin localization to the mitochondria, thus contributing to the maintenance of the organelle homeostasis.


Assuntos
Fator de Indução de Apoptose/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Neuroglobina/genética , Atrofia Óptica/metabolismo , Nervo Óptico/metabolismo , Células Ganglionares da Retina/metabolismo , Acuidade Visual/genética , Córtex Visual/metabolismo , Animais , Progressão da Doença , Terapia Genética , Camundongos , Atrofia Óptica/patologia , Atrofia Óptica/fisiopatologia , Nervo Óptico/patologia , Nervo Óptico/fisiopatologia , Células Ganglionares da Retina/patologia , Córtex Visual/patologia , Vias Visuais
18.
Comput Struct Biotechnol J ; 19: 1874-1888, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995893

RESUMO

Globin-coupled sensors (GCS) usually consist of three domains: a sensor/globin, a linker, and a transmitter domain. The globin domain (GD), activated by ligand binding and/or redox change, induces an intramolecular signal transduction resulting in a response of the transmitter domain. Depending on the nature of the transmitter domain, GCSs can have different activities and functions, including adenylate and di-guanylate cyclase, histidine kinase activity, aerotaxis and/or oxygen sensing function. The gram-negative delta-proteobacterium Geobacter sulfurreducens expresses a protein with a GD covalently linked to a four transmembrane domain, classified, by sequence similarity, as GCS (GsGCS). While its GD is fully characterized, not so its transmembrane domain, which is rarely found in the globin superfamily. In the present work, GsGCS was characterized spectroscopically and by native ion mobility-mass spectrometry in combination with cryo-electron microscopy. Although lacking high resolution, the oligomeric state and the electron density map were valuable for further rational modeling of the full-length GsGCS structure. This model demonstrates that GsGCS forms a transmembrane domain-driven tetramer with minimal contact between the GDs and with the heme groups oriented outward. This organization makes an intramolecular signal transduction less likely. Our results, including the auto-oxidation rate and redox potential, suggest a potential role for GsGCS as redox sensor or in a membrane-bound e-/H+ transfer. As such, GsGCS might act as a player in connecting energy production to the oxidation of organic compounds and metal reduction. Database searches indicate that GDs linked to a four or seven helices transmembrane domain occur more frequently than expected.

19.
Neural Regen Res ; 16(12): 2353-2358, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33907006

RESUMO

Neuroglobin (Ngb) is a 17 kDa monomeric hexa-coordinated heme protein belonging to the globin family. Ngb is mainly expressed in neurons of the central and peripheral nervous system, although moderate levels of Ngb have been detected in non-nervous tissues. In the past decade, Ngb has been studied for its neuroprotective role in a large number of neurological disorders such as Alzheimer's disease, Huntington's disease, brain ischemia and hypoxia. This review discusses and summarizes the natural compounds and the small synthetic molecules capable of modulating Ngb expression that exhibits a protective role against various neurodegenerative diseases.

20.
Molecules ; 26(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924212

RESUMO

Neuroglobin (NGB) is a myoglobin-like monomeric globin that is involved in several processes, displaying a pivotal redox-dependent protective role in neuronal and extra-neuronal cells. NGB remarkably exerts its function upon upregulation by NGB inducers, such as 17ß-estradiol (E2) and H2O2. However, the molecular bases of NGB's functions remain undefined, mainly in non-neuronal cancer cells. Human MCF-7 breast cancer cells with a knocked-out (KO) NGB gene obtained using CRISPR/Cas9 technology were analyzed using shotgun label-free quantitative proteomics in comparison with control cells. The differential proteomics experiments were also performed after treatment with E2, H2O2, and E2 + H2O2. All the runs acquired using liquid chromatography-tandem mass spectrometry were elaborated within the same MaxQuant analysis, leading to the quantification of 1872 proteins in the global proteomic dataset. Then, a differentially regulated protein dataset was obtained for each specific treatment. After the proteomic study, multiple bioinformatics analyses were performed to highlight unbalanced pathways and processes. Here, we report the proteomic and bioinformatic investigations concerning the effects on cellular processes of NGB deficiency and cell treatments. Globally, the main processes that were affected were related to the response to stress, cytoskeleton dynamics, apoptosis, and mitochondria-driven pathways.


Assuntos
Neoplasias da Mama/genética , Neuroglobina/genética , Estresse Oxidativo/genética , Proteômica , Apoptose/genética , Neoplasias da Mama/patologia , Biologia Computacional , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Inativação de Genes , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA