Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Braz. j. biol ; 84: e254252, 2024. tab, graf
Artigo em Inglês | MEDLINE, LILACS, VETINDEX | ID: biblio-1355876

RESUMO

Abstract Indian major carps are the widely consumed fish species of Pakistan, being a cheap source of proteins and unsaturated fatty acids, they are good for cardiovascular health. Water pollution due to discharge of untreated industrial waste water into water bodies contaminates this precious source of nutrients. The present study therefore, was aimed to assess deterioration of fatty acid profile of three Indian major carp species due to different concentrations of industrial wastes. The water samples were collected from the river Chenab at the site where it receives industrial wastewater via Chakbandi drain. After exposure to 1.5%, 3.0%, and 4.5% dilutions of collected water in different aquaria it was observed that proportion of unsaturated fatty acids in selected fish species were decreased significantly as the intensity of the dose increased (P < 0.05). Conversely the level of saturated fatty acids increased with the increasing dose of treatment (P < 0.05). These findings suggest that untreated wastewater not only deteriorate the fatty acid profile of aquatic animals but also these toxic substances can reach human body through fish meat and pose further health hazards. Therefore, it is highly recommended that industrial effluents should be treated before they are dumped into water bodies.


Resumo As carpas indianas são as espécies de peixes mais consumidas no Paquistão, sendo uma fonte barata de proteínas e de ácidos graxos insaturados e boa para a saúde cardiovascular. A poluição da água por causa do descarte de resíduos industriais não tratados em corpos d'água contamina essa preciosa fonte de nutrientes. Portanto, o presente estudo teve como objetivo avaliar a deterioração do perfil de ácidos graxos de três principais espécies de carpas indianas em diferentes concentrações de resíduos industriais. As amostras de água foram coletadas do rio Chenab no local onde recebe esgoto industrial via dreno de Chakbandi. Após a exposição a diluições de 1,5%, 3% e 4,5% da água coletada em diferentes aquários, foi observado que a proporção de ácidos graxos insaturados em espécies de peixes selecionadas diminuiu significativamente com o aumento da intensidade da dose (P < 0,05). Por outro lado, o nível de ácidos graxos saturados aumentou com a elevação da dose de tratamento (P < 0,05). Essas descobertas sugerem que águas residuais não tratadas não apenas deterioram o perfil de ácidos graxos dos animais aquáticos, mas também essas substâncias tóxicas podem atingir o corpo humano por meio da carne de peixe e representar mais riscos à saúde. Portanto, é recomendável que os efluentes industriais sejam tratados antes de serem despejados em corpos d'água.


Assuntos
Humanos , Animais , Poluentes Químicos da Água/análise , Carpas , Indústria Têxtil , Rios , Ácidos Graxos
2.
Arch Microbiol ; 204(6): 324, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35570201

RESUMO

Textile industrial effluents have long enunciated the essentiality of ascertaining an efficient wastewater treatment for the removal of azo dyes given their potential disturbances on the ecosystem. Our study investigated the efficiency of the strain SKF2 among 14 other isolates, molecularly identified to be Scedosporium apiospermum, isolated by our research group from the textile effluent sludge in the degradation of two azo dyes, Reactive Yellow 145 and Remazol Yellow RR. Kinetic profiling of the degradation process revealed the decolourisation efficiency to be 94.8 and 86.9% for RY 145 and RYRR, respectively, during the declining growth phase. Laccase and polyphenol oxidase (RY 145-2.37 and RYRR-2.30 U/mL; RY 145-3.26 and RYRR-2.89 U/mL, respectively) were found to influence the biodegradation process in both the dyes than the other examined fungal degradative enzymes. The metabolic pathway predicted with the aid of GC-MS analysis identified the degraded metabolites to be smaller molecular weight non-toxic products. Assessment of toxicity via brine shrimp lethality assay (RY 145-23.3% and RYRR-16.7%, respectively) and seed germination assay (RY 145-96.7% and RYRR-83.3%) further solidified the detoxified status of both the dyes after biodegradation. The experimental data thus substantiated the expediency of S. apiospermum SKF2 in the degradation of textile azo dyes and its further employment in the bioremediation of textile wastewaters for agricultural applications and ecological recycling.

3.
Polymers (Basel) ; 13(23)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34883642

RESUMO

Water pollution by toxic substances, such as azo dyes, is a serious environmental problem that needs to be addressed. This study presents the synthesis and characterization of new polymeric sorbents, based on the epoxy resin Epidian® 5 (Ep5), as a potential adsorbent for the removal of the toxic azo dye C.I. Acid Violet 1 (AV1). Triethylenetetramine (TETA) was applied as a cross-linking agent in the amounts of 1 g (6.67 wt %), 1.5 g (10 wt %), and 2 g (13.33 wt %). The use of a compound with amino groups allows for the simultaneous functionalization of the obtained material. The reaction was carried out in an environment of ethylene glycol, with the addition of a porophore solvent (toluene) and bis(2-ethylhexyl)sulfosuccinate sodium salt (S). The attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) revealed the existence of a strong band in the 828-826 cm-1 range corresponding to the second-order amine group, which indicates their incorporation into the epoxy structure. The glass transition and decomposition temperatures of the resins decreased with the increasing amounts of amine in the material. The thermogravimetry (TGA) analysis demonstrated that all products are thermally stable up to 340 °C. The surface morphology and microstructural properties of the obtained sorbents were determined using scanning electron microscopy (SEM) images and showed an irregular star shape, with dimensions ranging from 400 to 1000 µm. The adsorption capacities of Ep5-TETA1, Ep5-TETA1.5, Ep5-TETA2 and Ep5-TETA1.5 + S for AV1 evaluated during batch experiments were found to be 2.92, 3.76, 7.90 and 3.30 mg/g, respectively.

4.
Heliyon ; 7(10): e08102, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34646956

RESUMO

The effluents from textile industries without proper treatment contains a remarkable amount of synthetic dyes which are harmful to the environment and a big challenge globally to degrade it with a eco-friendly way. Conventional methods are extremely energy-consuming, non-effective and generate a toxic sludge impacting the environment. Several microorganisms can be utilized to treat these effluents. The research deals with five bacteria isolated from textile effluent and their consortium for the biodegradation ability of Novacron dyes. The isolates were identified through the Biolog™ identification system and molecular technique. Biodegradation was confirmed by measuring optical density (OD) optimizing conditions (pH 7.0, temperature 37 °C, 10 % inoculums and 100 mg/L dye) under static condition. The isolates started decolourization at 24 h whereas, the consortium started decolourization at 18 h and exhibited a maximum after 72 h. The presence of low molecular weight protein as metabolite supported the biodegradation and non hazardous to environment. This study revealed that these bacteria might have degradation potentials, and research results will help to set up dye removal eco-friendly methods to expose the dye effulents to environment in future.

5.
Braz J Microbiol ; 52(4): 1755-1767, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34494227

RESUMO

Stenotrophomonas' metabolic versatility plays important roles in the remediation of contaminated environment and plant growth promotion. We investigated two Stenotrophomonas strains isolated from textile polluted sewage for their ability to decolorize and degrade azo dyes. Two Stenotrophomonas strains (TepeL and TepeS) were isolated from textile effluents (Tepetitla, Mexico) using the selective agar Stenotrophomonas vancomycin, imipenem, amphotericin B agar (SVIA). Isolates' identity was determined by the sequencing of their partial 16S rRNA fragments. Their abilities to decolorize dyes were tested in a Luria broth supplemented with varying concentrations (50 mg/L-1 g/L) of textile dyes (acidic red, methyl orange, reactive green, acidic yellow, and reactive black). Fourier-transform infrared (FTIR) spectroscopy and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) metabolite analyses were used to determine the effect of the isolates' growth on the dyes (acidic red, methyl orange). We also identified the enzymes that may be involved in the degradation process. Phylogenetic analysis based on the 16S rDNA sequences showed that the isolates belong to the genus Stenotrophomonas. Stenotrophomonas sp. TepeL and TepeS respectively decolorize all the azo dyes at the tested concentration except at 1 g/L and degraded the azo dyes. The degradation resulted in the formation of N, N-dimethyl p-phenylenediamine, and sodium 4-amino-1-naphthalenesulfonate from methyl orange and acid red. TepeL and TepeS rapidly decolorized and degraded the azo dyes tested. This result showed that the two isolates have a good potential for the decontamination of textile effluents.


Assuntos
Compostos Azo , Biodegradação Ambiental , Stenotrophomonas , Têxteis , Ágar , Compostos Azo/metabolismo , Cromatografia Líquida , Corantes/metabolismo , México , Filogenia , RNA Ribossômico 16S/genética , Stenotrophomonas/genética , Stenotrophomonas/metabolismo , Espectrometria de Massas em Tandem , Águas Residuárias/química , Águas Residuárias/microbiologia
6.
Environ Sci Pollut Res Int ; 28(44): 63202-63214, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34224093

RESUMO

Textile dyeing consumes high volumes of water, generating proportional number of colored effluents which contain several hazardous chemical. These contaminants can implicate in significant changes in aquatic environmental, including several adverse effects to organisms in different trophic levels. The present study was developed to assess the ecotoxicological effects of textile effluent samples and reactive Red 239 dye (used in cotton dyeing) to aquatic organisms Vibrio fischeri bacteria, Daphnia similis crustacean, and Biomphalaria glabrata snail (adults and embryos). Chronic assays with lethal and sublethal effects for Daphnia similis were included and performed only for textile effluents samples. The mutagenicity was also evaluated with Salmonella/microsome assay (TA98, TA100, and YG1041 strains). V. fischeri bacteria was the most sensitive to reactive Red 239 dye (EC50 = 10.14 mg L-1) followed by mollusk embryos at all stages (EC50 = 116.41 to 124.14 mg L-1), D. similis (EC50= 389.42 mg L-1), and less sensitive to adult snails (LC50= 517.19 mg L-1). The textile effluent was toxic for all exposed organisms [E(L)C50 < 15%] and B. glabrata embryos showed different responses in the early stages of blastulae and gastrulae (EC50 = 7.60 and 7.08%) compared to advanced development stages trochophore and veliger (EC50 = 21.56 and 29.32%). Developmental and sublethal effects in B. glabrata embryos and D. similis were evidenced. In the chronic assay with effluent, the EC10/NOEC = 3% was obtained. Mutagenic effects were not detected for dye aqueous solutions neither for effluents samples. These data confirmed the importance of evaluating the effects in aquatic organisms from different trophic levels and reinforce the need for environmental aquatic protection.


Assuntos
Organismos Aquáticos , Poluentes Químicos da Água , Animais , Corantes/toxicidade , Daphnia , Têxteis , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Braz. J. Biol. ; 81(2): 398-405, Mar.-May 2021. tab, graf, ilus
Artigo em Inglês | VETINDEX, VETINDEX | ID: vti-762746

RESUMO

Continuous occurrence of heavy metals is a major cause of environmental pollution due to its toxic effects. At minimum concentrations, these metals are highly reactive and can gather in the food chains and food web, causing major dangers to public health concerns. Soil samples were collected from Paharang drain, Faisalabad. Cadmium tolerant bacteria were isolated and evaluated for their MIC against Cd. The isolated bacterial strain GCFSD01 showed MIC value upto 30 mM/L. The bacterial strain with the highest resistance against Cd was selected for further study. Molecular characterization of bacterial isolate GCFSD01 was performed by 16S rRNA which confirmed it as Bacillus cereus. Optimum growth conditions of bacterial strain were also evaluated. Strain GCFSD01 showed optimum growth at pH 7 and 37 °C temperature. Our result revealed that B. cereus strain GCFSD01 reduced 61.3% Cd after 48 hrs. Multiple metal tolerance and Cd reduction by B. cereus indicate its potential for further use for decontamination of polluted soil.(AU)


A ocorrência contínua de metais pesados é uma das principais causas de poluição ambiental devido aos seus efeitos tóxicos. A contaminação por metais pesados representa um grande risco para todas as formas de vida encontradas no meio ambiente. Em concentrações mínimas, esses metais são altamente reativos e podem se acumular nas cadeias alimentares e na cadeia alimentar, causando grandes perigos às preocupações com a saúde pública. Amostras de solo foram coletadas no esgoto de Paharang, Faisalabad. Bactérias tolerantes ao cádmio foram isoladas da amostra coletada pelo método da placa de ágar. As colônias separadas individuais selecionadas foram avaliadas quanto às suas concentrações inibitórias mínimas contra Cd. A cepa bacteriana isolada GCFSD01 apresentou valores de CIM de 30 mM/L. A colônia bacteriana que apresentou maior resistência contra o Cd foi selecionada para identificação. Após seleção da maior colônia bacteriana resistente ao Cd, coloração de Gram e diferentes testes bioquímicos foram realizados para a caracterização da bactéria isolada. A caracterização molecular do isolado bacteriano GCFSD01 foi realizada por PCR 16S rRNA confirmando a presença de Bacillus cereus. Após a identificação molecular, as condições ótimas de crescimento da cepa bacteriana também foram verificadas. A cepa GCFSD01 apresentou crescimento ótimo em pH 7 e temperatura de 37 °C. Nosso resultado revelou que a cepa de B. cereus GCFSD01 reduziu 61,3% de Cd após 48 horas. A tolerância a múltiplos metais e a redução de Cd por B. cereus indicam seu potencial para uso posterior na descontaminação do solo poluído.(AU)


Assuntos
Bacillus cereus/efeitos dos fármacos , Bacillus cereus/isolamento & purificação , Intoxicação por Cádmio , Análise do Solo
8.
Front Microbiol ; 12: 634753, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815319

RESUMO

A model aromatic compound, sodium benzoate, is generally used for simulating aromatic pollutants present in textile effluents. Bioremediation of sodium benzoate was studied using the most abundant bacteria, Pseudomonas citronellolis, isolated from the effluent treatment plants of South Gujarat, India. Multiple nutrients constituting the effluent in actual conditions are proposed to have interactive effects on biodegradation which needs to be analyzed strategically for successful field application of developed bioremediation process. Two explicitly different sets of fractional factorial designs were used to investigate the interactive influence of alternative carbon, nitrogen sources, and inorganic micronutrients on sodium benzoate degradation. The process was negatively influenced by the co-existence of other carbon sources and higher concentration of KH2PO4 whereas NH4Cl and MgSO4 exhibited positive effects. Optimized concentrations of NH4Cl, MgSO4, and KH2PO4 were found to be 0.35, 1.056, and 0.3 mg L-1 respectively by central composite designing. The negative effect of high amount of KH2PO4 could be ameliorated by increasing the amount of NH4Cl in the biodegradation milieu indicating the possibility of restoration of the degradation capability for sodium benzoate degradation in the presence of higher phosphate concentration.

9.
Plants (Basel) ; 10(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671374

RESUMO

Biosorption is a bioremediation approach for the removal of harmful dyes from industrial effluents using biological materials. This study investigated Methylene blue (M. blue) and Congo red (C. red) biosorption from model aqueous solutions by two marine macro-algae, Ulva fasciata and Sargassum dentifolium, incorporated within acrylic fiber waste to form composite membranes, Acrylic fiber-U. fasciata (AF-U) and Acrylic fiber-S. dentifolium (AF-S), respectively. The adsorption process was designed to more easily achieve the 3R process, i.e., removal, recovery, and reuse. The process of optimization was implemented through one factor at a time (OFAT) experiments, followed by a factorial design experiment to achieve the highest dye removal efficiency. Furthermore, isotherm and kinetics studies were undertaken to determine the reaction nature. FT-IR and SEM analyses were performed to investigate the properties of the membrane. The AF-U membrane showed a significant dye removal efficiency, of 88.9% for 100 ppm M. blue conc. and 79.6% for 50 ppm C. red conc. after 240 min sorption time. AF-S recorded a sorption capacity of 82.1% for 100 ppm M. blue conc. after 30 min sorption time and 85% for 100 ppm C. red conc. after 240 min contact time. The membranes were successfully applied in the 3Rs process, in which it was found that the membranes could be used for five cycles of the removal process with stable efficiency.

10.
Environ Sci Pollut Res Int ; 28(21): 27318-27332, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33511534

RESUMO

Fabric dyeing produces high amounts of wastewater containing organic and inorganic pollutants such as reactive dyes that are the most common textile dyes employed by the industry. Three vinylsulfonic reactive dyes, blue 19 (B-19), red 198 (R-198), and yellow 15 (Y-15), were removed from effluents of industrial-like dyeing processes employing three adsorbents: (1) magnetite nanoparticles (MNP), (2) yeast waste obtained after ß-glucan removal from yeast biomass (YW), and (3) nanomagnetic composite produced from YW and MNP (YW-MNP). The non-linear kinetic pseudo-second-order and two-stage models best explained the experimental phenomena for the majority of adsorbate:adsorbent systems. The theoretical isotherm models were fitted to experimental isotherms obtained from experiments conducted with appropriated dilutions of effluents, which have a specific condition, limited by the maximum dye concentration established by the dye recipe. Thus, the saturation of adsorbents was not reached for all adsorbate:adsorbent systems. In this way, the best conditional sorption capacities (SCcond) were obtained by YW (1.7, 2.3, and 2.5 g/kg for B-19, R-198, and Y-15, respectively). The SIPS model best described all dyes adsorbed by YW, while the D-R model best described the phenomena for MNP and YW-MNP.


Assuntos
Indústria Têxtil , Poluentes Químicos da Água , Adsorção , Biomassa , Corantes , Concentração de Íons de Hidrogênio , Cinética , Saccharomyces cerevisiae , Têxteis , Termodinâmica , Poluentes Químicos da Água/análise
11.
Environ Sci Pollut Res Int, v. 28, p. 63202–63214, nov. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3889

RESUMO

Textile dyeing consumes high volumes of water, generating proportional number of colored effluents which contain several hazardous chemical. These contaminants can implicate in significant changes in aquatic environmental, including several adverse effects to organisms in different trophic levels. The present study was developed to assess the ecotoxicological effects of textile effluent samples and reactive Red 239 dye (used in cotton dyeing) to aquatic organisms Vibrio fischeri bacteria, Daphnia similis crustacean, and Biomphalaria glabrata snail (adults and embryos). Chronic assays with lethal and sublethal effects for Daphnia similis were included and performed only for textile effluents samples. The mutagenicity was also evaluated with Salmonella/microsome assay (TA98, TA100, and YG1041 strains). V. fischeri bacteria was the most sensitive to reactive Red 239 dye (EC50 = 10.14 mg L−1) followed by mollusk embryos at all stages (EC50 = 116.41 to 124.14 mg L−1), D. similis (EC50= 389.42 mg L−1), and less sensitive to adult snails (LC50= 517.19 mg L−1). The textile effluent was toxic for all exposed organisms [E(L)C50 < 15%] and B. glabrata embryos showed different responses in the early stages of blastulae and gastrulae (EC50 = 7.60 and 7.08%) compared to advanced development stages trochophore and veliger (EC50 = 21.56 and 29.32%). Developmental and sublethal effects in B. glabrata embryos and D. similis were evidenced. In the chronic assay with effluent, the EC10/NOEC = 3% was obtained. Mutagenic effects were not detected for dye aqueous solutions neither for effluents samples. These data confirmed the importance of evaluating the effects in aquatic organisms from different trophic levels and reinforce the need for environmental aquatic protection.

12.
Braz. j. biol ; 81(2): 398-405, 2021. tab, graf, ilus
Artigo em Inglês | MEDLINE, LILACS, VETINDEX | ID: biblio-1153348

RESUMO

Continuous occurrence of heavy metals is a major cause of environmental pollution due to its toxic effects. At minimum concentrations, these metals are highly reactive and can gather in the food chains and food web, causing major dangers to public health concerns. Soil samples were collected from Paharang drain, Faisalabad. Cadmium tolerant bacteria were isolated and evaluated for their MIC against Cd. The isolated bacterial strain GCFSD01 showed MIC value upto 30 mM/L. The bacterial strain with the highest resistance against Cd was selected for further study. Molecular characterization of bacterial isolate GCFSD01 was performed by 16S rRNA which confirmed it as Bacillus cereus. Optimum growth conditions of bacterial strain were also evaluated. Strain GCFSD01 showed optimum growth at pH 7 and 37 °C temperature. Our result revealed that B. cereus strain GCFSD01 reduced 61.3% Cd after 48 hrs. Multiple metal tolerance and Cd reduction by B. cereus indicate its potential for further use for decontamination of polluted soil.


A ocorrência contínua de metais pesados é uma das principais causas de poluição ambiental devido aos seus efeitos tóxicos. A contaminação por metais pesados representa um grande risco para todas as formas de vida encontradas no meio ambiente. Em concentrações mínimas, esses metais são altamente reativos e podem se acumular nas cadeias alimentares e na cadeia alimentar, causando grandes perigos às preocupações com a saúde pública. Amostras de solo foram coletadas no esgoto de Paharang, Faisalabad. Bactérias tolerantes ao cádmio foram isoladas da amostra coletada pelo método da placa de ágar. As colônias separadas individuais selecionadas foram avaliadas quanto às suas concentrações inibitórias mínimas contra Cd. A cepa bacteriana isolada GCFSD01 apresentou valores de CIM de 30 mM/L. A colônia bacteriana que apresentou maior resistência contra o Cd foi selecionada para identificação. Após seleção da maior colônia bacteriana resistente ao Cd, coloração de Gram e diferentes testes bioquímicos foram realizados para a caracterização da bactéria isolada. A caracterização molecular do isolado bacteriano GCFSD01 foi realizada por PCR 16S rRNA confirmando a presença de Bacillus cereus. Após a identificação molecular, as condições ótimas de crescimento da cepa bacteriana também foram verificadas. A cepa GCFSD01 apresentou crescimento ótimo em pH 7 e temperatura de 37 °C. Nosso resultado revelou que a cepa de B. cereus GCFSD01 reduziu 61,3% de Cd após 48 horas. A tolerância a múltiplos metais e a redução de Cd por B. cereus indicam seu potencial para uso posterior na descontaminação do solo poluído.


Assuntos
Poluentes do Solo/toxicidade , Bacillus cereus/genética , Cádmio/toxicidade , Efluentes Industriais/efeitos adversos , Metais Pesados/análise , Solo , Microbiologia do Solo , Biodegradação Ambiental , RNA Ribossômico 16S/genética
13.
Environ Sci Pollut Res Int ; 27(32): 40088-40100, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32656751

RESUMO

Due to the complexity and variability of textile wastewater composition, a constant search for new treatment strategies that are efficient, eco-friendly, and cost-effective is mandatory. In the present study, the efficiency of coagulation-flocculation using biocoagulants derived from cactus Opuntia ficus indica and eggplant Solanum melongena to remove toxic compounds from Tunisian textile wastewater samples was evaluated by combining assays to investigate physicochemical properties and in vitro (geno)toxicity with analytical chemistry. Both natural coagulants could significantly improve the physicochemical properties of the textile wastewater samples compared to the traditionally used chemical coagulant. The highest rate of decolorization was achieved after treatment with the cactus-derived coagulant. The analytical study revealed the presence of only crystal violet dye (CV) in only one sample. Both natural coagulants were able to remove CV, which may (partially) explain the decolorization of the treated samples. Only one untreated textile effluent induced a genotoxic response in the VITOTOX® assay. The genotoxic effect was not linked to the presence of CV and was no longer observed after treatment with each of the natural coagulants, suggesting the effectiveness of the remediation treatments to remove potentially genotoxic compound(s). However, in the other genotoxicity tests, no biologically relevant effects were observed for any of the tested samples. In conclusion, although the physicochemical data indicate that the use of natural coagulants (cactus and eggplant) could be an interesting alternative treatment process to the chemical coagulant for detoxifying textile effluents, these results were only partially supported by the toxicological and analytical data.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Floculação , Resíduos Industriais/análise , Indústria Têxtil , Têxteis , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
14.
J Environ Manage ; 258: 110012, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31929054

RESUMO

Manganese-Aluminum powders were recently reported to show high efficiency and fast reaction rates as decolorization materials for azo-dye aqueous solutions. This work presents a detailed study of different aspects of this material. Firstly, the influence of the crystalline phase and the microstructure was studied by comparing the efficiency of powders obtained by different production protocols. Secondly, the decolorization efficiency was investigated on various types of dyes, including real textile wastewater samples. The analysis of the treated water and the particles showed that the main reaction mechanism was the breaking of the azo-dye molecules, although important adsorption on the metallic surface was observed for some colorants. Finally, the reusability of the particles and the reduction of toxicity achieved during the treatments were assessed. The simple production and application methods, the high efficiency and the use of environmentally friendly metallic elements are the main advantages of Manganese-Aluminum powders compared to other high-efficient decolorizing metallic materials.


Assuntos
Poluentes Químicos da Água , Compostos Azo , Corantes , Pós , Águas Residuárias
15.
Curr Res Microb Sci ; 1: 37-43, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34841300

RESUMO

Globally, water pollution from the textile industries is an alarming issue. Malachite Green dye of the triphenylmethane group is an extensively used dye in the fabric industries that is emitted through textile wastewater. This study aimed to isolate and characterize potential Malachite Green (MG) dye degrading bacteria from textile effluents. Different growth and culture parameters such as temperature, pH and dye concentration were optimized to perform the dye-degradation assay using different concentrations of MG dye in the mineral salt medium. A photo-electric-colorimeter was used to measure the decolorizing activity of bacteria at different time intervals after aerobic incubation. Two potential bacterial strains of Enterobacter spp. CV-S1 (accession no: MH450229) and Enterobacter spp. CM-S1 (accession no: MH447289) were isolated from textile effluents exhibiting potential MG dye decoloring efficiency. Further, the RAPD analysis and 16S rRNA sequencing confirmed the genetic differences of the isolated strains. Enterobacter sp CV-S1 and Enterobacter sp CM-S1 can completely decolor MG dye up to 15 mg/L under shaking condition without any requirement of sole carbon source. Thus, these two bacteria have the potency to be utilized in the textile wastewater treatment plant.

16.
Artigo em Inglês | VETINDEXEXPRESS, VETINDEX | ID: vti-746049

RESUMO

Abstract Continuous occurrence of heavy metals is a major cause of environmental pollution due to its toxic effects. At minimum concentrations, these metals are highly reactive and can gather in the food chains and food web, causing major dangers to public health concerns. Soil samples were collected from Paharang drain, Faisalabad. Cadmium tolerant bacteria were isolated and evaluated for their MIC against Cd. The isolated bacterial strain GCFSD01 showed MIC value upto 30 mM/L. The bacterial strain with the highest resistance against Cd was selected for further study. Molecular characterization of bacterial isolate GCFSD01 was performed by 16S rRNA which confirmed it as Bacillus cereus. Optimum growth conditions of bacterial strain were also evaluated. Strain GCFSD01 showed optimum growth at pH 7 and 37 °C temperature. Our result revealed that B. cereus strain GCFSD01 reduced 61.3% Cd after 48 hrs. Multiple metal tolerance and Cd reduction by B. cereus indicate its potential for further use for decontamination of polluted soil.


Resumo A ocorrência contínua de metais pesados é uma das principais causas de poluição ambiental devido aos seus efeitos tóxicos. A contaminação por metais pesados representa um grande risco para todas as formas de vida encontradas no meio ambiente. Em concentrações mínimas, esses metais são altamente reativos e podem se acumular nas cadeias alimentares e na cadeia alimentar, causando grandes perigos às preocupações com a saúde pública. Amostras de solo foram coletadas no esgoto de Paharang, Faisalabad. Bactérias tolerantes ao cádmio foram isoladas da amostra coletada pelo método da placa de ágar. As colônias separadas individuais selecionadas foram avaliadas quanto às suas concentrações inibitórias mínimas contra Cd. A cepa bacteriana isolada GCFSD01 apresentou valores de CIM de 30 mM/L. A colônia bacteriana que apresentou maior resistência contra o Cd foi selecionada para identificação. Após seleção da maior colônia bacteriana resistente ao Cd, coloração de Gram e diferentes testes bioquímicos foram realizados para a caracterização da bactéria isolada. A caracterização molecular do isolado bacteriano GCFSD01 foi realizada por PCR 16S rRNA confirmando a presença de Bacillus cereus. Após a identificação molecular, as condições ótimas de crescimento da cepa bacteriana também foram verificadas. A cepa GCFSD01 apresentou crescimento ótimo em pH 7 e temperatura de 37 °C. Nosso resultado revelou que a cepa de B. cereus GCFSD01 reduziu 61,3% de Cd após 48 horas. A tolerância a múltiplos metais e a redução de Cd por B. cereus indicam seu potencial para uso posterior na descontaminação do solo poluído.

17.
Environ Sci Pollut Res Int ; 26(23): 24235-24246, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31230237

RESUMO

The quaternization of chitosan molecules creates materials with high adsorptive capacity towards textile dyes, which renders them capable of rapidly removing such dyes from a solution. In this study, a novel material was synthesized in bead form to adsorb the Acid Blue 25 textile dye. The adsorption isotherms, kinetics, and thermodynamics of this new material were investigated. The beads were further characterized by FT-IR and SEM studies, as well as their rheological behavior. Bioassays with Daphnia similis analyzed the toxicity of the dye before and after treatments. The Freundlich isotherm model fitted to all the adsorption data in a pH range from 2.50 to 8.50. Kinetic studies showed that adsorption was ruled by an intraparticle diffusion process and reached equilibrium in 270 min, as 39.527 µg mg-1 of dye was sorbed to the beads. Thermodynamic studies showed that adsorption was a spontaneous and endothermic process. Thermodynamics also confirmed that the adsorption was proportionally influenced by higher temperatures. The FT-IR spectroscopy identified the adsorbate/adsorbent binding sites, thus confirming the occurrence of chemisorption. Post-treatment bioassays found a significant decrease in toxicity, obtaining just 10% of D. similis mortality after adsorption treatments. Therefore, the synthesized beads from this research can potentially be applied to the treatment of textile effluents.


Assuntos
Antraquinonas/química , Poluentes Químicos da Água/química , Adsorção , Quitosana/química , Corantes/química , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Têxteis , Termodinâmica
18.
Data Brief ; 20: 903-908, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30225300

RESUMO

Three types of adsorbents of powdered activated carbon (PAC), treated PAC, and PAC/γ ≈ Fe2O3 nanocomposite were used. The adsorption experiments were performed in batch conditions. pHZPC of PAC/γ ≈ Fe2O3 was 6.7. As a result, at lower than pHZPC, acidic pH, the adsorption of alizarin red S on PAC/γ ≈ Fe2O3 was favourable. The maximum of alizarin red S adsorption of PAC, treated PAC, and PAC/γ ≈ Fe2O3 was 24.5 mg/g, 57.8 mg/g, and 112.56 mg/g, respectively. The models of Langmuir and pseudo-first-order were a fit model to describe the adsorption isotherm and the Kinetic, respectively. The PAC/γ ≈ Fe2O3 is a promising class of the adsorbents in the adsorption of various dyes from textile effluents.

19.
Bioresour Technol ; 253: 355-367, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29352640

RESUMO

The rampant industrialization and unchecked growth of modern textile production facilities coupled with the lack of proper treatment facilities have proliferated the discharge of effluents enriched with toxic, baleful, and carcinogenic pollutants including dyes, heavy metals, volatile organic compounds, odorants, and other hazardous materials. Therefore, the development of cost-effective and efficient control measures against such pollution is imperative to safeguard ecosystems and natural resources. In this regard, recent advances in biotechnology and microbiology have propelled bioremediation as a prospective alternative to traditional treatment methods. This review was organized to address bioremediation as a practical option for the treatment of dyes by evaluating its performance and typical attributes. It further highlights the current hurdles and future prospects for the abatement of dyes via biotechnology-based remediation techniques.


Assuntos
Biodegradação Ambiental , Corantes , Metais Pesados , Estudos Prospectivos , Têxteis
20.
Artigo em Inglês | MEDLINE | ID: mdl-29346015

RESUMO

This study aimed to explore the efficiency of two adsorbents, cork granules with different granulometry and titanium dioxide nanomaterial, in the removal of chemical oxygen demand (COD), colour and toxicity from a textile effluent. The adsorption assays with cork were unsatisfactory in the removal of chemical parameters however they eliminated the acute toxicity of the raw effluent to Daphnia magna. The assay with TiO2 NM did not prove to be efficient in the removal of colour and COD even after 240 min of contact; nevertheless it also reduced the raw effluent toxicity. The best approach for complete remediation of the textile effluent has not yet been found however promising findings were achieved, which may be an asset in future adsorption assays.


Assuntos
Nanoestruturas/química , Quercus/química , Indústria Têxtil , Titânio/química , Poluentes Químicos da Água/farmacocinética , Purificação da Água/métodos , Adsorção , Animais , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Cor , Corantes/isolamento & purificação , Corantes/farmacocinética , Corantes/farmacologia , Daphnia/efeitos dos fármacos , Resíduos Industriais/análise , Têxteis/análise , Testes de Toxicidade Aguda , Poluentes Químicos da Água/isolamento & purificação , Poluentes Químicos da Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA