Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.112
Filtrar
1.
Braz. j. biol ; 84: e256933, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1364505

RESUMO

Abstract Anticarsia gemmatalis Hünber, 1818 is one of the main defoliating species in the soybean crop. Bacillus thuringiensis Berliner, 1915, is a bacterium used in the biological control of this pest species. Resistant populations and their sublethal effects caused by the use of the bacteria have already been reported; however, there are no studies on phenotypic plasticity in adulthood exposed to Bt-based bioinsecticide sub-doses. This study aimed to evaluate the morphometry of A. gemmatalis adults under laboratory conditions submitted to the Bt-based bioinsecticide Dipel® over the three generations. The body segments mensuread were width, length, and area of the anterior and posterior wings, the weight of the integument, chest, abdomen, wings, and the whole adult of males and females. Among the treatments, LC5 in the first generation and LC10 in the second generation were those with lower thresholds in relation to the weight of the chest and abdomen, considering the proportions of the body smaller than the females. The female's weight adulthood was reduced by 10% about males, and, only in the first generation. Males have larger body size and more pronounced phenotypic plasticity than females. Here, we demonstrate the first study assessing the phenotypic plasticity of A. gemmatalis adults.


Resumo Anticarsia gemmatalis Hünber, 1818 é uma das principais espécies desfolhadoras da cultura da soja. Bacillus thuringiensis Berliner, 1915, é uma bactéria utilizada no controle biológico dessa espécie de praga. Populações resistentes e seus efeitos subletais causados pelo uso da bactéria já foram relatados, no entanto, não há estudos sobre a plasticidade fenotípica na idade adulta exposta a subdoses de bioinseticida à base de Bt. Este trabalho teve como objetivo avaliar a morfometria de adultos de A. gemmatalis em condições de laboratório submetidos ao bioinseticida Dipel® ao longo de três gerações. Os segmentos corporais mensuráveis eram largura, comprimento e área das asas anterior e posterior, o peso do tegumento, tórax, abdômen, asas e todo o adulto de machos e fêmeas. Dentre os tratamentos, CL5 na primeira geração e CL10 na segunda geração foram aqueles com limiares mais baixos em relação ao peso do tórax e abdômen, considerando as proporções do corpo menores que as do sexo feminino. O peso da fêmea na idade adulta foi reduzido em 10% em relação aos machos e, apenas na primeira geração. Os machos têm tamanho corporal maior e plasticidade fenotípica mais pronunciada do que as fêmeas. Este estudo demonstra o primeiro estudo avaliando a plasticidade fenotípica de adultos de A. gemmatalis.

2.
Braz. j. biol ; 83: e250003, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1339392

RESUMO

Abstract This study estimated the length-weight relationships of 16 fish species occurring close to the shores of sandy beaches along the lower Negro River basin, Brazilian Amazon. The specimens were captured for one day each month, in October to November 2016, early in the morning and early evening, using trawl net (20 m taken for standard length (SL - 0.1 cm precision) and total weight (TW - 0.01 g precision). The parameters a and b of the equation WT = a.LTb were estimated. The a values ranged from 0.0018 to 0.0226 and b values ranged from 2.5271 to 3.3244. This study also provides new data on of maximum lengths for six species, Amazonsprattus scintilla, Brycon pesu, Moenkhausia megalops, Pachyurus paucirastrus, Reganella depressa and Trachydoras microstomus, and new reports of the LWRs parameters of 15 fish species.


Resumo Este estudo estimou as relações comprimento-peso de 16 espécies de peixes que ocorrem às margens de praias arenosas ao longo da bacia do baixo Rio Negro, Amazônia brasileira. As espécies foram capturadas durante um dia de cada mês, de outubro a novembro de 2016, no início da manhã e no início da noite, usando rede de cerco (20 m de comprimento e 3,5 m de altura, 5 malha mm entre nós opostos). As medidas foram feitas para comprimento padrão (SL - precisão de 0,1 cm) e peso total (TW - precisão de 0,01 g). Os parâmetros a e b da equação WT = a.LTb foram estimados. Os valores de a variaram de 0,0018 a 0,0226 e os valores de b variaram de 2,5271 a 3,3244. Este estudo também fornece novos dados sobre comprimentos máximos para seis espécies, Amazonsprattus scintilla, Brycon pesu, Moenkhausia megalops, Pachyurus paucirastrus, Reganella depressa e Trachydoras microstomus, e novos reportes dos parâmetros da LWRs de 15 espécies de peixes.


Assuntos
Animais , Perciformes , Caraciformes , Characidae , Brasil , Rios
3.
Braz. J. Biol. ; 83: 1-5, 2023. mapas, tab
Artigo em Inglês | VETINDEX | ID: vti-765542

RESUMO

This study estimated the length–weight relationships of 16 fish species occurring close to the shores of sandy beaches along the lower Negro River basin, Brazilian Amazon. The specimens were captured for one day each month, in October to November 2016, early in the morning and early evening, using trawl net (20 m length and 3.5 m height, 5 mm mesh between opposite knots). Measurements were taken for standard length (SL 0.1 cm precision) and total weight (TW 0.01 g precision). The parameters a and b of the equation WT = a.LTb were estimated. The a values ranged from 0.0018 to 0.0226 and b values ranged from 2.5271 to 3.3244. This study also provides new data on of maximum lengths for six species, Amazonsprattus scintilla, Brycon pesu, Moenkhausia megalops, Pachyurus paucirastrus, Reganella depressa and Trachydoras microstomus, and new reports of the LWRs parameters of 15 fish species.(AU)


Este estudo estimou as relações comprimento-peso de 16 espécies de peixes que ocorrem às margens de praias arenosas ao longo da bacia do baixo Rio Negro, Amazônia brasileira. As espécies foram capturadas durante um dia de cada mês, de outubro a novembro de 2016, no início da manhã e no início da noite, usando rede de cerco (20 m de comprimento e 3,5 m de altura, 5 malha mm entre nós opostos). As medidas foram feitas para comprimento padrão (SL - precisão de 0,1 cm) e peso total (TW - precisão de 0,01 g). Os parâmetros a e b da equação WT = a.LTb foram estimados. Os valores de a variaram de 0,0018 a 0,0226 e os valores de b variaram de 2,5271 a 3,3244. Este estudo também fornece novos dados sobre comprimentos máximos para seis espécies, Amazonsprattus scintilla, Brycon pesu, Moenkhausia megalops, Pachyurus paucirastrus, Reganella depressa e Trachydoras microstomus, e novos reportes dos parâmetros da LWRs de 15 espécies de peixes.(AU)


Assuntos
Animais , Peixes/anatomia & histologia , Peixes/crescimento & desenvolvimento
4.
Artigo em Inglês | MEDLINE | ID: mdl-35934897

RESUMO

Domestication leads to phenotypic characteristics that have been described to be similar across species. However, this "domestication syndrome" has been subject to debate, related to a lack of evidence for certain characteristics in many species. Here we review diverse literature and provide new data on cranial shape changes due to domestication in the European rabbit (Oryctolagus cuniculus) as a preliminary case study, thus contributing novel evidence to the debate. We quantified cranial shape of 30 wild and domestic rabbits using micro-computed tomography scans and three-dimensional geometric morphometrics. The goal was to test (1) if the domesticates exhibit shorter and broader snouts, smaller teeth, and smaller braincases than their wild counterparts; (2) to what extent allometric scaling is responsible for cranial shape variation; (3) if there is evidence for more variation in the neural crest-derived parts of the cranium compared with those derived of the mesoderm, in accordance with the "neural crest hypothesis." Our own data are consistent with older literature records, suggesting that although there is evidence for some cranial characteristics of the "domestication syndrome" in rabbits, facial length is not reduced. In accordance with the "neural crest hypothesis," we found more shape variation in neural crest versus mesoderm-derived parts of the cranium. Within the domestic group, allometric scaling relationships of the snout, the braincase, and the teeth shed new light on ubiquitous patterns among related taxa. This study-albeit preliminary due to the limited sample size-adds to the growing evidence concerning nonuniform patterns associated with domestication.

5.
Evol Lett ; 6(3): 234-244, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35784454

RESUMO

Many biological traits covary with body size, resulting in an allometric relationship. Identifying the evolutionary drivers of these traits is complicated by possible relationships between a candidate selective agent and body size itself, motivating the widespread use of multiple regression analysis. However, the possibility that multiple regression may generate misleading estimates when predictor variables are correlated has recently received much attention. Here, we argue that a primary source of such bias is the failure to account for the complex causal structures underlying brains, bodies, and agents. When brains and bodies are expected to evolve in a correlated manner over and above the effects of specific agents of selection, neither simple nor multiple regression will identify the true causal effect of an agent on brain size. This problem results from the inclusion of a predictor variable in a regression analysis that is (in part) a consequence of the response variable. We demonstrate these biases with examples and derive estimators to identify causal relationships when traits evolve as a function of an existing allometry. Model mis-specification relative to plausible causal structures, not collinearity, requires further consideration as an important source of bias in comparative analyses.

6.
Ecology ; : e3809, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35792515

RESUMO

Reversing biodiversity declines requires a better understanding of organismal mobility, as movement processes dictate the scale at which species interact with the environment. Previous studies have demonstrated that species foraging ranges, and therefore, habitat use increases with body size. Yet, foraging ranges are also affected by other life-history traits, such as sociality, which influence the need of and ability to detect resources. We evaluated the effect of body size and sociality on potential and realized foraging ranges using a compiled dataset of 383 measurements for 81 bee species. Potential ranges were larger than realized ranges and increased more steeply with body size. Highly eusocial species had larger realized foraging ranges than primitively eusocial or solitary taxa. We contend that potential ranges describe species movement capabilities, whereas realized ranges depict how foraging movements result from interactions between species traits and environmental conditions. Furthermore, the complex communication strategies and large colony sizes in highly eusocial species may facilitate foraging over wider areas in response to resource depletion. Our findings should contribute to a greater understanding of landscape ecology and conservation, as traits that influence movement mediate species vulnerability to habitat loss and fragmentation.

7.
New Phytol ; 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842785

RESUMO

Major dimensions of plant ecological strategies have been widely studied bringing forward the concept of 'economic spectra' of plants. Sexual reproductive traits, 'floral traits', have been largely neglected in this context, despite their strong link to fitness. Here, we aimed at integrating floral traits into the dimensionality of plant form and function so far dominated by vegetative traits. We used principal component analyses and constructed trait networks to assess the correlation structure of leaf, belowground, plant size-related, and floral traits. We studied forbs within two independent datasets; one compiled from central European trait databases and one sampled in the Austrian Alps. Floral traits defined the second dimension of trait variability within both datasets, while plant size determined the first dimension. Floral traits were largely independent from the leaf economic spectrum. Flower size, however, positively scaled with plant size and leaf size. Mating system was the most well-connected trait across modules of plant tissue/organ types. The independence of floral traits was consistent also after accounting for phylogenetic relationships between species. Floral traits explained a unique part of the variation in plant form and function and thus, likely play a distinctive ecological role within the whole plant economic spectrum.

8.
Genetica ; 150(3-4): 161-169, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35857239

RESUMO

Phenotypic integration is a concept related to the cascade of trait relationships from the lowest organizational levels, i.e. genes, to the highest, i.e. whole-organism traits. However, the cause-and-effect linkages between traits are notoriously difficult to determine. In particular, we still lack a mathematical framework to model the relationships involved in the integration of phenotypic traits. Here, we argue that allometric models developed in ecology offer testable mathematical equations of trait relationships across scales. We first show that allometric relationships are pervasive in biology at different organizational scales and in different taxa. We then present mechanistic models that explain the origin of allometric relationships. In addition, we emphasized that recent studies showed that natural variation does exist for allometric parameters, suggesting a role for genetic variability, selection and evolution. Consequently, we advocate that it is time to examine the genetic determinism of allometries, as well as to question in more detail the role of genome size in subsequent scaling relationships. More broadly, a possible-but so far neglected-solution to understand phenotypic integration is to examine allometric relationships at different organizational levels (cell, tissue, organ, organism) and in contrasted species.


Assuntos
Fenótipo , Tamanho Corporal
9.
Proc Biol Sci ; 289(1979): 20220758, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35892218

RESUMO

Animals vary widely in body size within and across species. This has consequences for the function of organs and body parts in both large and small individuals. How these scale, in relation to body size, reveals evolutionary investment strategies, often resulting in trade-offs between functions. Eyes exemplify these trade-offs, as they are limited by their absolute size in two key performance features: sensitivity and spatial acuity. Due to their size polymorphism, insect compound eyes are ideal models for studying the allometric scaling of eye performance. Previous work on apposition compound eyes revealed that allometric scaling led to poorer spatial resolution and visual sensitivity in small individuals, across a range of insect species. Here, we used X-ray microtomography to investigate allometric scaling in superposition compound eyes-the second most common eye type in insects-for the first time. Our results reveal a novel strategy to cope with the trade-off between sensitivity and spatial acuity, as we show that the eyes of the hummingbird hawkmoth retain an optimal balance between these performance measures across all body sizes.


Assuntos
Olho , Mariposas , Animais , Tamanho Corporal , Olho/anatomia & histologia , Insetos
10.
Arthropod Struct Dev ; 70: 101175, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35803030

RESUMO

Species' mean relative head size decreases with increasing species mean body size in paper wasps, which may have important implications for biomechanics in these flying animals. Here we quantify the allometric relationship (log/log slope) of head size to body size in paper wasps. We sampled species in two genera (Agelaia and Polybia) to test whether head/body allometry was consistent among genera. Head mass/total mass relationships were significantly hypoallometric (log/log slopes ∼0.90) and statistically similar between Agelaia and Polybia. We reanalyzed previously published multi-genus data to calculate the slope of head/body allometry, and to compare two different aspects of head size: the allometry of head mass which could impact weight distribution along the longitudinal axis of the body, and the allometry of head volume which could impact fluid resistance and mobility. The multi-genus data set yielded a similar estimate for the slope of head mass allometry (∼0.90), but the slope of head volume allometry was significantly shallower (∼0.80): relative head volume increases faster than relative head mass as total size decreases. We suggest the demands of brain housing affect the greater investment in head size and head weight in smaller species. Relative brain size is greater for smaller-bodied species within clades (Haller's rule), and brain volume had a significantly lower allometric slope than both head mass and head volume. Relatively large brains may require increased relative head size in smaller-bodied species. Brain housing may represent a basic developmental constraint on head size and head weight, and brain allometry could consequently impact the relationships of body shape and body mass distribution to body size.

11.
Biology (Basel) ; 11(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35741421

RESUMO

There exists a negative allometry between vertebrate brain size and body size. It has been well studied among placental mammals but less is known regarding marsupials. Consequently, this study explores brain/body ontogenetic growth in marsupials and compares it with placental mammals. Pouch young samples of 43 koalas (Phascolarctos cinereus), 28 possums (Trichosurus vulpecula), and 36 tammar wallabies (Macropus eugenii) preserved in a solution of 10% buffered formalin, as well as fresh juveniles and adults of 43 koalas and 40 possums, were studied. Their brain size/body size allometry was compared to that among humans, rhesus monkeys, dogs, cats, rats, guinea pigs, rabbits, wild pigs, and mice. Two patterns of allometric curves were found: a logarithmic one (marsupials, rabbits, wild pigs, and guinea pigs) and a logistic one (the rest of mammals).

12.
J Mammal ; 103(3): 560-575, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35707679

RESUMO

Knowledge of population biological parameters can contribute to assessing the resilience of a population in the face of increasing anthropogenic pressures. Southern Hemisphere long-finned pilot whales (Globicephala melas edwardii) are susceptible to high rates of live stranding-related mortality. However, the biological parameters of this population largely are unknown. In this study, age, growth, allometry, and sexual dimorphism are described using teeth and external body measurements obtained from 515 male, 776 female, and 229 individuals of unknown sex, stranded on the New Zealand coastline between 1948 and 2017. Maximum ages of 31 and 38 years were estimated for males (n = 163) and females (n = 239), respectively. Females ranged in length from 160 to 500 cm (modal size class 400-449 cm) and males from 165 to 622 cm (modal size class 500-549 cm). Length-at-birth for both sexes was estimated at 170 cm using a logistic regression model. Growth models for both sexes indicated a preliminary rapid growth phase followed by a second phase of slower growth. For males, a two-phase growth model also indicated a moderate growth spurt around the average age at attainment of sexual maturity (ca.12-13 years). Asymptotic lengths were estimated at 570 and 438 cm for males and females, respectively. We found strong evidence of sexual size dimorphism, with males significantly larger than females for 13 of 14 external measurements. We also found sexual dimorphism with respect to shape, with males having proportionally longer pectoral fins, wider tail flukes, and taller dorsal fins, than females. Estimates of length-at-birth, maximum ages, and sexual shape dimorphism for G. m. edwardii differed from those previously reported for the North Atlantic subspecies (G. m. melas), which may indicate subspecies or population-level differences in morphology, longevity, and sociality.

13.
R Soc Open Sci ; 9(6): 220370, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35719882

RESUMO

Several extinct chinchilloid rodents in the clades Dinomyidae and Neoepiblemidae grew to sizes much larger than any living rodent species. However, the exact size of these rodents is a matter of controversy, with authors disagreeing due to issues over extrapolation and model selection. Prior estimates for the two largest extinct rodents, Phoberomys pattersoni and Josephoartigasia monesi, range from 230 to 700 kg for P. pattersoni and 350 to 2600 kg for J. monesi. Here, I estimate body mass in large, extinct rodents using occipital condyle width (OCW), a strong predictor of body size in mammals, using a dataset that circumvents many of the issues faced by previous studies of species. Body masses under shape-corrected OCW are much lower than previous studies: 108-200 kg for P. pattersoni and 480 kg for J. monesi. Mass estimates for other rodent taxa (Neoepiblema, Telicomys, Dinomys) agree with previous studies. Estimates using skull length, corrected condyle width and head-body length are similar, suggesting estimates of 150 kg for Phoberomys and 480 kg for Josephoartigasia, and that larger estimates of 700 and 1200 kg are unlikely. High estimates in previous studies appear to be due to the unrecognized, nonlinear relationship between certain skeletal measurements (skull size) and body mass.

14.
J Morphol ; 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35670656

RESUMO

Morphological studies often need to reference body size to correctly characterise the shape of organisms. In arthropods, the most commonly used reference for this is the length or width of the carapace, thorax, or the prosoma in the case of chelicerates. However, in the case of animals with unlimited growth, such as whip spiders, this measure could be irrelevant if growth is allometric. In this study, we analyse the ontogenetic modifications in prosoma outline shape in whip spiders during growth and compare the differences in shape between species. Differences are important for the relative prosoma width between species and, in the case of Damon medius, during growth in the juvenile stages, whereas the shape remains stable in mature stages. We conclude that a one-dimensional measure (i.e., length or width) suffices for mature specimens of a single species or family, but for larger studies, or when including immature specimens, at least the prosoma area (within the outline shape) should be used as a size estimator.

15.
Artigo em Inglês | MEDLINE | ID: mdl-35676886

RESUMO

For centuries, it has been understood that the final size of adult holometabolous insects is determined by the end of the larval stage, and that once they transform to adults, holometabolous insects do not grow. Despite this, no previous study has directly tested these "old truths" across holometabolous insects. Here, we demonstrate that final adult size is set at the end of the last larval stage in species representing each of the four orders of holometabolous insects: the fruit fly Drosophila melanogaster (Diptera), the tobacco hornworm Manduca sexta (Lepidoptera), the dung beetle Onthophagus taurus (Coleoptera), and the Florida carpenter ant Camponotus floridanus (Hymenoptera). Furthermore, in both D. melanogaster and C. floridanus, we show that the size of adult individuals fluctuates but does not significantly change. Therefore, our study finally confirms these two basic assumptions in the biology of insects, which have for centuries served as the foundation for studies of insect growth, size, and allometry.

16.
Trends Ecol Evol ; 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35717415

RESUMO

Plant life-history variation reflects different outcomes of natural selection given the strictures of resource allocation trade-offs. However, there is limited theory of selection predicting how leaves, stems, roots, and reproductive organs should evolve in concert across environments. Here, we synthesize two optimality theories to offer a general theory of plant carbon economics, named as Gmax theory, that shows how life-history variation is limited to phenotypes that have an approximately similar lifetime net carbon gain per body mass. In consequence, fast-slow economics spectra are the result of trait combinations obtaining similar lifetime net carbon gains from leaves and similar net carbon investment costs in stems, roots, and reproductive organs. Gmax theory also helps explain ecosystem and crop productivity and even helps guide carbon conservation strategies.

17.
J Evol Biol ; 35(7): 905-918, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35647730

RESUMO

Sexual selection influences the expression of secondary sexual traits, which are costly to produce and maintain and are thus considered honest indicators of individual condition. Therefore, sexual selection could select for high-quality individuals able to respond to stressful conditions, with impacts on population-level fitness. We sampled dung beetles from 19 pastures and investigated if contamination by herbicides and veterinary drugs modifies male investment in sexually selected traits and has associated population-level effects. We measured horn size, condition dependence (i.e. size-corrected body mass) and allometry, besides abundance and sexual size dimorphism in three species: Copris incertus, Euoniticellus intermedius and Digitonthophagus gazella. In contrary to our expectations, horn size was independent of contamination and individual condition. However, strong positive allometric relationships were reduced by herbicide contamination for C. incertus and D. gazella and were increased by ivermectin for C. incertus, revealing differential investment in horn production according to body size in contaminated habitats. At the population level, large-horned C. incertus males were more abundant in contaminated pastures, potentially revealing a case of evolutionary rescue by sexual selection or a plastic response to higher population densities. Finally, chemical compounds affected the sexual size dimorphism of all three species, with potential effects on female fecundity or intrasexual selection. Together, our findings indicate that contamination interferes with sexual selection processes in the wild, opening new questions regarding the role of sexual selection in favouring species persistence in contaminated environments.


Assuntos
Besouros , Animais , Evolução Biológica , Tamanho Corporal , Besouros/genética , Feminino , Masculino , Caracteres Sexuais , Seleção Sexual
18.
Integr Comp Biol ; 2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35657728

RESUMO

An amphidromous goby, Sicyopterus japonicus, migrates from the ocean to upstream regions of many streams and rivers in the Pacific coasts of Japan and Taiwan. Using its mouth and fused pelvic fins (pelvic sucker), this gobiid species exhibits a rock-climbing behavior and surmounts sizable waterfalls, which block the upstream movement of many of its competitors and predators. When gobies emerge from the water to commence their climbing behavior, the change in effective density (i.e., lack of buoyancy) that occurs in this transition substantially increases the force required for adhesion. Consequently, these fish must exert adhesive suction strong enough to support their body weight against gravity during climbing on the rock surface. Suction performance for adhesion and modulatory capacity of S. japonicus were evaluated with two different sets of experimental conditions: climbing on the vertical surface with no water flow, versus climbing on a 60o-inclined surface with 2 L/min flow. Individuals of S. japonicus showed 50.7% greater mean safety factor (suction force for adhesion/gravitational force) and 56.6% shorter time to reach maximum pressure differential during climbing on the 60o-inclined surface with water rushing over their bodies than during climbing on the vertical surface with no water flow. These results indicate that when climbing with drag force from flowing water, greater functional demands are imposed and therefore, S. japonicus is required to increase neuromuscular stimulation of the pelvic muscles to elevate suction performance. In addition, S. japonicus individuals at different ontogenetic stages modulate their climbing behaviors and strategies to accommodate changing functional demands as they make transitions between different inclines, as well as media, while ascending waterfalls.

19.
Evolution ; 76(7): 1607-1618, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35709485

RESUMO

Eyes are remarkable systems to investigate the complex interaction between ecological drivers and phenotypic outcomes. Some animals, such as scallops, have many eyes for visual perception, but to date, the evolution of multiple-eye systems remains obscure. For instance, it is unclear whether eye number changes over a lifetime or varies among species. Scallops are a suitable model group to investigate these questions considering the interspecific variation of adult size and ecological diversity. We tested whether eye abundance scales with body size among individuals and species and whether it varies with life habits. We performed comparative analyses, including a phylogenetic ANCOVA and evolutionary model comparisons, based on eye count and shell height (as a proxy of body size) across 31 scallop species. Our analyses reveal that patterns of increasing relationship with body size are not concordant among taxa and suggest ontogenetic convergence caused by similar ecologies. Accordingly, selective optima in eye numbers are associated with shifts in life habits. For instance, species with increased mobility have significantly more eyes than less mobile species. The convergent evolution of greater eye abundance in more mobile scallops likely indicates a visual improvement based on increased levels of oversampling of the surrounding environment.


Assuntos
Evolução Biológica , Pectinidae , Animais , Olho , Hábitos , Filogenia
20.
Am J Bot ; 109(7): 1097-1107, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35694727

RESUMO

PREMISE: Competition is an important driver of tree mortality and thus affects forest structure and dynamics. Tree architectural traits, such as height-to-diameter (H-D) and branch length-to-diameter (L-d) relationships are thought to influence species competitiveness by affecting light capture. Unfortunately, little is known about how the H vs. D and L vs. d scaling exponents are related to tree performance (defined in the context of growth vigor) in competition. METHODS: Using data from field surveys of 1547 individuals and destructive sampling of 51 trees with 1086 first-order branches from a high-density Pinus massoniana forest, we explored whether the H vs. D and the L vs. d scaling exponents respectively differed numerically across tree performance and branch vertical position in crowns. RESULTS: The results indicated that (1) the H vs. D scaling exponent decreased as tree performance declined; (2) the L vs. d scaling exponent differed across tree performance classes (i.e., the scaling exponent of "inferior" trees was significantly larger than that of "moderate" and "superior" trees); (3) the L vs. d scaling exponent decreased as branch position approached ground level; and (4) overall, the branch scaling exponent decreased as tree performance improved in each crown layer, but decreased significantly in the intermediate layer. CONCLUSIONS: This study highlights the variation within (and linkage among) length-to-diameter scaling relationships across tree performance at the individual and branch levels. This linkage provides new insights into potential mechanisms of tree growth variation (and even further mortality) under competition in subtropical forests.


Assuntos
Pinus , Florestas , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA