Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Neuropsychiatr Dis Treat ; 20: 493-503, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482024

RESUMO

Background: Cognitive impairment is one of the common concomitant symptoms of depression. The aims of the present study were to predict the occurrence of mild cognitive impairment (MCI) in patients with depression. Methods: In this study, 217 patients with depression were recruited. Demographic data, serum indices and ERP indices from all participants were collected in the baseline period. The participants were followed for one year, and data from 200 patients were included in final analysis. Patients with depression were divided into those with MCI group (DWM group; n=145) and those without MCI (DWOM group; n=55). Data from the DWM group and the DWOM group were used to construct a logistic regression model, and a receiver operating characteristic (ROC) curve was drawn. Another 72 patients were used to validate the accuracy of our model. Results: Compared with DWOM individuals, DWM individuals were more likely to live alone (P<0.05), had lower baseline serum levels of brain-derived neurotrophic factor (BDNF), fibroblast growth factor 2 (FGF2), and fibroblast growth factor 22 (FGF22) (P<0.05), and exhibited higher baseline latencies of P300, mismatch negativity (MMN), and N200 (P<0.05). Baseline serum BDNF and FGF22 levels, along with the P300 latency, were selected to construct the regression model using logistic regression. The regression equation was [Formula: see text], and the combination of the 3 indices yielded an area under the ROC curve (AUC) of 0.790 and a predictive accuracy of 0.806. Conclusion: The logistic regression model and ROC curves based on serum BDNF and FGF22 levels and the P300 latency could provide a more effective means to predict the occurrence of MCI in patients with depression.

2.
Environ Sci Pollut Res Int ; 31(12): 18887-18899, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38353820

RESUMO

The scarcity of freshwater for agriculture in many regions has led to the application of sewage and saline water for irrigation. Irrigation with non-conventional water sources could become a non-harmful process for plant cultivation, and the effects of their use on crops should be monitored in order to develop optimal management strategies. One possibility to overcome potential barriers is to use biostimulants such as Trichoderma spp. fungi. Tomato is a crop of great economic importance in the world. This study investigated the joint effects of Trichoderma afroharzianum T-22 on tomato plants irrigated with simulated unconventional waters. The experiment consisted of a control and three water treatments. In the control, the plants were watered with distilled water. The three water treatments were obtained by using an irrigation water added with nitrogen, a wastewater effluent, and a mixed groundwater-wastewater effluents. Potted tomato plants (variety Bobcat) were grown in a controlled growth chamber. Antioxidant activity, susceptibility to the aphids Macrosiphum euphorbiae, and tomato plant growth parameters were estimated. Trichoderma afroharzianum T-22 had a positive effect on plant growth and antioxidant defenses when plants were irrigated with distilled water. Instead, no significant morphological effects induced by T. afroharzianum T-22 on plants were observed when unconventional water was used for irrigation. However, inoculation with T. afroharzianum T-22 activated a stress response that made the colonized plants more susceptible to aphid development and increased their fecundity and longevity. Thanks to this study, it may be possible for the first time to open a new discussion on the practical possibility of using reclaimed wastewater for crop irrigation with the addition of a growth-promoting fungal symbiont.


Assuntos
Afídeos , Hypocreales , Solanum lycopersicum , Trichoderma , Animais , Águas Residuárias , Afídeos/fisiologia , Antioxidantes , Trichoderma/fisiologia , Irrigação Agrícola
3.
Chin J Nat Med ; 22(2): 112-126, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38342564

RESUMO

The tumor suppressor protein p53 is central to cancer biology, with its pathway reactivation emerging as a promising therapeutic strategy in oncology. This study introduced LZ22, a novel compound that selectively inhibits the growth, migration, and metastasis of tumor cells expressing wild-type p53, demonstrating ineffectiveness in cells devoid of p53 or those expressing mutant p53. LZ22's mechanism of action involves a high-affinity interaction with the histidine-96 pocket of the MDM2 protein. This interaction disrupted the MDM2-p53 binding, consequently stabilizing p53 by shielding it from proteasomal degradation. LZ22 impeded cell cycle progression and diminished cell proliferation by reinstating the p53-dependent suppression of the CDK2/Rb signaling pathway. Moreover, LZ22 alleviated the p53-dependent repression of Snail transcription factor expression and its consequent EMT, effectively reducing tumor cell migration and distal metastasis. Importantly, LZ22 administration in tumor-bearing mice did not manifest notable side effects. The findings position LZ22 as a structurally unique reactivator of p53, offering therapeutic promise for the management of human cancers with wild-type TP53.


Assuntos
Fatores de Transcrição , Proteína Supressora de Tumor p53 , Camundongos , Humanos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transdução de Sinais , Quinase 2 Dependente de Ciclina/metabolismo
4.
J Alzheimers Dis ; 96(4): 1663-1683, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38073391

RESUMO

BACKGROUND: There is a lack of understanding in the molecular and cellular mechanisms of Alzheimer's disease that has hindered progress on therapeutic development. The focus has been on targeting toxic amyloid-ß (Aß) pathology, but these therapeutics have generally failed in clinical trials. Aß is an aggregation-prone protein that has been shown to disrupt cell membrane structure in molecular biophysics studies and interfere with membrane receptor signaling in cell and animal studies. Whether the lipid membrane or specific receptors are the primary target of attack has not been determined. OBJECTIVE: This work elucidates some of the interplay between membrane cholesterol and Aß42 on HT22 neuronal cell viability, morphology, and platelet-derived growth factor (PDGF) signaling pathways. METHODS: The effects of cholesterol depletion by methyl-ß-cyclodextrin followed by treatment with Aß and/or PDGF-AA were assessed by MTT cell viability assays, western blot, optical and AFM microscopy. RESULTS: Cell viability studies show that cholesterol depletion was mildly protective against Aß toxicity. Together cholesterol reduction and Aß42 treatment compounded the disruption of the PDGFα receptor activation. Phase contrast optical microscopy and live cell atomic force microscopy imaging revealed that cytotoxic levels of Aß42 caused morphological changes including cell membrane damage, cytoskeletal disruption, and impaired cell adhesion; cell damage was ameliorated by cellular cholesterol depletion. CONCLUSIONS: Cholesterol depletion impacted the effects of Aß42 on HT22 cell viability, morphology, and receptor tyrosine kinase signaling.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Sobrevivência Celular , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/metabolismo , Colesterol/metabolismo , Proteínas Tirosina Quinases , Fragmentos de Peptídeos/metabolismo
5.
J Time Ser Econom ; 15(2): 151-198, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38155754

RESUMO

The parametric estimators applied by rolling are commonly used for the analysis of time series with nonlinear patterns, including time varying parameters and local trends. This paper examines the properties of rolling estimators in the class of temporally local maximum likelihood (TLML) estimators. We consider the TLML estimators of (a) constant parameters, (b) stochastic, stationary parameters and (c) parameters with the ultra-long run (ULR) dynamics bridging the gap between the constant and stochastic parameters. We show that the weights used in the TLML estimators have a strong impact on the inference. For illustration, we provide a simulation study of the epidemiological susceptible-infected-susceptible (SIS) model, which explores the finite sample performance of TLML estimators of a time varying contagion parameter.

6.
Nutrients ; 15(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37432218

RESUMO

Fibroblast growth factor 21 (FGF21) is a glucose and lipid metabolic regulator. Recent research revealed that FGF21 was also induced by inflammatory stimuli. Its role in inflammatory bowel disease (IBD) has not been investigated. In this study, an experimental IBD model was established in FGF21 knockout (KO) and wild-type (WT) mice by adding 2.5% (wt/vol) dextran sodium sulfate (DSS) to their drinking water for 7 days. The severity of the colitis and the inflammation of the mouse colon tissues were analyzed. In WT mice, acute DSS treatment induced an elevation in plasma FGF21 and a significant loss of body weight in a time-dependent manner. Surprisingly, the loss of body weight and the severity of the colitis induced by DSS treatment in WT mice were significantly attenuated in FGF21 KO mice. Colon and circulating pro-inflammatory factors were significantly lower in the FGF21 KO mice compared to the WT mice. As shown by BrdU staining, the FGF21 KO mice demonstrated increased colonic epithelial cell proliferation. DSS treatment reduced intestinal Paneth cell and goblet cell numbers in the WT mice, and this effect was attenuated in the FGF21 KO mice. Mechanistically, FGF21 deficiency significantly increased the signal transducer and activator of transcription (STAT)-3 activation in intestinal epithelial cells and increased the expression of IL-22. Further study showed that the expression of suppressor of cytokine signaling-2/3 (SOCS 2/3), a known feedback inhibitor of STAT3, was significantly inhibited in the DSS-treated FGF2 KO mice compared to the WT mice. We conclude that FGF21 deficiency attenuated the severity of DSS-induced acute colitis, which is likely mediated by enhancing the activation of the IL-22-STAT3 signaling pathway in intestinal epithelial cells.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Camundongos , Colite/induzido quimicamente , Peso Corporal
7.
Inflammation ; 46(5): 1871-1886, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37310646

RESUMO

Periodontitis is a chronic inflammatory disease characterized by the destruction of tooth-supporting tissues. The gingival epithelium is the first barrier of periodontal tissue against oral pathogens and harmful substances. The structure and function of epithelial lining are essential for maintaining the integrity of the epithelial barrier. Abnormal apoptosis can lead to the decrease of functional keratinocytes and break homeostasis in gingival epithelium. Interleukin-22 is a cytokine that plays an important role in epithelial homeostasis in intestinal epithelium, inducing proliferation and inhibiting apoptosis, but its role in gingival epithelium is poorly understood. In this study, we investigated the effect of interleukin-22 on apoptosis of gingival epithelial cells during periodontitis. Interleukin-22 topical injection and Il22 gene knockout were performed in experimental periodontitis mice. Human gingival epithelial cells were co-cultured with Porphyromonas gingivalis with interleukin-22 treatment. We found that interleukin-22 inhibited apoptosis of gingival epithelial cells during periodontitis in vivo and in vitro, decreasing Bax expression and increasing Bcl-xL expression. As for the underlying mechanisms, we found that interleukin-22 reduced the expression of TGF-ß receptor type II and inhibited the phosphorylation of Smad2 in gingival epithelial cells during periodontitis. Blockage of TGF-ß receptors attenuated apoptosis induced by Porphyromonas gingivalis and increased Bcl-xL expression stimulated by interleukin-22. These results confirmed the inhibitory effect of interleukin-22 on apoptosis of gingival epithelial cells and revealed the involvement of TGF-ß signaling pathway in gingival epithelial cell apoptosis during periodontitis.


Assuntos
Células Epiteliais , Periodontite , Humanos , Camundongos , Animais , Células Epiteliais/metabolismo , Periodontite/metabolismo , Apoptose , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Gengiva/metabolismo , Porphyromonas gingivalis/metabolismo
8.
Brain ; 146(9): 3608-3615, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37143322

RESUMO

The duplication of the peripheral myelin protein 22 (PMP22) gene causes a demyelinating type of neuropathy, commonly known as Charcot-Marie-Tooth disease type 1A (CMT1A). Development of effective drugs for CMT1A still remains as an unmet medical need. In the present study, we assessed the role of the transforming growth factor beta 4 (TGFß4)/Nodal axis in the pathogenesis of CMT1A. First, we identified PMP22 overexpression-induced Nodal expression in Schwann cells, which might be one of the downstream effectors in CMT1A. Administration of Nodal protein at the developmental stage of peripheral nerves induced the demyelinating phenotype in vivo. Second, we further isolated TGFß4 as an antagonist that could abolish Nodal-induced demyelination. Finally, we developed a recombinant TGFß4-fragment crystallizable (Fc) fusion protein, CX201, and demonstrated that its application had promyelinating efficacy in Schwann cells. CX201 administration improved the demyelinating phenotypes of CMT1A mouse models at both pre-symptomatic and post-symptomatic stages. These results suggest that the TGFß4/Nodal axis plays a crucial role in the pathogenesis of CMT1A and might be a potential therapeutic target for CMT1A.


Assuntos
Doença de Charcot-Marie-Tooth , Animais , Camundongos , Doença de Charcot-Marie-Tooth/patologia , Proteínas da Mielina/metabolismo , Células de Schwann , Fenótipo , Fator de Crescimento Transformador beta/metabolismo
9.
World J Gastrointest Oncol ; 15(3): 504-522, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37009316

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common digestive system cancers with high mortality rates worldwide. The main ingredients in Mu Ji Fang Granules (MJF) are alkaloids, flavonoids, and polysaccharides. MJF has been used in the clinical treatment of hepatitis, cirrhosis and HCC for more than 30 years. Few previous studies have focused on the mechanism of MJF on tumor immu-nology in the treatment of HCC. AIM: To explore the mechanism of action of MJF on tumor immunology in the treatment of HCC. METHODS: The absorbable ingredients of MJF were identified using Molecule Network related to High Performance Liquid Chromatography-Electron Spray Ionization-Time of Flight- Mass Spectrometry, and hub potential anti-HCC targets were screened using network pharmacology and pathway enrichment analysis. Forty male mice were randomly divided into the Blank, Model, and MJF groups (1.8, 5.4, and 10.8 g/kg/d) following 7 d of oral administration. Average body weight gain, spleen and thymus indices were calculated, tumor tissues were stained with hematoxylin and eosin, and Interferon gamma (IFN-γ), Tumor necrosis factor α (TNF-α), Interleukin-2, aspartate aminotransferase, alanine aminotransferase, alpha-fetoprotein (AFP), Fas, and FasL were measured by Enzyme-linked Immunosorbent Assay. Relevant mRNA expression of Bax and Bcl2 was evaluated by Real Time Quantitative PCR (RT-qPCR) and protein expression of Transforming growth factor ß1 (TGF-ß1) and Mothers against decapentaplegic homolog (SMAD) 4 was assessed by Western blotting. The HepG2 cell line was treated with 10 mg/mL, 20 mg/mL, 30 mg/mL, 40 mg/mL of MJF, and another 3 groups were treated with TGF-ß1 inhibitor (LY364947) and different doses of MJF. Relevant mRNA expression of TNF-α, IFN-γ, Bax and Bcl2 was evaluated by RT-qPCR and protein expression of TGF-ß1, SMAD2, p-SMAD2, SMAD4, and SMAD7 was assessed by Western blotting. RESULTS: It was shown that MJF improved body weight gain and tumor inhibition rate in H22 tumor-bearing mice, protected immune organs and liver function, reduced the HCC indicator AFP, affected immunity and apoptosis, and up-regulated the TGF-ß1/SMAD signaling pathway, by increasing the relative expression of TGF-ß1, SMAD2, p-SMAD2 and SMAD4 and decreasing SMAD7, reducing immune factors TNF-α and IFN-γ, decreasing apoptosis cytokines Fas, FasL and Bcl2/Bax, and inhibiting the effect of LY364947 in HepG2 cells. CONCLUSION: MJF inhibits HCC by activating the TGF-ß1/SMAD signaling pathway, and affecting immune and apoptotic cytokines, which may be due to MJF adjusting immune escape and apoptosis.

10.
Chem Biodivers ; 20(5): e202201243, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37062704

RESUMO

The 22-oxocholestanes compounds have shown an outstanding plant growth promoting activity; they have similar bioactivity as brassinosteroids, so they are normally named as brassinosteroid analogs thinking that they also impact on the known receptor BRI1. However, in silico studies allow us to predict interactions with other receptors and thus it's possible to evaluate them, through receptors of gibberellins, auxins, jasmonates, strigolactones and the protein associated with the BRI1 gene. This article describes the bioactivity of structures SPGP4 and SPGP8 as plant growth-promoting compounds. Both structures present coupling energies and interactions at the same level as epibrassinolide in the protein associated with BRI1 gene. Additionally, interactions through the auxin pathway and to strigolactone receptor were found using selected tests. In the rice lamina tilt, a higher effect was obtained when SPGP4 and SPGP8 were compared to epibrassinolide, although in a lesser level vis à vis to homobrassinolide. In the same way, when SPGP4 and SPGP8 were tested in the Growth Root Model an activity as strigonolactones was observed, enhancing the relationship between the main and secondary roots. However, the growth of coleptiles, when applying auxins, compounds SPGP4 and SPGP8 did not reach the same level as controls. In the tests associated to gibberellins and jasmonic acid, an increased bioactivity was observed, although this behavior was not reflected from the in silico study, possibly due to secondary signaling cascades. This work demonstrates that the 22-oxocolestane compounds SPGP4 and SPGP8 could be used as plant growth hormones, promoting several pathways.


Assuntos
Giberelinas , Reguladores de Crescimento de Plantas , Giberelinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Desenvolvimento Vegetal , Brassinosteroides/farmacologia , Ácidos Indolacéticos/metabolismo
11.
Plant Sci ; 331: 111686, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36963637

RESUMO

Many pattern-recognition receptors (PRRs) and their corresponding ligands have been identified. However, it is largely unknown how similar and different these ligands are in inducing plant innate immunity and affecting plant development. In this study, we examined three well characterized ligands in Arabidopsis thaliana, namely flagellin 22 (flg22), plant elicitor peptide 1 (pep1) and a conserved 20-amino-acid fragment found in most necrosis and ethylene-inducing peptide 1-like proteins (nlp20). Our quantitative analyses detected the differences in amplitude in the early immune responses of these ligands, with nlp20-induced responses typically being slower than those mediated by flg22 and pep1. RNA sequencing showed the shared differentially expressed genes (DEGs) was mostly enriched in defense response, whereas nlp20-regulated genes represent only a fraction of those genes differentially regulated by flg22 and pep1. The three elicitors all inhibited primary root growth, especially pep1, which inhibited both auxin transport and signaling pathway. In addition, pep1 significantly inhibited the cell division and genes involved in cell cycle. Compared with flg22 and nlp20, pep1 induced much stronger expression of its receptor in roots, suggesting a potential positive feedback regulation in the activation of immune response. Despite PRRs and their co-receptor BAK1 were necessary for both PAMP induced immune response and root growth inhibition, bik1 mutant only showed impaired defense response but relatively normal root growth inhibition, suggesting BIK1 acts differently in these two biological processes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flagelina/farmacologia , Flagelina/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Peptídeos/metabolismo , Imunidade Vegetal/genética , Regulação da Expressão Gênica de Plantas , Proteínas Serina-Treonina Quinases/metabolismo
12.
Genes (Basel) ; 14(2)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36833418

RESUMO

Phelan-McDermid syndrome (PMS), caused by pathogenic variants in the SHANK3 gene or 22q13 deletions, is characterized by intellectual disability, autistic features, developmental delays, and neonatal hypotonia. Insulin-like growth factor 1 (IGF-1) and human growth hormone (hGH) have been shown to reverse neurobehavioral deficits in PMS. We assessed the metabolic profiling of 48 individuals with PMS and 50 controls and determined subpopulations by taking the top and bottom 25% of responders to hGH and IGF-1. A distinct metabolic profile for individuals with PMS showed a reduced ability to metabolize major energy sources and a higher metabolism of alternative energy sources. The analysis of the metabolic response to hGH or IGF-1 highlighted a major overlap between both high and low responders, validating the model and suggesting that the two growth factors share many target pathways. When we investigated the effect of hGH and IGF-1 on the metabolism of glucose, the correlation between the high-responder subgroups showed less similarity, whereas the low-responders were still relatively similar. Classification of individuals with PMS into subgroups based on responses to a compound can allow an investigation into pathogenic mechanisms, the identification of molecular biomarkers, an exploration of in vitro responses to candidate drugs, and eventually the selection of better candidates for clinical trials.


Assuntos
Hormônio do Crescimento Humano , Fator de Crescimento Insulin-Like I , Recém-Nascido , Humanos , Fator de Crescimento Insulin-Like I/genética , Hormônio do Crescimento Humano/genética , Fenótipo , Proteínas do Tecido Nervoso/genética
13.
Food Chem X ; 17: 100557, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36845481

RESUMO

The current research was characterized on phenolic metabolite profile including six chemical structures (phenolic acid, luteolin, orientin, apigenin, isoscoparin, and tricin) in wheat seedlings using HPLC-Q-Orbitrap-MS/MS and NMR techniques. Our study was also was the first to demonstrate fluctuations of isolated nine phenolic contents and antioxidant properties in various cultivars of this species with different growth times. The antioxidant abilities differed significantly in the 80 % methanol extracts (600 µg/mL) according to cultivar and growth time, with the highest average activities (DPPH: 82 %; ABTS: 87 %) observed after 7 days. The isolated nine compositions exhibited considerable differences in cultivars and growth times, specifically, isoorientin (6) and isochaftoside (8) were observed the most abundant average contents (99.3; 64.3 mg/100 g), representing approximately 28.3 and 18.3 % (total content: 350.8 mg/100 g). Their total phenolics showed the highest rates (420.8 mg/100 g) at 7 days, followed by 9 â†’ 5 â†’ 12 â†’ 14 days with 374.6 â†’ 366.7 â†’ 350.7 â†’ 241.1 mg/100 g, as the rank orders of antioxidant effects. These findings suggest that wheat seedlings may be a potent source of functional agents.

14.
Comput Struct Biotechnol J ; 21: 688-701, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36659928

RESUMO

The use of computer-aided methods have continued to propel accelerated drug discovery across various disease models, interestingly allowing the specific inhibition of pathogenic targets. Chloride Intracellular Channel Protein 4 (CLIC4) is a novel class of intracellular ion channel highly implicated in tumor and vascular biology. It regulates cell proliferation, apoptosis and angiogenesis; and is involved in multiple pathologic signaling pathways. Absence of specific inhibitors however impedes its advancement to translational research. Here, we integrate structural bioinformatics and experimental research approaches for the discovery and validation of small-molecule inhibitors of CLIC4. High-affinity allosteric binders were identified from a library of 1615 Food and Drug Administration (FDA)-approved drugs via a high-performance computing-powered blind-docking approach, resulting in the selection of amphotericin B and rapamycin. NMR assays confirmed the binding and conformational disruptive effects of both drugs while they also reversed stress-induced membrane translocation of CLIC4 and inhibited endothelial cell migration. Structural and dynamics simulation studies further revealed that the inhibitory mechanisms of these compounds were hinged on the allosteric modulation of the catalytic glutathione (GSH)-like site loop and the extended catalytic ß loop which may elicit interference with the catalytic activities of CLIC4. Structure-based insights from this study provide the basis for the selective targeting of CLIC4 to treat the associated pathologies.

15.
J Clin Res Pediatr Endocrinol ; 15(1): 16-24, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-35984227

RESUMO

Objective: Several endocrine manifestations have been described in patients with 22q11 deletion syndrome, including growth retardation, hypoparathyroidism, and thyroid disorders. This study aimed to characterize these abnormalities in a Colombian retrospective cohort of children with this condition. Methods: A retrospective study comprising a cohort of children with 22q11 deletion syndrome in Medellín, Colombia followed up between 2011 and 2017 was conducted. Results: Thirty-seven patients with a confirmed diagnosis of 22q11 deletion syndrome were included. 37.8% had some endocrinopathy, the most frequent being hypoparathyroidism (21.6%), followed by hypothyroidism (13.5%), hyperthyroidism (2.7%) and growth hormone deficiency (2.7%). There was wide heterogeneity in the clinical presentation, with late onset of severe hypocalcemia associated with seizure or precipitated in postoperative cardiac surgery, which highlights the importance of continuous follow-up as indicated by the guidelines. Short stature was mainly related to nutritional factors. Growth monitoring is required with the use of syndrome-specific charts and careful monitoring of the growth rate. Conclusion: As previously reported, a significant proportion of patients with endocrine abnormalities were found in this cohort. This highlights that it is essential to carry out an adequate multidisciplinary follow-up, based on the specific clinical guidelines, in order to avoid serious complications such as convulsions due to hypocalcemia. It is important to track size with curves specific to the syndrome and analyze the growth rate.


Assuntos
Síndrome da Deleção 22q11 , Nanismo Hipofisário , Doenças do Sistema Endócrino , Hipocalcemia , Hipoparatireoidismo , Humanos , Criança , Estudos Retrospectivos , Colômbia , Hipocalcemia/etiologia , Hipocalcemia/diagnóstico , Síndrome da Deleção 22q11/genética , Síndrome da Deleção 22q11/complicações , Síndrome da Deleção 22q11/diagnóstico , Deleção Cromossômica
16.
Dev Reprod ; 26(3): 117-126, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36285148

RESUMO

Bromodomain-containing protein 7 (BRD7) participates in many cellular processes and embryo development. BRD7 is down-regulated in various cancers and evidence of its tumor suppressor function has been accumulating. Here, we identified transforming stimulated clone 22 (TSC-22) as a novel BRD7 interacting protein and show its novel function as a positive regulator of BRD7. We found that TSC-22 expression potentiated the inactivation of the extracellular signal-regulate kinase (ERK) pathway by BRD7. Our data establishes TSC-22 as a modulator of BRD7 and unravels the molecular mechanisms that drive the synergistic tumor-suppressing effects of TSC-22 and BRD7. Our findings may open new avenues for developing novel molecular therapies for tumors exhibiting down-regulated BRD7 and/or TSC-22.

17.
Life (Basel) ; 12(7)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35888089

RESUMO

The application of organic manures was found to be beneficial, however, the integrated use of organic manures with chemical nitrogen fertilizers has proven more sustainable in increasing the photosynthetic attributes and grain yield of the winter-wheat crop. A multi-factor split-plot design was adopted, nitrogen and manure fertilizer treatments were set in the sub-plots, including nitrogen-gradient treatment of T1:0 kg N ha-1, T2:100 kg N ha-1, T3:200 kg N ha-1, and T4:300 kg N ha-1 (pure nitrogen -fertilizer application) The 25% reduction in nitrogen combined with the manure-fertilizer application includes T5:75 kg N ha-1 nitrogen and 25 kg N ha-1 manure, T6:150 kg N ha-1 nitrogen and 50 kg N ha-1 manure, and T7:225 kg N ha-1 nitrogen and 75 kg N ha-1 manure. The maximum results of the total chlorophyll content and photosynthetic rate were 5.73 mg/g FW and 68.13 m mol m-2 s-1, observed under T4 in Zhongmai 175, as compared to Jindong 22 at the heading stage. However, the maximum results of intercellular CO2 concentration were 1998.47 µmol mol-1, observed under T3 in Jindong 22, as compared to Zhongmai 175 at the tillering stage. The maximum results of LAI were 5.35 (cm2), observed under T7 in Jindong 22, as compared to Zhongmai 175 at the booting stage. However, the maximum results of Tr and Gs were 6.31 mmol H2O m-2 s-1 and 0.90 H2O mol m-2 s-1, respectively, observed under T7 in Zhongmai 175 as compared to Jindong 22 at the flowering stage. The results revealed that grain yield 8696.93 kg ha-1, grains spike-1 51.33 (g), and 1000-grain weight 39.27 (g) were significantly higher, under T3 in Zhongmai 175, as compared to Jindong 22. Moreover, the spike number plot-1 of 656.67 m2 was significantly higher in Jindong 22, as compared to Zhongmai 175. It was concluded from the study that the combined application of nitrogen and manure fertilizers in winter wheat is significant for enhancing seed at the jointing and flowering stages. For increased grain yield and higher economic return, Zhongmai 175 outperformed the other cultivars examined. This research brings awareness toward the nitrogen-fertilizer-management approach established for farmers' practice, which might be observed as an instruction to increase agricultural management for the winter-wheat-growth season.

18.
Cell Rep ; 39(5): 110750, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35508129

RESUMO

Bone stromal cells are critical for bone homeostasis and regeneration. Growing evidence suggests that non-stem bone niche cells support bone homeostasis and regeneration via paracrine mechanisms, which remain to be elucidated. Here, we show that physiologically quiescent SM22α-lineage stromal cells expand after bone injury to regulate diverse processes of intramembranous bone regeneration. The majority of SM22α-lineage cells neither act as stem cells in vivo nor show their expression patterns. Dysfunction of SM22α-lineage niche cells induced by loss of platelet-derived growth factor receptor ß (PDGFRß) impairs bone repair. We further show that PDGFRß-triggered hydrogen sulfide (H2S) generation in SM22α-lineage niche cells facilitates osteogenesis and angiogenesis and suppresses overactive osteoclastogenesis. Collectively, these data demonstrate that non-stem SM22α-lineage niche cells support the niche for bone regeneration with a PDGFRß/H2S-dependent regulatory mechanism. Our findings provide further insight into non-stem bone stromal niche cell populations and niche-regulation strategy for bone repair.


Assuntos
Sulfeto de Hidrogênio , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Regeneração Óssea , Hidrogênio , Sulfeto de Hidrogênio/farmacologia , Osteogênese , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo
19.
Mater Today Bio ; 14: 100252, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35509864

RESUMO

Three-dimensional (3D) engineered cardiovascular tissues have shown great promise to replace damaged structures. Specifically, tissue engineering vascular grafts (TEVG) have the potential to replace biological and synthetic grafts. We aimed to design an in-vitro patient-specific patch based on a hybrid 3D print combined with vascular smooth muscle cells (VSMC) differentiation. Based on the medical images of a 2 months-old girl with aortic arch hypoplasia and using computational modelling, we evaluated the most hemodynamically efficient aortic patch surgical repair. Using the designed 3D patch geometry, the scaffold was printed using a hybrid fused deposition modelling (FDM) and electrospinning techniques. The scaffold was seeded with multipotent mesenchymal stem cells (MSC) for later maturation to derived VSMC (dVSMC). The graft showed adequate resistance to physiological aortic pressure (burst pressure 101 â€‹± â€‹15 â€‹mmHg) and a porosity gradient ranging from 80 to 10 â€‹µm allowing cells to infiltrate through the entire thickness of the patch. The bio-scaffolds showed good cell viability at days 4 and 12 and adequate functional vasoactive response to endothelin-1. In summary, we have shown that our method of generating patient-specific patch shows adequate hemodynamic profile, mechanical properties, dVSMC infiltration, viability and functionality. This innovative 3D biotechnology has the potential for broad application in regenerative medicine and potentially in heart disease prevention.

20.
Acta Pharm Sin B ; 12(3): 1163-1185, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35530162

RESUMO

Cancer immunotherapy has become a new generation of anti-tumor treatment, but its indications still focus on several types of tumors that are sensitive to the immune system. Therefore, effective strategies that can expand its indications and enhance its efficiency become the key element for the further development of cancer immunotherapy. Natural products are reported to have this effect on cancer immunotherapy, including cancer vaccines, immune-check points inhibitors, and adoptive immune-cells therapy. And the mechanism of that is mainly attributed to the remodeling of the tumor-immunosuppressive microenvironment, which is the key factor that assists tumor to avoid the recognition and attack from immune system and cancer immunotherapy. Therefore, this review summarizes and concludes the natural products that reportedly improve cancer immunotherapy and investigates the mechanism. And we found that saponins, polysaccharides, and flavonoids are mainly three categories of natural products, which reflected significant effects combined with cancer immunotherapy through reversing the tumor-immunosuppressive microenvironment. Besides, this review also collected the studies about nano-technology used to improve the disadvantages of natural products. All of these studies showed the great potential of natural products in cancer immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA