Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 10(11)2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34831244

RESUMO

The bone matrix is constantly remodeled by the coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts. Whereas type I collagen is the most abundant bone matrix protein, there are several other proteins present, some of them specifically produced by osteoblasts. In a genome-wide expression screening for osteoblast differentiation markers we have previously identified two collagen-encoding genes with unknown function in bone remodeling. Here we show that one of them, Col22a1, is predominantly expressed in bone, cultured osteoblasts, but not in osteoclasts. Based on this specific expression pattern we generated a Col22a1-deficient mouse model, which was analyzed for skeletal defects by µCT, undecalcified histology and bone-specific histomorphometry. We observed that Col22a1-deficient mice display trabecular osteopenia, accompanied by significantly increased osteoclast numbers per bone surface. In contrast, cortical bone parameters, osteoblastogenesis or bone formation were unaffected by the absence of Col22a1. Likewise, primary osteoblasts from Col22a1-deficient mice did not display a cell-autonomous defect, and they did not show altered expression of Rankl or Opg, two key regulators of osteoclastogenesis. Taken together, we provide the first evidence for a physiological function of Col22a1 in bone remodeling, although the molecular mechanisms explaining the indirect influence of Col22a1 deficiency on osteoclasts remain to be identified.


Assuntos
Osso Esponjoso/anatomia & histologia , Colágeno/deficiência , Animais , Doenças Ósseas Metabólicas/patologia , Contagem de Células , Colágeno/metabolismo , Fêmur/diagnóstico por imagem , Fêmur/patologia , Camundongos Endogâmicos C57BL , Modelos Animais , Tamanho do Órgão , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese , Fenótipo , Corpo Vertebral , Microtomografia por Raio-X
2.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 35(7): 855-861, 2021 Jul 15.
Artigo em Chinês | MEDLINE | ID: mdl-34308593

RESUMO

OBJECTIVE: To investigate the role of p22phox and NOX5 in autophagy and apoptosis of osteoblasts induced by hypoxia. METHODS: The skull tissue of newborn rats was cut into small pieces, and the osteoblasts were separated and purified by the tissue block adherent method and the differential adherent method. The first generation cells were harvested and identified by HE staining, Alizarin red staining, alkaline phosphatase (ALP) staining, and flow cytometry. A three-gas incubator was used to prepare a hypoxia model of osteoblasts. At 0, 3, 6, 12, and 24 hours of hypoxia, the expressions of p22phox, NOX5, and LC3Ⅱ/Ⅰ were detected by Western blot, and the level of reactive oxygen species (ROS) and cell apoptosis rate were detected by flow cytometry. And the time point of the highest level of ROS was selected as the hypoxia time point for subsequent experiments. The first generation osteoblasts were divided into normal group, si-p22phox hypoxia group, and si-NOX5 hypoxia group and subjected to corresponding transfection and hypoxia treatment. The inhibition efficiency of si-p22phox and si-NOX5 were detected by RT-PCR. Then the osteoblasts were divided into normal group, si-NC hypoxia group, si-p22phox hypoxia group, and si-NOX5 hypoxia group. After transfection and hypoxia treatment, Western blot was used to detect the expressions of p22phox, NOX5, autophagy-related proteins (LC3Ⅱ/Ⅰ, Beclin), and apoptosis-related proteins (Bcl-2, Bax), and flow cytometry was used to detect the cell apoptosis rate and level of ROS. The first generation osteoblasts were divided into a hypoxia group for 12 hours (hypoxia group) and a group that simultaneously inhibited si-p22phox and si-NOX5 and hypoxia for 12 hours (inhibition+hypoxia group). The expressions of Beclin and Bax were observed by immunofluorescence staining after the corresponding treatment. RESULTS: After identification, the isolated cells were osteoblasts. After hypoxia treatment, the relative expressions of p22phox, NOX5, and LC3Ⅱ/Ⅰ proteins and the apoptosis rate of osteoblasts gradually increased ( P<0.05), and the level of ROS also significantly increased ( P<0.05) and reached the peak value at 12 hours. The 12-hour hypoxia model was selected for subsequent experiments. Silencing the p22phox gene did not affect the expression of NOX5, and silencing the NOX5 gene did not affect the expression of p22phox. Compared with hypoxia treatment, the relative expressions of LC3Ⅱ/Ⅰ, Beclin, and Bax proteins after inhibiting the expression of p22phox or NOX5 gene significantly decreased ( P<0.05), the relative expression of Bcl-2 protein significantly increased ( P<0.05), the cell apoptosis rate and level of ROS also significantly decreased ( P<0.05). After silencing the expressions of p22phox and NOX5 genes at the same time, the immunofluorescence staining showed that the fluorescence of Beclin and Bax were weak. CONCLUSION: Inhibiting the expressions of p22phox and NOX5 genes can reduce the level of ROS in osteoblasts under hypoxia-induced conditions, and at the same time reduce autophagy and apoptosis, especially attenuate the excessive apoptosis of cells in the early to late stages, and strengthen the hypoxic osteoblasts proliferation.


Assuntos
Apoptose , Autofagia , Animais , Hipóxia , Osteoblastos , Ratos , Transfecção
3.
Exp Ther Med ; 21(4): 336, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33732309

RESUMO

Osteoporosis is a common complication of long-term use of glucocorticoids (GCs) characterized by the loss of bone mass and damage of the microarchitecture as well as osteoblast dysfunction. Previous studies have demonstrated that microRNA-22 (miR-22) is the negative modulator of osteogenesis that may target caveolin-3 (CAV3), which has been reported to enhance bone formation and inhibit the progression of osteoporosis as well as apoptosis. The present study aimed to investigate whether miR-22 may be involved in dexamethasone (DEX)-induced inhibition of osteoblast differentiation and dysfunction by regulating CAV3 expression. Reverse transcription-quantitative PCR (RT-qPCR) was performed to measure the expression of miR-22 and western blotting was performed to determine protein levels. The results demonstrated that miR-22 expression was upregulated in DEX-treated osteoblastic cells compared with the control group. In addition, miR-22 mimic aggravated, whereas miR-22 inhibitor mitigated DEX-induced damage in osteoblastic cells compared with the control groups. Additionally, CAV3 was identified as the target of miR-22 in osteoblasts using RT-qPCR, western blotting and dual-luciferase reporter gene assay analysis. The results also demonstrated that silencing of CAV3 blocked the beneficial effects of miR-22 inhibitor against DEX-induced cell damage and apoptosis in osteoblasts, as evidenced by the increased expression levels of cleaved caspase-3, Bax and alkaline phosphatase activity as well as decreased cell viability and Bcl-2 levels. Collectively, these results indicate a novel molecular mechanism by which miR-22 contributes to DEX-induced osteoblast dysfunction and apoptosis via the miR-22/CAV3 pathway.

4.
Exp Ther Med ; 21(3): 238, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33603846

RESUMO

Glucocorticoid-induced osteoporosis is characterized by osteoblastic cell and microarchitecture dysfunction, as well as a loss of bone mass. Cell senescence contributes to the pathological process of osteoporosis and sodium hydrosulfide (NaHS) regulates the potent protective effects through delaying cell senescence. The aim of the present study was to investigate whether senescence could contribute to dexamethasone (Dex)-induced osteoblast impairment and to examine the effect of NaHS on Dex-induced cell senescence and damage. It was found that the levels of the senescence-associated markers, p53 and p21, were markedly increased in osteoblasts exposed to Dex. A p53 inhibitor reversed Dex-induced osteoblast injury, a process that was mitigated by NaHS administration through alleviating osteoblastic cell senescence. MicroRNA (miR)-22 blocked the impact of NaHS on Dex-induced osteoblast damage and senescence through targeting the regulation of Sirtuin 1 (sirt1) expression, as shown by the decreased cell viability and alkaline phosphatase activity, as well as an increased expression of p53 and p21. It was revealed that the sirt1 gene was the target of miR-22 in osteoblastic MC3T3-E1 cells through combining the results of dual luciferase reporter assays and reverse transcription-quantitative PCR, as well as western blot analyses. Silencing of sirt1 abolished the protective effect of NaHS against Dex-associated osteoblast senescence and injury. Taken together, the present study showed that NaHS prevents Dex-induced cell senescence and damage through targeting the miR-22/sirt1 pathway in osteoblastic MC3T3-E1 cells.

5.
Biochem Biophys Res Commun ; 508(3): 928-933, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30545634

RESUMO

Epithelial-to-mesenchymal transition (EMT) is the process in which epithelial cells lose cell polarity and cell adhesion with surrounding cells to obtain migratory and invasive abilities. On the other hand, the expression of connexin is decreased or lacked in the many types of tumor cells. This study examined the effect of gap junctional intercellular communication (GJIC) on EMT induced by the transforming growth factor-ß1 (TGF-ß1). To investigate the effect of GJIC on EMT in U2OS cells, smooth muscle 22-α (sm22α) promoter-driven luciferase reporter gene was introduced into Cx43-expressing cells (U2OS-Luc Cx43) and into the control parental cell line (U2OS-Luc). TGF-ß1 induced the expression of EMT markers and the sm22α promoter activity of U2OS-Luc cells. Sm22α promoter activity of U2OS cells was neither dependent on the expression of Cx43 nor on the establishment of GJIC among U2OS cells. Furthermore, we found that the homocellular communication among tumor cells did not affected the tumor cell growth and migration. However, we revealed that tumor cell density was an important factor for tumor cells to acquire metastatic phenotype. Interestingly, the co-culture of U2OS cells with osteoblasts revealed that sm22α promoter activity was inhibited only by the GJIC established between these two cell types. These results suggest that normal osteoblast cells negatively regulate the EMT of tumor cells, at least in part. Thus, Cx43-mediated GJIC may have anti-metastatic activity in tumor cells. Our findings provide a new insight into the role of GJIC in cancer progression and metastasis and identify potential therapeutic targets for the treatment of cancer.


Assuntos
Comunicação Celular , Transição Epitelial-Mesenquimal , Junções Comunicantes/fisiologia , Fator de Crescimento Transformador beta1/fisiologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Células Cultivadas , Conexina 43/metabolismo , Células HEK293 , Humanos , Osteoblastos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA