Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.320
Filtrar
1.
Biomolecules ; 14(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38540678

RESUMO

The present study aimed to investigate the effect of a H2S donor, GYY 4137, on human pulmonary arteries and whether low-frequency ultrasound (20 kHz, 4 W/cm2) inhibits GYY 4137 contractions. Functional studies were conducted on human and rat pulmonary arteries mounted on microvascular myographs. We placed an ultrasonic gadget in the tissue organ bath to insonate the arteries with low-frequency ultrasound. To measure the effect of the low-frequency ultrasound on the entrance of extracellular Ca2+, the preparations were placed in a Ca2+-free solution, and the thromboxane agonist, U46619, and extracellular calcium were added in the presence of insonation. In isolated human pulmonary arteries, GYY 4137 induced contractions, which were most pronounced in the arteries contracted with the thromboxane analogue, U46619. The transient GYY4137 contractions were reversed by low-frequency ultrasound, a blocker of KV7 channels, XE-991 (10 µM), and glibenclamide (1 µM), a blocker of ATP-sensitive channels. Low-frequency ultrasound also inhibited the contractions induced by the smooth muscle entrance of increasing extracellular calcium concentrations. The present findings show that GYY 4137 can cause a transient contraction of pulmonary arteries in human arteries. GYY 4137 alone does not cause significant vascular contraction in rat lung arteries, but it contracts rat lung arteries precontracted with U46619. The transient contractions induced by GYY 4137 can be inhibited by low-frequency ultrasound, probably by counteracting the influx of external Ca2+. The effect of low-frequency ultrasound counteracts contraction in pulmonary arteries; therefore, a possibility could be to develop a larger device allowing treatment of patients with pulmonary hypertension.


Assuntos
Morfolinas , Músculo Liso Vascular , Compostos Organotiofosforados , Artéria Pulmonar , Humanos , Ratos , Animais , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Cálcio/farmacologia , Tromboxanos/farmacologia
2.
J Ethnopharmacol ; 328: 117855, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38346524

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Tea (Camellia sinensis) is a favorite drink worldwide. Tea extracts and green tea main component (-)-epigallocatechin gallate (EGCG) are recommended for various vascular diseases. Anji white tea is a very popular green tea. Its vascular effect profile, the mechanisms, and the contribution of EGCG to its integrated effect need elucidation. AIM: To characterize the vasomotion effects of Anji white tea and EGCG, and to explore possible involvement of voltage-gated Ca2+ channels (VGCCs) and voltage-gated K+ (Kv) channels in their vasomotion effects. MATERIALS AND METHODS: Anji white tea water soaking solution (AJWT) was prepared as daily tea-making process and concentrated to a concentration amounting to 200 mg/ml of dry tea leaves. The tension of rat arteries including aorta, coronary artery (RCA), cerebral basilar artery (CBA), intrarenal artery (IRA), intrapulmonary artery (IPA) and mesenteric artery (MA) was recorded with myographs. In arterial smooth muscle cells (ASMCs) freshly isolated from RCA, the levels of intracellular Ca2+ were measured with Ca2+-sensitive fluorescent probe fluo 4-AM, and Kv currents were recorded with patch clamp. The expressions of VGCCs and Kv channels were assayed with RT-qPCR and immunofluorescence staining. RESULTS: At 0.4-12.8 mg/ml of dry tea leaves, AJWT profoundly relaxed all tested arteries precontracted with various vasoconstrictors about half with a small transient potentiation on the precontractions before the relaxation. KCl-induced precontraction was less sensitive than precontractions induced by phenylephrine (PE), U46619 and serotonin (5-HT). IPA was less sensitive to the relaxation compared with other arteries. AJWT pretreatment for 1 h, 24 h and 72 h time-dependently inhibited the contractile responses of RCAs. In sharp contrast, at equivalent concentrations according to its content in AJWT, EGCG intensified the precontractions in most small arteries, except that it induced relaxation in PE-precontracted aorta and MA, U46619-precontracted aorta and CBA. EGCG pretreatment for 1 h and 24 h did not significantly affect RCA contractile responses. In RCA ASMCs, AJWT reduced, while EGCG enhanced, intracellular Ca2+ elevation induced by depolarization which activates VGCCs. Patch clamp study showed that both AJWT and EGCG reduced Kv currents. RT-qPCR and immunofluorescence staining demonstrated that both AJWT and EGCG reduced the expressions of VGCCs and Kv channels. CONCLUSION: AJWT, but not EGCG, consistently induces vasorelaxation. The vasomotion effects of either AJWT or EGCG vary with arterial beds and vasoconstrictors. Modulation of VGCCs, but not Kv channels, contributes to AJWT-induced vasorelaxation. It is suggested that Anji white tea water extract instead of EGCG may be a promising food supplement for vasospastic diseases.


Assuntos
Catequina/análogos & derivados , Miócitos de Músculo Liso , Chá , Ratos , Animais , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Vasodilatação , Vasos Coronários , Artérias Mesentéricas , Vasoconstritores/farmacologia , Água/farmacologia
3.
Eur J Pharmacol ; 968: 176343, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38281680

RESUMO

Uterine contractions during labor and preterm labor are influenced by a complex interplay of factors, including hormones and inflammatory mediators. This complexity may contribute to the limited efficacy of current tocolytics for preterm labor, a significant challenge in obstetrics with 15 million cases annually and approximately 1 million resulting deaths worldwide. We have previously shown that the myometrium expresses bitter taste receptors (TAS2Rs) and that their activation leads to uterine relaxation. Here, we investigated whether the selective TAS2R5 agonist phenanthroline can induce relaxation across a spectrum of human uterine contractions and whether the underlying mechanism involves changes in intracellular Ca2+ signaling. We performed experiments using samples from pregnant women undergoing scheduled cesarean delivery, assessing responses to various inflammatory mediators and oxytocin with and without phenanthroline. Our results showed that phenanthroline concentration-dependently inhibited contractions induced by PGF2α, U46619, 5-HT, endothelin-1 and oxytocin. Furthermore, in hTERT-infected human myometrial cells exposed to uterotonics, phenanthroline effectively suppressed the increase in intracellular Ca2+ concentration induced by PGF2α, U46619, oxytocin, and endothelin-1. These results suggest that the selective TAS2R5 agonist may not only significantly reduce uterine contractions but also decrease intracellular Ca2+ levels. This study highlights the potential development of TAS2R5 agonists as a new class of uterine relaxants, providing a novel avenue for improving the management of preterm labor.


Assuntos
Trabalho de Parto Prematuro , Contração Uterina , Recém-Nascido , Feminino , Gravidez , Humanos , Cálcio/farmacologia , Ocitocina/farmacologia , Fenantrolinas/farmacologia , Dinoprosta , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Endotelina-1/farmacologia , Miométrio
4.
Discov Med ; 36(180): 190-198, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273759

RESUMO

BACKGROUND: Colorectal cancer (CRC) is a common malignancy with high morbidity and mortality. To improve CMC prognosis, research must identify safe and effective natural drugs that improve the proliferation, migration, and epithelial mesenchymal transition (EMT) processes of CRC. The purpose of this paper is to understand how cichoric acid (CA) impacts CRC proliferation, metastasis, and EMT of CRC by adjusting the Ras homolog family member A (RhoA)/RHO-associated coiled coil protein kinase (ROCK) pathway. METHODS: Human Colon Cancer Cells (HCT116) cells were randomly divided into Control (blank medium treatment), low concentration CA (CA-L), medium concentration CA (CA-M), high concentration CA (CA-H), and high-concentration CA+RhoA activator U46619 (CA-H+U46619) groups. Cell proliferation, migration and invasion, and apoptosis were evaluated with cell counting kit-8 (CCK-8) assay, transwell assay, and flow cytometry, respectively. The expression of RhoA, ROCK, and EMT-associated proteins were detected by Western Blot. The CRC transplanted tumor model of nude mice was constructed, and the mice were grouped into low-dose CA (CA-Low, 15 mg/kg CA), high-dose CA (CA-High, 30 mg/kg CA), high-dose CA+RhoA activator U46619 (CA-High+U46619, 30 mg/kg CA+10 mM U46619), and Model groups at random, with 12 mice in each group. Tumor volume, mass, and inhibition rate were measured and calculated, and the pathological changes of tumor in nude mice were detected by hematoxylin-eosin (HE) staining. RESULTS: Compared with Control, the optical density of cells at 450 nm (OD450) value (48 h, 72 h), cell migration number, cell invasion number, RhoA, ROCK1, N-cadherin, vimentin protein expression levels of HCT116 cells were reduced in CA-M and CA-H groups; however, E-cadherin level and apoptosis rate were increased (p < 0.05). In the CA-High group, we observed a significant decrease (p < 0.05) in both tumor volume and mass in nude mice. Additionally, the tumor tissue cells exhibited better organization, reduced size, reduced tumor and vascular tissue hyperplasia, and decreased infiltration of inflammatory cells. U46619 decreased the retardation of CA on the proliferation, EMT, and migration of CRC tumor cells as well as the growth of transplanted CRC tumors in nude mice. CONCLUSIONS: CA may reduce CRC migration, proliferation, and EMT by inhibiting the activation of the RhoA/ROCK signaling pathway.


Assuntos
Ácidos Cafeicos , Neoplasias Colorretais , Succinatos , Proteína rhoA de Ligação ao GTP , Humanos , Animais , Camundongos , Camundongos Nus , Linhagem Celular Tumoral , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/farmacologia , Proteína rhoA de Ligação ao GTP/uso terapêutico , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/uso terapêutico , Transdução de Sinais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Proliferação de Células , Movimento Celular , Quinases Associadas a rho/metabolismo
5.
Placenta ; 145: 51-59, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38064938

RESUMO

INTRODUCTION: Infants with congenital diaphragmatic hernia (CDH) often develop pulmonary hypertension but frequently fail to respond to vasodilator therapy, for instance because of an altered pulmonary vasoreactivity. Investigating such alterations in vivo is impossible. We hypothesised that these alterations are also present in fetoplacental vessels, since both vasculatures are exposed to the same circulating factors (e.g. endothelin-1) and respond similarly to certain stimuli (e.g. hypoxia). As proof-of-concept, we compared fetoplacental vasoreactivity between healthy and CDH-affected placentas. METHODS: Fetoplacental vascular function of healthy and antenatally diagnosed left-sided CDH fetuses was assessed by wire myography. Placental expression of enzymes and receptors involved in the altered vasoreactive pathways was measured using quantitative PCR. RESULTS: CDH arteries (n = 6) constricted more strongly to thromboxane A2 agonist U46619 (p < 0.001) and dilated less to bradykinin (p = 0.01) and nitric oxide (NO)-donor sodium nitroprusside (p = 0.04) than healthy arteries (n = 8). Vasodilation to prostacyclin analogue iloprost and adenylate cyclase stimulator forskolin, and vasoconstriction to endothelin-1 were not different between both groups. Angiotensin II did not induce vasoconstriction. Phosphodiesterase inhibitors sildenafil and milrinone did not affect responses to sodium nitroprusside, forskolin, or U46619. The mRNA expression of guanylate cyclase 1 soluble subunit alpha 1 (p = 0.003) and protein kinase cyclic guanine monophosphate (cGMP)-dependent 1 (p = 0.02) were reduced in CDH versus healthy placentas. DISCUSSION: The identified changes in the thromboxane and NO-cGMP pathways in the fetoplacental vasculature correspond with currently described alterations in the pulmonary vasculature in CDH. Therefore, fetoplacental arteries may provide an opportunity to predict pulmonary therapeutic responses in infants with CDH.


Assuntos
Hérnias Diafragmáticas Congênitas , Humanos , Animais , Feminino , Gravidez , Nitroprussiato/farmacologia , Colforsina , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Endotelina-1 , Óxido Nítrico/metabolismo , Modelos Animais de Doenças , Placenta/metabolismo , Feto/metabolismo
6.
J Surg Res ; 294: 249-256, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37925953

RESUMO

INTRODUCTION: Cardioplegia and cardiopulmonary bypass (CP/CPB) alters coronary arteriolar response to thromboxane A2 (TXA2) in patients undergoing cardiac surgery. Comorbidities, including hypertension (HTN), can further alter coronary vasomotor tone. This study investigates the effects of HTN on coronary arteriolar response to TXA2 pre and post-CP/CPB and cardiac surgery. MATERIALS AND METHODS: Coronary arterioles pre and post-CP/CPB were dissected from atrial tissue samples in patients with no HTN (NH, n = 9), well-controlled HTN (WC, n = 12), or uncontrolled HTN (UC, n = 12). In-vitro coronary microvascular reactivity was examined in the presence of TXA2 analog U46619 (10-9-10-4M). Protein expression of TXA2 receptor in the harvested right atrial tissue samples were measured by immunoblotting. RESULTS: TXA2 analog U46619 induced dose-dependent contractile responses of coronary arterioles in all groups. Pre-CPB contractile responses to U46619 were significantly increased in microvessels in the UC group compared to the NH group (P < 0.05). The pre-CP/CPB contractile responses of coronary arterioles were significantly diminished post-CP/CPB among the three groups (P < 0.05), but there remained an increased contractile response in the microvessels of the UC group compared to the WC and NH groups (P < 0.05). There were no significant differences in U46619-induced vasomotor tone between patients in the NH and WC groups (P > 0.05). There were no differences in expression of TXA2R among groups. CONCLUSIONS: Poorly controlled HTN is associated with increased contractile response of coronary arterioles to TXA2. This alteration may contribute to worsened recovery of coronary microvascular function in patients with poorly controlled HTN after CP/CPB and cardiac surgery.


Assuntos
Fibrilação Atrial , Procedimentos Cirúrgicos Cardíacos , Hipertensão , Humanos , Tromboxano A2/metabolismo , Tromboxano A2/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/metabolismo , Vasos Coronários , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Ponte Cardiopulmonar , Hipertensão/complicações
7.
Physiol Rep ; 11(22): e15884, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38010199

RESUMO

Cooling causes cutaneous dilatation to restrain cold-induced constriction and prevent tissue injury. Cooling increases communication through myoendothelial gap junctions (MEGJs), thereby increasing endothelium-derived hyperpolarization (EDH)-type dilatation. EDH is initiated by calcium-activated potassium channels (KCa ) activated by endothelial stimuli or muscle-derived mediators traversing MEGJs (myoendothelial feedback). The goal of this study was to determine the individual roles of KCa with small (SK3) and intermediate (IK1) conductance in cooling-induced dilatation. Vasomotor responses of mice isolated cutaneous tail arteries were analyzed by pressure myography at 37°C and 28°C. Cooling increased acetylcholine-induced EDH-type dilatation during inhibition of NO and prostacyclin production. IK1 inhibition did not affect dilatations to acetylcholine, whereas SK3 inhibition inhibited dilatation at both temperatures. Cooling uncovered myoendothelial feedback to inhibit constrictions in U46619. IK1 inhibition did not affect U46619 constrictions, whereas SK3 inhibition abolished the inhibitory effect of cooling without affecting U46619 constriction at 37°C. Immunoblots confirmed SK3 expression, which was localized (immunofluorescence) to holes in the internal elastic lamina consistent with myoendothelial projections. Immunoblots and Immunofluorescence did not detect IK1. Studies in non-cutaneous arteries have highlighted the predominant role of IK1 in EDH-type dilatation. Cutaneous arteries are distinctly reliant on SK3, which may enable EDH-type dilation to be amplified by cooling.


Assuntos
Acetilcolina , Vasodilatação , Camundongos , Masculino , Animais , Vasodilatação/fisiologia , Acetilcolina/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária , Cauda/metabolismo , Artérias/metabolismo , Endotélio Vascular/metabolismo , Artérias Mesentéricas/metabolismo
8.
J Pharmacol Sci ; 153(3): 119-129, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770153

RESUMO

We examined whether U46619 (a prostanoid TP receptor agonist) could enhance the contractions of guinea pig urinary bladder smooth muscle (UBSM) in response to acetylcholine (ACh) and an ATP analog (α,ß-methylene ATP (αß-MeATP)) through stimulation of the UBSM TP receptor and whether protein kinase C (PKC) is involved. U46619 (10-7 M) markedly enhanced UBSM contractions induced by electrical field stimulation and ACh/αß-MeATP (3 × 10-6 M each), the potentiation of which was completely suppressed by SQ 29,548 (a TP receptor antagonist, 6 × 10-7 M). PKC inhibitors did not attenuate the ACh-induced contractions enhanced by U46619 although they partly suppressed the U46619-enhanced, αß-MeATP-induced contractions. While phorbol 12-myristate 13-acetate (PMA, a PKC activator, 10-6 M) did not enhance ACh-induced contractions, it enhanced αß-MeATP-induced contractions, an effect that was completely suppressed by PKC inhibitors. αß-MeATP-induced contractions, both with and without U46619 enhancement, were strongly inhibited by diltiazem. U46619/PMA enhanced 50 mM KCl-induced contractions, the potentiation of which was partly/completely attenuated by PKC inhibitors. These findings suggest that U46619 potentiates parasympathetic nerve-associated UBSM contractions by stimulating UBSM TP receptors. PKC-increased Ca2+ influx through voltage-dependent Ca2+ channels may partially play a role in purinergic receptor-mediated UBSM contractions enhanced by TP receptor stimulation.


Assuntos
Acetilcolina , Bexiga Urinária , Cobaias , Animais , Acetilcolina/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Trifosfato de Adenosina/farmacologia , Contração Muscular , Receptores de Tromboxanos
9.
Life Sci ; 326: 121801, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244364

RESUMO

6-Nitrodopamine (6-ND) is a novel catecholamine that is released from human umbilical cord vessels, and it causes vascular relaxation by acting as a dopamine D2-receptor antagonist. Here it was investigated whether human peripheral vessels obtained from patients who have undergone surgery for leg amputation release 6-ND, and its action in these tissues. Popliteal artery and vein strips present basal release of 6-ND, as measured by liquid chromatography coupled to tandem mass spectrometry. The release was significantly reduced when the tissues were pre-treated with the nitric oxide synthase inhibitor L-NAME (100 µM), or when the endothelium was mechanically removed. In U-46619 (3 nM) pre-contracted rings, 6-ND induced concentration-dependent relaxations (pEC50 8.18 ± 0.05 and 8.40 ± 0.08, in artery and vein rings, respectively). The concentration-dependent relaxations induced by 6-ND were unaffected in tissues pre-treated with L-NAME, but significantly reduced in tissues where the endothelium has been mechanically removed. In U-46619 (3 nM) pre-contracted rings, the selective dopamine D2 receptor antagonist L-741,626 also caused concentration-dependent relaxations (pEC50 8.92 ± 0.22 and 8.79 ± 0.19, in artery and vein rings, respectively). The concentration-dependent relaxations induced by L-741,626 were unaffected in tissues pre-treated with L-NAME, but significantly reduced in tissues where the endothelium has been mechanically removed. This is the first demonstration that 6-nitrodopamine is released from human peripheral artery and vein rings. The results also indicate that endothelium-derived dopamine is a major contractile agent in the popliteal artery and vein, and that selective dopamine D2-receptor antagonists such as 6-ND, may have therapeutic potential in the treatment of human peripheral vascular diseases.


Assuntos
Dopamina , Artéria Poplítea , Humanos , NG-Nitroarginina Metil Éster/farmacologia , Dopamina/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Endotélio Vascular , Óxido Nítrico/farmacologia
10.
Eur Heart J Cardiovasc Pharmacother ; 9(4): 371-386, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37019821

RESUMO

BACKGROUND: In post-coronavirus disease-19 (post-COVID-19) conditions (long COVID), systemic vascular dysfunction is implicated, but the mechanisms are uncertain, and the treatment is imprecise. METHODS AND RESULTS: Patients convalescing after hospitalization for COVID-19 and risk factor matched controls underwent multisystem phenotyping using blood biomarkers, cardiorenal and pulmonary imaging, and gluteal subcutaneous biopsy (NCT04403607). Small resistance arteries were isolated and examined using wire myography, histopathology, immunohistochemistry, and spatial transcriptomics. Endothelium-independent (sodium nitroprusside) and -dependent (acetylcholine) vasorelaxation and vasoconstriction to the thromboxane A2 receptor agonist, U46619, and endothelin-1 (ET-1) in the presence or absence of a RhoA/Rho-kinase inhibitor (fasudil), were investigated. Thirty-seven patients, including 27 (mean age 57 years, 48% women, 41% cardiovascular disease) 3 months post-COVID-19 and 10 controls (mean age 57 years, 20% women, 30% cardiovascular disease), were included. Compared with control responses, U46619-induced constriction was increased (P = 0.002) and endothelium-independent vasorelaxation was reduced in arteries from COVID-19 patients (P < 0.001). This difference was abolished by fasudil. Histopathology revealed greater collagen abundance in COVID-19 arteries {Masson's trichrome (MT) 69.7% [95% confidence interval (CI): 67.8-71.7]; picrosirius red 68.6% [95% CI: 64.4-72.8]} vs. controls [MT 64.9% (95% CI: 59.4-70.3) (P = 0.028); picrosirius red 60.1% (95% CI: 55.4-64.8), (P = 0.029)]. Greater phosphorylated myosin light chain antibody-positive staining in vascular smooth muscle cells was observed in COVID-19 arteries (40.1%; 95% CI: 30.9-49.3) vs. controls (10.0%; 95% CI: 4.4-15.6) (P < 0.001). In proof-of-concept studies, gene pathways associated with extracellular matrix alteration, proteoglycan synthesis, and viral mRNA replication appeared to be upregulated. CONCLUSION: Patients with post-COVID-19 conditions have enhanced vascular fibrosis and myosin light change phosphorylation. Rho-kinase activation represents a novel therapeutic target for clinical trials.


Assuntos
COVID-19 , Doenças Cardiovasculares , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Quinases Associadas a rho/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/tratamento farmacológico , Síndrome de COVID-19 Pós-Aguda
11.
Peptides ; 164: 170990, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36894067

RESUMO

Since the AT2-receptor (AT2R) agonist C21 has structural similarity to the AT1-receptor antagonists Irbesartan and Losartan, which are antagonists not only at the AT1R, but also at thromboxane TP-receptors, we tested the hypothesis that C21 has TP-receptor antagonistic properties as well. Isolated mouse mesenteric arteries from C57BL/6 J and AT2R-knockout mice (AT2R-/y) were mounted in wire myographs, contracted with either phenylephrine or the thromboxane A2 (TXA2) analogue U46619, and the relaxing effect of C21 (0.1 nM - 10 µM) was investigated. The effect of C21 on U46619-induced platelet aggregation was measured by an impedance aggregometer. Direct interaction of C21 with TP-receptors was determined by an ß-arrestin biosensor assay. C21 caused significant, concentration-dependent relaxations in phenylephrine- and U46619-contracted mesenteric arteries from C57BL/6 J mice. The relaxing effect of C21 was absent in phenylephrine-contracted arteries from AT2R-/y mice, whereas it was unchanged in U46619-contracted arteries from AT2R-/y mice. C21 inhibited U46619-stimulated aggregation of human platelets, which was not inhibited by the AT2R-antagonist PD123319. C21 reduced U46619-induced recruitment of ß-arrestin to human thromboxane TP-receptors with a calculated Ki of 3.74 µM. We conclude that in addition to AT2R-agonistic properties, C21 also acts as low-affinity TP-receptor antagonist, and that - depending on the constrictor - both mechanisms can be responsible for C21-induced vasorelaxation. Furthermore, by acting as a TP-receptor antagonist, C21 inhibits platelet aggregation. These findings are important for understanding potential off-target effects of C21 in the preclinical and clinical context and for the interpretation of C21-related myography data in assays with TXA2-analogues as constrictor.


Assuntos
Receptores de Tromboxanos , Tromboxanos , Humanos , Camundongos , Animais , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Camundongos Endogâmicos C57BL , Tromboxano A2/farmacologia , Fenilefrina/farmacologia , Angiotensinas
12.
Clin Exp Pharmacol Physiol ; 50(2): 158-168, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36309970

RESUMO

Diabetic coronary artery injury is closely associated with Ca2+ dysregulation, although the underlying mechanism remains unclear. This study explored the role and mechanism of Ca2+ handling in coronary artery dysfunction in type 2 diabetic rats. Zucker diabetic fatty (ZDF) rats were used as the type 2 diabetes mellitus model. The contractility of coronary artery rings induced by KCl, CaCl2 , 5-HT and U46619 was significantly lower in ZDF rats than in Zucker lean rats. Vasoconstriction induced by 5-HT and U46619 was greatly inhibited by nifedipine. However, in the presence of 1 µM nifedipine or in the Ca2+ -free KH solution containing 1 µM nifedipine, there was no difference in the vasoconstriction between Zucker lean and ZDF rats. Store-operated calcium channels (SOCs) were not involved in coronary vasoconstriction. The downregulation of contractile proteins and the upregulation of synthesized proteins were in coronary artery smooth muscle cells (CASMCs) from ZDF rats. Metformin reversed the reduction of vasoconstriction in ZDF rats. Taken together, L-type calcium channel is important for regulating the excitation-contraction coupling of VSMCs in coronary arteries, and dysregulation of this channel contributes to the decreased contractility of coronary arteries in T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratos , Animais , Vasos Coronários/metabolismo , Cálcio/metabolismo , Ratos Zucker , Diabetes Mellitus Tipo 2/metabolismo , Nifedipino , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Diabetes Mellitus Experimental/metabolismo , Serotonina/metabolismo , Canais de Cálcio Tipo L/metabolismo
13.
Ann Thorac Surg ; 115(5): 1152-1161, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35172179

RESUMO

BACKGROUND: Spasm of arterial grafts in coronary artery bypass grafting is a clinical problem and can occasionally be lethal. Perioperative spasm in the internal thoracic artery (ITA) and coronary arteries occurs in 0.43% of patients. This study aimed to investigate the antispastic effect of a RhoA/Rho-kinase (Rho-associated coiled-coil-containing protein kinase [ROCK]) inhibitor (fasudil) with and without nitroglycerin in combination in the ITA. METHODS: Isolated human ITA rings taken from 68 patients who were undergoing coronary bypass were studied in a myograph. Cumulative concentration-relaxation curves for fasudil (-9 to -3.5 log M) were established in the ITA, which was precontracted with potassium chloride or U46619. The inhibitory effect of fasudil (-6.3 or -5.3 log M) or fasudil in combination with nitroglycerin were also tested. The ROCK2 protein was measured by Western blot. RESULTS: Fasudil caused similar relaxation in ITA rings contracted by potassium chloride or U46619. Pretreatment with -5.3 log M fasudil significantly depressed contraction induced by potassium chloride (P = .004 vs control; P = .017 vs -6.3 log M) and U46619 (P = .010 vs control; P = .041 vs. -6.3 log M). Fasudil in combination with nitroglycerin had more effect and more rapid and sustained relaxation than either vasodilator alone. Fasudil caused a decrease of ROCK2 protein content (P = .014). CONCLUSIONS: Fasudil fully relaxes some vasoconstrictor-induced contraction and decreases ROCK2 protein content in the ITA. The combination of fasudil and nitroglycerin has a superior effect than either vasodilator alone. The new cocktail solution composed of fasudil and nitroglycerin (pH 7.4) has effective antispastic action and may prove to be a new antispastic method for arterial conduits during coronary bypass surgery.


Assuntos
Artéria Torácica Interna , Nitroglicerina , Humanos , Nitroglicerina/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Cloreto de Potássio/farmacologia , Vasodilatadores/farmacologia
14.
Semin Thromb Hemost ; 49(5): 488-506, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36206768

RESUMO

The process of platelet aggregation is often influenced by several factors including sex and age. A literature review confirmed the existence of sex-related differences in platelet aggregation. Although 68 out of 78 papers found such differences, there are still some controversies regarding these differences, which can be due to multiple factors (age, trigger, concomitant disease, sample handling, etc.). These outcomes are discussed in line with novel results obtained from a local study, in which blood samples from a total of 53 overall healthy women and men with ages ranging from 20 to 66 years were collected. Aggregation was induced with seven different triggers (ristocetin, thrombin receptor activating peptide 6 [TRAP-6], arachidonic acid [AA], platelet-activating factor 16 [PAF-16], ADP, collagen, or thromboxane A2 analog U-46619) ex vivo. In addition, three FDA-approved antiplatelet drugs (vorapaxar, ticagrelor, or acetylsalicylic acid [ASA]) were also tested. In general, women had higher aggregation responses to some agonists (ADP, TRAP), as well as lower benefit from inhibitors (ASA, vorapaxar). The aggregatory responses to AA and TRAP decreased with age in both sexes, while responses to ADP, U-46619, and PAF were affected by age only in women. In conclusion, more studies are needed to decipher the biological importance of sex-related differences in platelet aggregation in part to enable personalized antiplatelet treatment.


Assuntos
Inibidores da Agregação Plaquetária , Agregação Plaquetária , Masculino , Humanos , Feminino , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Lactonas/farmacologia , Aspirina/uso terapêutico , Ácido Araquidônico/farmacologia , Difosfato de Adenosina/farmacologia , Plaquetas
15.
J Immunotoxicol ; 19(1): 1-8, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36394569

RESUMO

Dolutegravir is a highly potent HIV integrase strand transfer inhibitor that is recommended for first-line anti-retroviral treatment in all major treatment guidelines. A recent study has shown that people taking this class of anti-retroviral treatment have a substantially higher risk of early-onset cardiovascular disease, a condition shown previously to be associated with increased platelet reactivity. To date, few studies have explored the effects of dolutegravir on platelet activation. Accordingly, the current study was undertaken with the primary objective of investigating the effects of dolutegravir on the reactivity of human platelets in vitro. Platelet-rich plasma, isolated platelets, or buffy coat cell suspensions prepared from the blood of healthy adults were treated with dolutegravir (2.5-10 µg/ml), followed by activation with adenosine 5'-diphosphate (ADP), thrombin, or a thromboxane A2 receptor agonist U46619. Expression of platelet CD62P (P-selectin), formation of heterotypic neutrophil:platelet aggregates, and calcium (Ca2+) fluxes were measured using flow cytometry and fluorescence spectrometry, respectively. Dolutegravir caused dose-related potentiation of ADP-, thrombin- and U46619-activated expression of CD62P by platelets, as well as a significant increases in formation of neutrophil:platelet aggregates. These effects were paralleled by a spontaneous, receptor-independent elevation in cytosolic Ca2+ that appears to underpin the mechanism by which the antiretroviral agent augments the responsiveness of these cells to ADP, thrombin and U46619. The most likely mechanism of dolutegravir-mediated increases in platelet cytosolic Ca2+ relates to a combination of lipophilicity and divalent/trivalent metal-binding and/or chelating properties of the anti-retroviral agent. These properties are likely to confer ionophore-type activities on dolutegravir that would promote movement of Ca2+ across the plasma membrane, delivering the cation to the cytosol where it would augment Ca2+-dependent intracellular signaling mechanisms. These effects of dolutegravir may lead to hyper-activation of platelets which, if operative in vivo, may contribute to an increased risk for cardiometabolic co-morbidities.


Assuntos
Cálcio , Infecções por HIV , Adulto , Humanos , Trombina/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Ativação Plaquetária , Difosfato de Adenosina/farmacologia , Infecções por HIV/tratamento farmacológico , Ionóforos/farmacologia
16.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232674

RESUMO

Platelets are crucial for hemostasis and arterial thrombosis, which may lead to severe cardiovascular diseases (CVDs). Thus, therapeutic agents must be developed to prevent pathological platelet activation. Glabridin, a major bioalkaloid extracted from licorice root, improves metabolic abnormalities (i.e., obesity and diabetes) and protects against CVDs and neuronal disorders. To the best of our knowledge, no studies have focused on glabridin's effects on platelet activation. Therefore, we investigated these effects in humans and mice. Glabridin exhibited the highest inhibitory effects on collagen-stimulated platelet aggregation and moderate effects on arachidonic-acid-stimulated activation; however, no effects were observed for any other agonists (e.g., thrombin or U46619). Glabridin evidently reduced P-selectin expression, ATP release, and intracellular Ca2+ ([Ca2+]i) mobilization and thromboxane A2 formation; it further reduced the activation of phospholipase C (PLC)γ2/protein kinase C (PKC), phosphoinositide 3-kinase (PI3K)/Akt/glycogen synthase kinase-3ß (GSK3ß), mitogen-activated protein kinase (MAPK), and NF-κB. In mice, glabridin reduced the mortality rate caused by acute pulmonary thromboembolism without altering bleeding time. Thus, glabridin effectively inhibits the PLCγ2/PKC cascade and prevents the activation of the PI3K/Akt/GSK3ß and MAPK pathways; this leads to a reduction in [Ca2+]i mobilization, which eventually inhibits platelet aggregation. Therefore, glabridin may be a promising therapeutic agent for thromboembolic disorders.


Assuntos
Glycyrrhiza , Selectina-P , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Plaquetas/metabolismo , Colágeno/metabolismo , Flavonoides/farmacologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Isoflavonas , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Selectina-P/metabolismo , Fenóis , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfolipase C gama/metabolismo , Fosforilação , Ativação Plaquetária , Agregação Plaquetária , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Trombina/metabolismo , Tromboxanos/metabolismo
17.
Cells ; 11(20)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291093

RESUMO

Calcium signalling in platelets through store operated Ca2+ entry (SOCE) or receptor-operated Ca2+ entry (ROCE) mechanisms is crucial for platelet activation and function. Orai1 proteins have been implicated in platelet's SOCE. In this study we evaluated the contribution of Orai1 proteins to these processes using washed platelets from adult mice from both genders with platelet-specific deletion of the Orai1 gene (Orai1flox/flox; Pf4-Cre termed as Orai1Plt-KO) since mice with ubiquitous Orai1 deficiency show early lethality. Platelet aggregation as well as Ca2+ entry and release were measured in vitro following stimulation with collagen, collagen related peptide (CRP), thromboxane A2 analogue U46619, thrombin, ADP and the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor thapsigargin, respectively. SOCE and aggregation induced by Thapsigargin up to a concentration of 0.3 µM was abrogated in Orai1-deficient platelets. Receptor-operated Ca2+-entry and/or platelet aggregation induced by CRP, U46619 or thrombin were partially affected by Orai1 deletion depending on the gender. In contrast, ADP-, collagen- and CRP-induced aggregation was comparable in Orai1Plt-KO platelets and control cells over the entire concentration range. Our results reinforce the indispensability of Orai1 proteins for SOCE in murine platelets, contribute to understand its role in agonist-dependent signalling and emphasize the importance to analyse platelets from both genders.


Assuntos
Plaquetas , Cálcio , Proteína ORAI1 , Animais , Feminino , Masculino , Camundongos , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/metabolismo , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Plaquetas/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Colágeno/metabolismo , Proteína ORAI1/metabolismo , Peptídeos/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Tapsigargina/farmacologia , Trombina/farmacologia , Tromboxano A2/metabolismo
18.
Int J Biochem Cell Biol ; 151: 106281, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995387

RESUMO

Excessive mitochondrial fission in podocytes serves as a central hub for the pathogenesis of diabetic nephropathy (DN), and the thromboxane/prostaglandin receptor (TP receptor) plays a potential role in DN. However, regulation of the TP receptor during mitochondrial dynamics disorder in podocytes remains unknown. Here, we firstly reported novel mechanistic details of TP receptor effects on mitochondrial dynamics in podocytes under diabetic conditions. Expression of the TP receptor was significantly upregulated in podocytes under diabetic conditions both in vivo and in vitro. S18886 attenuated podocyte mitochondrial fission, glomerular injury and renal dysfunction in diabetic mice. Furthermore, inhibition of the TP receptor by both genetic and pharmacological methods dramatically reduced mitochondrial fission and attenuated podocyte injury induced by high glucose through regulating dynamin-related protein 1 (Drp1) phosphorylation and its subsequent translocation to mitochondria. In contrast, TP receptor overexpression and application of TP receptor agonist U46619 in these podocytes showed the opposite effect on mitochondrial fission and podocyte injury. Furthermore, treatment with Y27632, an inhibitor of Rho-associated kinase1 (ROCK1), significantly blunted more fragmented mitochondria and reduced podocyte injuries in podocytes with TP receptor overexpression or after U46619 treatment. Finally, pharmacological inhibition of Drp1 alleviated excessive mitochondrial fragmentation and podocyte damage in TP receptor overexpressing podocytes. Our data suggests that increased expression of the TP receptor can occur in a human cultured podocyte cell line and in podocytes derived from streptozotocin (STZ)-induced diabetic mice, which contributes to mitochondrial excessive fission and podocyte injury via ROCK1-Drp1 signaling.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Doenças Mitocondriais , Podócitos , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/uso terapêutico , Animais , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/patologia , Dinaminas/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Humanos , Camundongos , Doenças Mitocondriais/metabolismo , Dinâmica Mitocondrial , Prostaglandinas/metabolismo , Prostaglandinas/farmacologia , Prostaglandinas/uso terapêutico , Receptores de Prostaglandina/metabolismo , Receptores de Prostaglandina/uso terapêutico , Receptores de Tromboxanos/metabolismo , Receptores de Tromboxanos/uso terapêutico , Estreptozocina , Tromboxanos/metabolismo , Tromboxanos/farmacologia , Tromboxanos/uso terapêutico , Quinases Associadas a rho/metabolismo
19.
Biol Pharm Bull ; 45(8): 1158-1165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35908896

RESUMO

Administration of a P2X4 receptor antagonist to asthma model mice improved asthma symptoms, suggesting that P2X4 receptor antagonists may be new therapeutics for asthma. However, the effects of these antagonists on tracheal/bronchial smooth muscle (TSM and BSM) have not been investigated. This study examined the effects of NP-1815-PX, a selective P2X4 receptor antagonist, on guinea pig TSM and BSM contractions. In epithelium-intact TSM, NP-1815-PX (10-5 M) strongly suppressed ATP-induced contractions. ATP-induced contractions were strongly suppressed by indomethacin (3 × 10-6 M) and ONO-8130 (a prostanoid EP1 receptor antagonist, 10-7 M). ATP-induced contractions were partially suppressed by SQ 29,548 (a prostanoid TP receptor antagonist, 3 × 10-7 M), although the difference was not significant. In contrast, ATP-induced contractions were not affected by AL 8810 (a prostanoid FP receptor antagonist, 10-5 M) or L-798,106 (a prostanoid EP3 receptor antagonist, 10-8 M). NP-1815-PX (10-5-10-4 M) strongly suppressed U46619 (a TP receptor agonist)- and prostaglandin F2α (PGF2α)-induced epithelium-denuded TSM and BSM contractions, which were largely inhibited by SQ 29,548. Additionally, NP-1815-PX (10-5-10-4 M) strongly suppressed the U46619-induced increase in intracellular Ca2+ concentrations in human TP receptor-expressing cells. However, NP-1815-PX (10-4 M) did not substantially inhibit the TSM/BSM contractions induced by carbachol, histamine, neurokinin A, or 50 mM KCl. These findings indicate that NP-1815-PX inhibits guinea pig TSM and BSM contractions mediated through the TP receptor, in addition to the P2X4 receptor, whose stimulation mainly induces EP1 receptor-related mechanisms. Thus, these findings support the usefulness of NP-1815-PX as a therapeutic drug for asthma.


Assuntos
Asma , Antagonistas do Receptor Purinérgico P2X , Receptores Purinérgicos P2X4 , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Azepinas , Dinoprostona/farmacologia , Cobaias , Humanos , Camundongos , Contração Muscular , Músculo Liso , Oxidiazóis , Prostaglandinas , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores de Tromboxanos
20.
Sci Rep ; 12(1): 12829, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896794

RESUMO

This study was performed to elucidate whether eicosapentaenoic acid (EPA) suppresses spasm-prone blood vessel contractions induced by a thromboxane mimetic (U46619) and prostaglandin F2α (PGF2α) and determine whether the primary target of EPA is the prostanoid TP receptor. Accordingly, we assessed: (1) the tension changes in porcine basilar and coronary arteries, and (2) changes in the Fura-2 (an intracellular Ca2+ indicator) fluorescence intensity ratio at 510 nm elicited by 340/380 nm excitation (F340/380) in 293T cells expressing the human TP receptor (TP-293T cells) and those expressing the human prostanoid FP receptor (FP-293T cells). EPA inhibited both porcine basilar and coronary artery contractions induced by U46619 and PGF2α in a concentration-dependent manner, but it did not affect the contractions induced by 80 mM KCl. EPA also inhibited the increase in F340/380 induced by U46619 and PGF2α in TP-293T cells. In contrast, EPA showed only a marginal effect on the increase in F340/380 induced by PGF2α in FP-293T cells. These findings indicate that EPA strongly suppresses the porcine basilar and coronary artery contractions mediated by TP receptor and that inhibition of TP receptors partly underlies the EPA-induced inhibitory effects on these arterial contractions.


Assuntos
Ácido Eicosapentaenoico , Vasoconstritores , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Artérias Cerebrais , Dinoprosta/farmacologia , Ácido Eicosapentaenoico/farmacologia , Humanos , Receptores de Prostaglandina , Receptores de Tromboxano A2 e Prostaglandina H2/fisiologia , Suínos , Vasoconstritores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA