Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.619
Filtrar
1.
Arch Oral Biol ; 163: 105980, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692246

RESUMO

OBJECTIVE: To determine the effect of hyaluronic acid (HA) degradation by hyaluronidase (HYAL) in inhibiting collagen fiber production by rat periodontal ligament cells (rPDLCs). DESIGN: Primary rPDLCs were isolated from the euthanized rats and used for in vitro experiments. The appropriate HYAL concentration was determined through CCK-8 testing for cytotoxicity detection and Alizarin red staining for mineralization detection. RT-qPCR and western blot assays were conducted to assess the effect of HYAL, with or without TGF-ß, on generation of collagen fiber constituents and expression of actin alpha 2, smooth muscle (ACTA2) of rPDLCs. RESULTS: Neither cell proliferation nor mineralization were significantly affected by treatment with 4 U/mL HYAL. HYAL (4 U/mL) alone downregulated type I collagen fiber (Col1a1 and Col1a2) and Acta2 mRNA expression; however, ACTA2 and COL1 protein levels were only downregulated by HYAL treatment after TGF-ß induction. CONCLUSIONS: Treatment of rPDLCs with HYAL can inhibit TGF-ß-induced collagen matrix formation and myofibroblast transformation.


Assuntos
Proliferação de Células , Colágeno , Fibroblastos , Hialuronoglucosaminidase , Miofibroblastos , Ligamento Periodontal , Fator de Crescimento Transformador beta , Animais , Ligamento Periodontal/citologia , Ligamento Periodontal/efeitos dos fármacos , Ligamento Periodontal/metabolismo , Hialuronoglucosaminidase/farmacologia , Ratos , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Colágeno/metabolismo , Proliferação de Células/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Ácido Hialurônico/farmacologia , Células Cultivadas , Ratos Sprague-Dawley , Actinas/metabolismo , Western Blotting , Técnicas In Vitro , Colágeno Tipo I/metabolismo , Biomarcadores/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Masculino , RNA Mensageiro/metabolismo
2.
Mol Pain ; 20: 17448069241254455, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728068

RESUMO

Pruritis, the sensation of itch, is produced by multiple substances, exogenous and endogenous, that sensitizes specialized sensory neurons (pruriceptors and pruri-nociceptors). Unfortunately, many patients with acute and chronic pruritis obtain only partial relief when treated with currently available treatment modalities. We recently demonstrated that the topical application of high molecular weight hyaluronan (HMWH), when combined with vehicles containing transdermal transport enhancers, produce potent long-lasting reversal of nociceptor sensitization associated with inflammatory and neuropathic pain. In the present experiments we tested the hypothesis that the topical formulation of HMWH with protamine, a transdermal transport enhancer, can also attenuate pruritis. We report that this topical formulation of HMWH markedly attenuates scratching behavior at the nape of the neck induced by serotonin (5-hydroxytryptamine, 5-HT), in male and female rats. Our results support the hypothesis that topical HMWH in a transdermal transport enhancer vehicle is a strong anti-pruritic.


Assuntos
Administração Cutânea , Ácido Hialurônico , Protaminas , Ratos Sprague-Dawley , Animais , Ácido Hialurônico/farmacologia , Ácido Hialurônico/química , Masculino , Feminino , Ratos , Protaminas/farmacologia , Peso Molecular , Serotonina/metabolismo , Administração Tópica
3.
Vet Med Sci ; 10(3): e1439, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38695208

RESUMO

This study evaluated the effect of ozone, chitosan-hyaluronic (Cs-HA) acid and mesenchymal stem cells (MSCs) on wound healing in rats. A total of 64 rats were randomly divided into four groups: control, ozone, Cs-HA + ozone and Cs-HA + ozone + MSCs. A 5 mm full-thickness wound was created on the back of each rat. The wound area was measured macroscopically on days 3, 5, 9 and 14. Tissue sections were prepared for histopathological evaluation of inflammation, collagen arrangement, neovascularization and epithelial tissue rearrangement. Macroscopic assessment showed differences in wound area on days 5, 9 and 14. Histopathological examination showed that the Cs-HA + ozone + MSCs and Cs-HA + ozone groups had significantly higher vascularization on day 3 compared to the ozone-treated and control groups. All treatment groups had significantly better collagen arrangement than the control group. On day 5, no significant difference was observed between different groups. On day 9, the inflammation level in the Cs-HA + ozone + MSCs group was significantly lower than in the other groups. All treatment groups had significantly better vascularization compared to the control group. On day 14, the rate of inflammation was significantly lower in the treatment groups than in the control group. Significantly higher collagen arrangement levels were observed in the Cs-HA + ozone and Cs-HA + ozone + MSCs groups compared to the control and ozone groups. All treatment groups had significantly better epithelial tissue rearrangement than the control group. Overall, the results of this study indicated that treatment with ozone, Cs-HA acid, Cs-HA and MSCs accelerated wound healing in rats. The effect of using Cs-HA acid with mesenchymal cells was better than the other types of treatment. Larger clinical trials are needed to assess these factors for improving chronic wound treatment.


Assuntos
Quitosana , Ácido Hialurônico , Transplante de Células-Tronco Mesenquimais , Ozônio , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Ozônio/farmacologia , Ratos , Ácido Hialurônico/farmacologia , Masculino , Transplante de Células-Tronco Mesenquimais/veterinária , Ratos Wistar , Distribuição Aleatória
4.
J Appl Oral Sci ; 32: e20230294, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747782

RESUMO

OBJECTIVE: This study aims to develop a compound biomaterial to achieve effective soft tissue regeneration. METHODOLOGY: Compound hyaluronic acid (CHA) and liquid horizontal-platelet-rich fibrin (H-PRF) were mixed at a ratio of 1:1 to form a CHA-PRF gel. Human gingival fibroblasts (HGFs) were used in this study. The effect of CHA, H-PRF, and the CHA-PRF gel on cell viability was evaluated by CCK-8 assays. Then, the effect of CHA, H-PRF, and the CHA-PRF gel on collagen formation and deposition was evaluated by qRT‒PCR and immunofluorescence analysis. Finally, qRT‒PCR, immunofluorescence analysis, Transwell assays, and scratch wound-healing assays were performed to determine how CHA, H-PRF, and the CHA-PRF gel affect the migration of HGFs. RESULTS: The combination of CHA and H-PRF shortened the coagulation time of liquid H-PRF. Compared to the pure CHA and H-PRF group, the CHA-PRF group exhibited the highest cell proliferation at all time points, as shown by the CCK-8 assay. Col1a and FAK were expressed at the highest levels in the CHA-PRF group, as shown by qRT‒PCR. CHA and PRF could stimulate collagen formation and HGF migration, as observed by fluorescence microscopy analysis of COL1 and F-actin and Transwell and scratch healing assays. CONCLUSION: The CHA-PRF group exhibited greater potential to promote soft tissue regeneration by inducing cell proliferation, collagen synthesis, and migration in HGFs than the pure CHA or H-PRF group. CHA-PRF can serve as a great candidate for use alone or in combination with autografts in periodontal or peri-implant soft tissue regeneration.


Assuntos
Movimento Celular , Proliferação de Células , Sobrevivência Celular , Fibroblastos , Gengiva , Ácido Hialurônico , Fibrina Rica em Plaquetas , Regeneração , Ácido Hialurônico/farmacologia , Humanos , Fibroblastos/efeitos dos fármacos , Gengiva/efeitos dos fármacos , Gengiva/citologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Regeneração/efeitos dos fármacos , Fatores de Tempo , Movimento Celular/efeitos dos fármacos , Reprodutibilidade dos Testes , Imunofluorescência , Reação em Cadeia da Polimerase em Tempo Real , Colágeno , Teste de Materiais , Cicatrização/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Colágeno Tipo I/análise
5.
Int J Nanomedicine ; 19: 3991-4005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720939

RESUMO

Purpose: Surgical site infections pose a significant challenge for medical services. Systemic antibiotics may be insufficient in preventing bacterial biofilm development. With the local administration of antibiotics, it is easier to minimize possible complications, achieve drugs' higher concentration at the injured site, as well as provide their more sustained release. Therefore, the main objective of the proposed herein studies was the fabrication and characterization of innovative hydrogel-based composites for local vancomycin (VAN) therapy. Methods: Presented systems are composed of ionically gelled chitosan particles loaded with vancomycin, embedded into biomimetic collagen/chitosan/hyaluronic acid-based hydrogels crosslinked with genipin and freeze-dried to serve in a flake/disc-like form. VAN-loaded carriers were characterized for their size, stability, and encapsulation efficiency (EE) using dynamic light scattering technique, zeta potential measurements, and UV-Vis spectroscopy, respectively. The synthesized composites were tested in terms of their physicochemical and biological features. Results: Spherical structures with sizes of about 200 nm and encapsulation efficiencies reaching values of approximately 60% were obtained. It was found that the resulting particles exhibit stability over time. The antibacterial activity of the developed materials against Staphylococcus aureus was established. Moreover, in vitro cell culture study revealed that the surfaces of all prepared systems are biocompatible as they supported the proliferation and adhesion of the model MG-63 cells. In addition, we have demonstrated significantly prolonged VAN release while minimizing the initial burst effect for the composites compared to bare nanoparticles and verified their desired physicochemical features during swellability, and degradation experiments. Conclusion: It is expected that the developed herein system will enable direct delivery of the antibiotic at an exposed to infections surgical site, providing drugs sustained release and thus will reduce the risk of systemic toxicity. This strategy would both inhibit biofilm formation and accelerate the healing process.


Assuntos
Antibacterianos , Quitosana , Hidrogéis , Staphylococcus aureus , Vancomicina , Vancomicina/química , Vancomicina/farmacologia , Vancomicina/administração & dosagem , Vancomicina/farmacocinética , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Hidrogéis/química , Hidrogéis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Humanos , Quitosana/química , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Portadores de Fármacos/química , Colágeno/química , Colágeno/farmacologia , Tamanho da Partícula , Liberação Controlada de Fármacos , Infecção da Ferida Cirúrgica/prevenção & controle , Infecção da Ferida Cirúrgica/tratamento farmacológico , Testes de Sensibilidade Microbiana , Biofilmes/efeitos dos fármacos
6.
Stem Cell Res Ther ; 15(1): 130, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702837

RESUMO

BACKGROUND: Hyaluronan (HA) is an extracellular glycosaminoglycan polysaccharide with widespread roles throughout development and in healthy and neoplastic tissues. In pluripotent stem cell culture it can support both stem cell renewal and differentiation. However, responses to HA in culture are influenced by interaction with a range of cognate factors and receptors including components of blood serum supplements, which alter results. These may contribute to variation in cell batch production yield and phenotype as well as heighten the risks of adventitious pathogen transmission in the course of cell processing for therapeutic applications. MAIN: Here we characterise differentiation of a human embryo/pluripotent stem cell derived Mesenchymal Stromal Cell (hESC/PSC-MSC)-like cell population by culture on a planar surface coated with HA in serum-free media qualified for cell production for therapy. Resulting cells met minimum criteria of the International Society for Cellular Therapy for identification as MSC by expression of. CD90, CD73, CD105, and lack of expression for CD34, CD45, CD14 and HLA-II. They were positive for other MSC associated markers (i.e.CD166, CD56, CD44, HLA 1-A) whilst negative for others (e.g. CD271, CD71, CD146). In vitro co-culture assessment of MSC associated functionality confirmed support of growth of hematopoietic progenitors and inhibition of mitogen activated proliferation of lymphocytes from umbilical cord and adult peripheral blood mononuclear cells, respectively. Co-culture with immortalized THP-1 monocyte derived macrophages (Mɸ) concurrently stimulated with lipopolysaccharide as a pro-inflammatory stimulus, resulted in a dose dependent increase in pro-inflammatory IL6 but negligible effect on TNFα. To further investigate these functionalities, a bulk cell RNA sequence comparison with adult human bone marrow derived MSC and hESC substantiated a distinctive genetic signature more proximate to the former. CONCLUSION: Cultivation of human pluripotent stem cells on a planar substrate of HA in serum-free culture media systems is sufficient to yield a distinctive developmental mesenchymal stromal cell lineage with potential to modify the function of haematopoietic lineages in therapeutic applications.


Assuntos
Diferenciação Celular , Ácido Hialurônico , Células-Tronco Mesenquimais , Células-Tronco Pluripotentes , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Meios de Cultura Livres de Soro/farmacologia , Linhagem da Célula , Células Cultivadas , Técnicas de Cultura de Células/métodos , Técnicas de Cocultura
7.
ACS Biomater Sci Eng ; 10(5): 3242-3254, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38632852

RESUMO

Osteoarthritis is characterized by enzymatic breakdown of the articular cartilage via the disruption of chondrocyte homeostasis, ultimately resulting in the destruction of the articular surface. Decades of research have highlighted the importance of inflammation in osteoarthritis progression, with inflammatory cytokines shifting resident chondrocytes into a pro-catabolic state. Inflammation can result in poor outcomes for cells implanted for cartilage regeneration. Therefore, a method to promote the growth of new cartilage and protect the implanted cells from the pro-inflammatory cytokines found in the joint space is required. In this study, we fabricate two gel types: polymer network hydrogels composed of chondroitin sulfate and hyaluronic acid, glycosaminoglycans (GAGs) known for their anti-inflammatory and prochondrogenic activity, and interpenetrating networks of GAGs and collagen I. Compared to a collagen-only hydrogel, which does not provide an anti-inflammatory stimulus, chondrocytes in GAG hydrogels result in reduced production of pro-inflammatory cytokines and enzymes as well as preservation of collagen II and aggrecan expression. Overall, GAG-based hydrogels have the potential to promote cartilage regeneration under pro-inflammatory conditions. Further, the data have implications for the use of GAGs to generally support tissue engineering in pro-inflammatory environments.


Assuntos
Condrócitos , Sulfatos de Condroitina , Ácido Hialurônico , Hidrogéis , Inflamação , Hidrogéis/química , Hidrogéis/farmacologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/química , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Citocinas/metabolismo , Agrecanas/metabolismo , Engenharia Tecidual/métodos , Osteoartrite/patologia , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo
8.
ACS Biomater Sci Eng ; 10(5): 3470-3477, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38652035

RESUMO

The laminar flow profiles in microfluidic systems coupled to rapid diffusion at flow streamlines have been widely utilized to create well-controlled chemical gradients in cell cultures for spatially directing cell migration. However, within hydrogel-based closed microfluidic systems of limited depth (≤0.1 mm), the biomechanical cues for the cell culture are dominated by cell interactions with channel surfaces rather than with the hydrogel microenvironment. Also, leaching of poly(dimethylsiloxane) (PDMS) constituents in closed systems and the adsorption of small molecules to PDMS alter chemotactic profiles. To address these limitations, we present the patterning and integration of a PDMS-free open fluidic system, wherein the cell-laden hydrogel directly adjoins longitudinal channels that are designed to create chemotactic gradients across the 3D culture width, while maintaining uniformity across its ∼1 mm depth to enhance cell-biomaterial interactions. This hydrogel-based open fluidic system is assessed for its ability to direct migration of U87 glioma cells using a hybrid hydrogel that includes hyaluronic acid (HA) to mimic the brain tumor microenvironment and gelatin methacrylate (GelMA) to offer the adhesion motifs for promoting cell migration. Chemotactic gradients to induce cell migration across the hydrogel width are assessed using the chemokine CXCL12, and its inhibition by AMD3100 is validated. This open-top hydrogel-based fluidic system to deliver chemoattractant cues over square-centimeter-scale areas and millimeter-scale depths can potentially serve as a robust screening platform to assess emerging glioma models and chemotherapeutic agents to eradicate them.


Assuntos
Movimento Celular , Quimiotaxia , Glioma , Hidrogéis , Humanos , Glioma/patologia , Glioma/metabolismo , Movimento Celular/efeitos dos fármacos , Hidrogéis/química , Hidrogéis/farmacologia , Quimiotaxia/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Cultura de Células em Três Dimensões/métodos , Microambiente Tumoral/efeitos dos fármacos , Quimiocina CXCL12/farmacologia , Quimiocina CXCL12/metabolismo , Ciclamos/farmacologia , Ciclamos/química , Técnicas de Cultura de Células/métodos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Gelatina/química , Benzilaminas/farmacologia , Benzilaminas/química , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo
9.
Colloids Surf B Biointerfaces ; 238: 113921, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631280

RESUMO

Tumor microenvironment (TME)-responsive size-changeable and biodegradable nanoplatforms for multimodal therapy possess huge advantages in anti-tumor therapy. Hence, we developed a hyaluronic acid (HA) modified CuS/MnO2 nanosheets (HCMNs) as a multifunctional nanoplatform for synergistic chemodynamic therapy (CDT)/photothermal therapy (PTT)/photodynamic therapy (PDT). The prepared HCMNs exhibited significant NIR light absorption and photothermal conversion efficiency because of the densely deposited ultra-small sized CuS nanoparticles on the surface of MnO2 nanosheet. They could precisely target the tumor cells and rapidly decomposed into small sized nanostructures in the TME, and then efficiently promote intracellular ROS generation through a series of cascade reactions. Moreover, the local temperature elevation induced by photothermal effect also promote the PDT based on CuS nanoparticles and the Fenton-like reaction of Mn2+, thereby enhancing the therapeutic efficiency. Furthermore, the T1-weighted magnetic resonance (MR) imaging was significantly enhanced by the abundant Mn2+ ions from the decomposition process of HCMNs. In addition, the CDT/PTT/PDT synergistic therapy using a single NIR light source exhibited considerable anti-tumor effect via in vitro cell test. Therefore, the developed HCMNs will provide great potential for MR imaging and multimodal synergistic cancer therapy.


Assuntos
Cobre , Ácido Hialurônico , Imageamento por Ressonância Magnética , Compostos de Manganês , Óxidos , Fotoquimioterapia , Microambiente Tumoral , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Óxidos/química , Óxidos/farmacologia , Humanos , Cobre/química , Cobre/farmacologia , Tamanho da Partícula , Nanoestruturas/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Fototerapia , Nanopartículas/química , Sobrevivência Celular/efeitos dos fármacos , Propriedades de Superfície , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Animais
10.
Int J Biol Macromol ; 267(Pt 2): 131325, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604425

RESUMO

Black rice anthocyanins (BRA) nanoparticles (NPs) were prepared using hyaluronic acid (HA), oxidized hyaluronic acid (OHA) and bovine serum albumin (BSA) to enhance the absorption and bioactivity of anthocyanins (ACNs). Results showed that HA/OHA-BSA-BRA NPs had a spherical morphology and excellent dispensability, with hydrated radius ~ 500 nm, zeta potential ~ - 30 mV, and encapsulation efficiency ~21 %. Moreover, using in vitro gastrointestinal release assay, we demonstrated that both BRA-loaded NPs exhibited effective controlled release properties of ACNs, significantly enhancing the accessibility of ACNs to the intestine. Cellular experiments showed that both two NPs had good biocompatibility and increased uptake of BRA. Furthermore, in comparison to the free BRA group, both BRA NPs groups significantly decreased the TEER value and increased the expression of tight junction proteins (Claudin 1, Occludin and ZO-1) in Caco-2 cell monolayers with LPS-induced damage. Therefore, our study demonstrated that HA/OHA-BSA-BRA NPs are promising carriers of ACNs and can effectively prevent the LPS-induced intestinal barrier injury in vitro.


Assuntos
Antocianinas , Ácido Hialurônico , Nanopartículas , Oryza , Soroalbumina Bovina , Humanos , Antocianinas/farmacologia , Antocianinas/química , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Nanopartículas/química , Células CACO-2 , Soroalbumina Bovina/química , Oryza/química , Animais , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Bovinos , Portadores de Fármacos/química , Função da Barreira Intestinal
11.
Int J Biol Macromol ; 267(Pt 2): 131520, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615859

RESUMO

The adverse microenvironment, including neuroinflammation, hinders the recovery of spinal cord injury (SCI). Regulating microglial polarization to alleviate neuroinflammation at the injury site is an effective strategy for SCI recovery. MG53 protein exerts obvious repair ability on multiple tissues damage, but with short half-life. In this study, we composited an innovative MG53/GMs/HA-Dex neural scaffold using gelatin microspheres (GMs), hyaluronic acid (HA), and dextran (Dex) loaded with MG53 protein. This novel neural scaffold could respond to MMP-2/9 protein and stably release MG53 protein with good physicochemical properties and biocompatibility. In addition, it significantly improved the motor function of SCI mice, suppressed M1 polarization of microglia and neuroinflammation, and promoted neurogenesis and axon regeneration. Further mechanistic experiments demonstrated that MG53/GMs/HA-Dex hydrogel inhibited the JAK2/STAT3 signaling pathway. Thus, this MG53/GMs/HA-Dex neural scaffold promotes the functional recovery of SCI mice by alleviating neuroinflammation, which provides a new intervention strategy for the neural regeneration and functional repair of SCI.


Assuntos
Gelatina , Ácido Hialurônico , Janus Quinase 2 , Doenças Neuroinflamatórias , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Animais , Camundongos , Recuperação de Função Fisiológica/efeitos dos fármacos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Doenças Neuroinflamatórias/tratamento farmacológico , Gelatina/química , Gelatina/farmacologia , Janus Quinase 2/metabolismo , Dextranos/química , Alicerces Teciduais/química , Microesferas , Fator de Transcrição STAT3/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Modelos Animais de Doenças , Neurogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Hidrogéis/química , Hidrogéis/farmacologia
12.
J Mater Chem B ; 12(19): 4613-4628, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38655586

RESUMO

The clinical treatment of chronic diabetic wounds is a long-standing thorny issue. Strategies targeting the diabetic micro-environment have been developed to promote wound healing. However, it remains challenging to reverse the adverse conditions and re-activate tissue regeneration and angiogenesis. In this work, we develop injectable hydrogels that are responsive to acidic conditions, reactive oxygen species (ROS), and high glucose levels in a diabetic wound micro-environment to sustainably deliver tannic acid (TA) to augment antibacterial, anti-inflammatory, and anti-oxidative activities. This triple-responsive mechanism is designed by introducing dynamic acylhydrazone and phenylboronic ester bonds to crosslink modified hyaluronic acid (HA) chains. At a diabetic wound, the acylhydrazone bonds may be hydrolyzed at low pH. Meanwhile, glucose may compete with TA, and ROS may oxidize the C-B bond to release TA. Thus, sustained release of TA is triggered by the diabetic micro-environment. The released TA effectively scavenges ROS and kills bacteria. In vivo experiments on diabetic mice demonstrate that the hydrogel dressing highly promotes angiogenesis and extracellular matrix (ECM) deposition, leading to eventual full healing of diabetic skin wounds. This micro-environment-triggered triple-responsive drug release provides a promising method for chronic diabetic wound healing.


Assuntos
Antibacterianos , Diabetes Mellitus Experimental , Ácido Hialurônico , Hidrogéis , Cicatrização , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Camundongos , Diabetes Mellitus Experimental/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Colágeno/química , Bandagens , Taninos/química , Taninos/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Humanos , Angiogênese
13.
Carbohydr Polym ; 336: 122129, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670770

RESUMO

Hyaluronan, a linear glycosaminoglycan comprising D-N-acetylglucosamine and D-glucuronic acid, is the main component of the extracellular matrix. Its influence on cell proliferation, migration, inflammation, signalling, and other functions, depends heavily on its molecular weight and chemical modification. Unsaturated HA oligosaccharides are available in defined length and purity. Their potential therapeutic utility can be further improved by chemical modification, e. g., reduction. No synthesis of such modified oligosaccharides, either stepwise or by hyaluronan cleavage, has been reported yet. Here we show a three-step synthesis (esterification, depolymerization and reduction) of unsaturated even numbered hyaluronan oligosaccharides with carboxylates and the reducing terminus reduced to an alcohol. Particular oligosaccharides were synthesised. The modified oligosaccharides are not cleaved by mammalian or bacterial hyaluronidase and do not affect the growth of mouse and human fibroblasts. Further, MTT and NRU viability tests showed that they inhibit the growth of human colon carcinoma cells HT-29 by 20-50 % in concentrations 500-1000 µg/mL. Interestingly, this effect takes place regardless of CD44 receptor expression and was not observed with unmodified HA oligosaccharides. These compounds could serve as enzymatically stable building blocks for biologically active substances.


Assuntos
Proliferação de Células , Citostáticos , Ácido Hialurônico , Hialuronoglucosaminidase , Oligossacarídeos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Humanos , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Animais , Camundongos , Proliferação de Células/efeitos dos fármacos , Hialuronoglucosaminidase/metabolismo , Hialuronoglucosaminidase/antagonistas & inibidores , Citostáticos/farmacologia , Citostáticos/química , Citostáticos/síntese química , Células HT29 , Receptores de Hialuronatos/metabolismo , Fibroblastos/efeitos dos fármacos
14.
Int J Oral Sci ; 16(1): 30, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622128

RESUMO

Bacterial resistance and excessive inflammation are common issues that hinder wound healing. Antimicrobial peptides (AMPs) offer a promising and versatile antibacterial option compared to traditional antibiotics, with additional anti-inflammatory properties. However, the applications of AMPs are limited by their antimicrobial effects and stability against bacterial degradation. TFNAs are regarded as a promising drug delivery platform that could enhance the antibacterial properties and stability of nanodrugs. Therefore, in this study, a composite hydrogel (HAMA/t-GL13K) was prepared via the photocross-linking method, in which tFNAs carry GL13K. The hydrogel was injectable, biocompatible, and could be instantly photocured. It exhibited broad-spectrum antibacterial and anti-inflammatory properties by inhibiting the expression of inflammatory factors and scavenging ROS. Thereby, the hydrogel inhibited bacterial infection, shortened the wound healing time of skin defects in infected skin full-thickness defect wound models and reduced scarring. The constructed HAMA/tFNA-AMPs hydrogels exhibit the potential for clinical use in treating microbial infections and promoting wound healing.


Assuntos
Infecções Bacterianas , Ácidos Nucleicos , Humanos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Ácidos Nucleicos/farmacologia , Hidrogéis/farmacologia , Hidrogéis/química , Cicatrização , Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia
15.
J Nanobiotechnology ; 22(1): 181, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622641

RESUMO

Periodontitis is an inflammatory disease induced by the complex interactions between the host immune system and the microbiota of dental plaque. Oxidative stress and the inflammatory microenvironment resulting from periodontitis are among the primary factors contributing to the progression of the disease. Additionally, the presence of dental plaque microbiota plays a significant role in affecting the condition. Consequently, treatment strategies for periodontitis should be multi-faceted. In this study, a reactive oxygen species (ROS)-responsive drug delivery system was developed by structurally modifying hyaluronic acid (HA) with phenylboronic acid pinacol ester (PBAP). Curcumin (CUR) was encapsulated in this drug delivery system to form curcumin-loaded nanoparticles (HA@CUR NPs). The release results indicate that CUR can be rapidly released in a ROS environment to reach the concentration required for treatment. In terms of uptake, HA can effectively enhance cellular uptake of NPs because it specifically recognizes CD44 expressed by normal cells. Moreover, HA@CUR NPs not only retained the antimicrobial efficacy of CUR, but also exhibited more pronounced anti-inflammatory and anti-oxidative stress functions both in vivo and in vitro. This provides a good potential drug delivery system for the treatment of periodontitis, and could offer valuable insights for dental therapeutics targeting periodontal diseases.


Assuntos
Ácidos Borônicos , Curcumina , Placa Dentária , Glicóis , Nanopartículas Multifuncionais , Nanopartículas , Periodontite , Humanos , Curcumina/farmacologia , Espécies Reativas de Oxigênio , Ésteres , Periodontite/tratamento farmacológico , Ácido Hialurônico/farmacologia
16.
ACS Appl Bio Mater ; 7(4): 2569-2581, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38570335

RESUMO

Chronic wounds impose a significant burden on individuals and healthcare systems, necessitating the development of advanced wound management strategies. Tissue engineering, with its ability to create scaffolds that mimic native tissue structures and promote cellular responses, offers a promising approach. Electrospinning, a widely used technique, can fabricate nanofibrous scaffolds for tissue regeneration. In this study, we developed patterned nanofibrous scaffolds using a blend of poly(ε-caprolactone) (PCL) and poly(glycerol sebacate) (PGS), known for their biocompatibility and biodegradability. By employing a mesh collector, we achieved a unique fiber orientation pattern that emulated the natural tissue architecture. The average fiber diameter of PGS/PCL collected on aluminum foil and on mesh was found to be 665.2 ± 4 and 404.8 ± 16 nm, respectively. To enhance the scaffolds' bioactivity and surface properties, it was coated with hyaluronic acid (HA), a key component of the extracellular matrix known for its wound-healing properties. The HA coating improved the scaffold hydrophilicity and surface wettability, facilitating cell attachment, spreading, and migration. Furthermore, the HA-coated scaffold exhibited enhanced biocompatibility, promoting cell viability and proliferation. High-throughput RNA sequencing was performed to analyze the influence of the fabricated scaffold on the gene expression levels of endothelial cells. The top-upregulated biological processes and pathways include cell cycle regulation and cell proliferation. The results revealed significant alterations in gene expression profiles, indicating the scaffold's ability to modulate cellular functions and promote wound healing processes. The developed scaffold holds great promise for advanced wound management and tissue regeneration applications. By harnessing the advantages of aligned nanofibers, biocompatible polymers, and HA coating, this scaffold represents a potential solution for improving wound healing outcomes and improving the quality of life for individuals suffering from chronic wounds.


Assuntos
Nanofibras , Alicerces Teciduais , Humanos , Alicerces Teciduais/química , Nanofibras/química , Ácido Hialurônico/farmacologia , Poliésteres/farmacologia , Poliésteres/química , Células Endoteliais , Transcriptoma , Qualidade de Vida
17.
J Nanobiotechnology ; 22(1): 149, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38570846

RESUMO

BACKGROUND: Myocardial infarction (MI), a representative form of ischemic heart disease, remains a huge burden worldwide. This study aimed to explore whether extracellular vesicles (EVs) secreted from hyaluronic acid (HA)-primed induced mesenchymal stem cells (HA-iMSC-EVs) could enhance the cardiac repair after MI. RESULTS: HA-iMSC-EVs showed typical characteristics for EVs such as morphology, size, and marker proteins expression. Compared with iMSC-EVs, HA-iMSC-EVs showed enhanced tube formation and survival against oxidative stress in endothelial cells, while reduced reactive oxygen species (ROS) generation in cardiomyocytes. In THP-1 macrophages, both types of EVs markedly reduced the expression of pro-inflammatory signaling players, whereas HA-iMSC-EVs were more potent in augmenting anti-inflammatory markers. A significant decrease of inflammasome proteins was observed in HA-iMSC-EV-treated THP-1. Further, phospho-SMAD2 as well as fibrosis markers in TGF-ß1-stimulated cardiomyocytes were reduced in HA-iMSC-EVs treatment. Proteomic data showed that HA-iMSC-EVs were enriched with multiple pathways including immunity, extracellular matrix organization, angiogenesis, and cell cycle. The localization of HA-iMSC-EVs in myocardium was confirmed after delivery by either intravenous or intramyocardial route, with the latter increased intensity. Echocardiography revealed that intramyocardial HA-iMSC-EVs injections improved cardiac function and reduced adverse cardiac remodeling and necrotic size in MI heart. Histologically, MI hearts receiving HA-iMSC-EVs had increased capillary density and viable myocardium, while showed reduced fibrosis. CONCLUSIONS: Our results suggest that HA-iMSC-EVs improve cardiac function by augmenting vessel growth, while reducing ROS generation, inflammation, and fibrosis in MI heart.


Assuntos
Células-Tronco Mesenquimais , Infarto do Miocárdio , Humanos , Ácido Hialurônico/farmacologia , Células Endoteliais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteômica , Infarto do Miocárdio/terapia , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fibrose
18.
Biomolecules ; 14(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38672482

RESUMO

Hyaluronic acid (HA), a major glycosaminoglycan of the brain extracellular matrix, modulates cell behaviors through binding its receptor, Cd44. In this study, we assessed the influence of HA on high-grade brain tumors in vitro. The model comprised cell cultures derived from six rodent carcinogen-induced brain tumors, forming 3D spheroids prone to spontaneous fusion. Supplementation of the standard culture medium with 0.25% HA significantly inhibited the fusion rates, preserving the shape and size uniformity of spheroids. The 3D cultures were assigned to two groups; a Cd44lo group had a tenfold decreased relative expression of Cd44 than another (Cd44hi) group. In addition, these two groups differed by expression levels of Sox2 transcription factor; the correlation analysis revealed a tight negative association for Cd44 and Sox2. Transcriptomic responses of spheroids to HA exposure also depended on Cd44 expression levels, from subtle in Cd44lo to more pronounced and specific in Cd44hi, involving cell cycle progression, PI3K/AKT/mTOR pathway activation, and multidrug resistance genes. The potential HA-induced increase in brain tumor 3D models' resistance to anticancer drug therapy should be taken into account when designing preclinical studies using HA scaffold-based models. The property of HA to prevent the fusion of brain-derived spheroids can be employed in CNS regenerative medicine and experimental oncology to ensure the production of uniform, controllably fusing neurospheres when creating more accurate in vitro brain models.


Assuntos
Neoplasias Encefálicas , Receptores de Hialuronatos , Ácido Hialurônico , Fatores de Transcrição SOXB1 , Esferoides Celulares , Ácido Hialurônico/farmacologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Animais , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXB1/genética , Ratos , Transcriptoma/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Tumorais Cultivadas , Fusão Celular
19.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38673736

RESUMO

Abundant in citrus fruits, naringin (NAR) is a flavonoid that has a wide spectrum of beneficial health effects, including its anti-inflammatory activity. However, its use in the clinic is limited due to extensive phase I and II first-pass metabolism, which limits its bioavailability. Thus, lipid nanoparticles (LNPs) were used to protect and concentrate NAR in inflamed issues, to enhance its anti-inflammatory effects. To target LNPs to the CD44 receptor, overexpressed in activated macrophages, functionalization with hyaluronic acid (HA) was performed. The formulation with NAR and HA on the surface (NAR@NPsHA) has a size below 200 nm, a polydispersity around 0.245, a loading capacity of nearly 10%, and a zeta potential of about 10 mV. In vitro studies show the controlled release of NAR along the gastrointestinal tract, high cytocompatibility (L929 and THP-1 cell lines), and low hemolytic activity. It was also shown that the developed LNPs can regulate inflammatory mediators. In fact, NAR@NPsHA were able to decrease TNF-α and CCL-3 markers expression by 80 and 90% and manage to inhibit the effects of LPS by around 66% for IL-1ß and around 45% for IL-6. Overall, the developed LNPs may represent an efficient drug delivery system with an enhanced anti-inflammatory effect.


Assuntos
Anti-Inflamatórios , Flavanonas , Lipossomos , Nanopartículas , Flavanonas/farmacologia , Flavanonas/química , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Nanopartículas/química , Animais , Células THP-1 , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Camundongos , Linhagem Celular , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Receptores de Hialuronatos/metabolismo , Composição de Medicamentos
20.
Clin Oral Investig ; 28(5): 281, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676852

RESUMO

OBJECTIVES: To evaluate periodontal wound healing following scaling and root planing (SRP) in conjunction with the application of sodium hypochlorite/amino acids and cross-linked hyaluronic acid (xHyA) gels in dogs. MATERIALS AND METHODS: In four beagle dogs, 2-wall intrabony defects were created and metal strips were placed around the teeth. Clinical parameters were measured 4 weeks after plaque accumulation. The experimental root surfaces were subjected to SRP with either the subgingival application of a sodium hypochlorite/amino acid gel and a xHyA gel (test group) or SRP alone (control group) using a split-mouth design. Clinical parameters were re-evaluated at 6 weeks. The animals were sacrificed at 8 weeks for histological analysis. RESULTS: The test group showed significant improvements in all clinical parameters compared to the control group. Histologically, the test group exhibited statistically significantly greater new bone formation [i.e., length of newly formed bone, new bone area] compared with the control group (p < 0.05). Furthermore, statistically significantly greater formation of new attachment [i.e., linear length of new cementum adjacently to newly formed bone with inserting collagen fibers] and new cementum was detected in the test group compared with the control group at 8 weeks (p < 0.05 and p < 0.01, respectively). CONCLUSION: The adjunctive subgingival application of sodium hypochlorite/amino acid and xHyA gels to SRP offers an innovative novel approach to enhance periodontal wound healing/regeneration. CLINICAL RELEVANCE: The present findings have for the first-time shown histologic evidence for periodontal regeneration in support of this novel treatment modality.


Assuntos
Aminoácidos , Raspagem Dentária , Géis , Ácido Hialurônico , Hipoclorito de Sódio , Cicatrização , Animais , Cães , Hipoclorito de Sódio/farmacologia , Ácido Hialurônico/farmacologia , Ácido Hialurônico/uso terapêutico , Cicatrização/efeitos dos fármacos , Aminoácidos/uso terapêutico , Aplainamento Radicular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA