RESUMO
High-resolution mitochondria imaging in combination with image analysis tools have significantly advanced our understanding of cellular function in health and disease. However, most image analysis tools for mitochondrial studies have been designed to work with fluorescently labeled images only. Additionally, efforts to integrate features describing mitochondrial networks with machine learning techniques for the differentiation of cell types have been limited. Herein, we present AutoMitoNetwork software for image-based assessment of mitochondrial networks in label-free autofluorescence images using a range of interpretable morphological, intensity, and textural features. To demonstrate its utility, we characterized unstained mitochondrial networks in healthy retinal cells and in retinal cells exposed to two types of treatments: rotenone, which directly inhibited mitochondrial respiration and ATP production, and iodoacetic acid, which had a milder impact on mitochondrial networks via the inhibition of anaerobic glycolysis. For both cases, our multi-dimensional feature analysis combined with a support vector machine classifier distinguished between healthy cells and those treated with rotenone or iodoacetic acid. Subtle changes in morphological features were measured including increased fragmentation in the treated retinal cells, pointing to an association with metabolic mechanisms. AutoMitoNetwork opens new options for image-based machine learning in label-free imaging, diagnostics, and mitochondrial disease drug development.
Assuntos
Mitocôndrias , Rotenona , Software , Mitocôndrias/metabolismo , Humanos , Rotenona/farmacologia , Processamento de Imagem Assistida por Computador/métodos , Imagem Óptica/métodos , Ácido Iodoacético/farmacologia , Aprendizado de Máquina , Máquina de Vetores de Suporte , Retina/metabolismo , Retina/diagnóstico por imagemRESUMO
PURPOSE: Osteoarthritis (OA) is a degenerative joint disease which is categorized via destruction of joint cartilage and it also affects the various joints, especially knees and hips. Sinomenine active phytoconstituents isolated from the stem of Sinomenium acutum and already proof anti-inflammatory effect against the arthritis model of rodent. In this experimental protocol, we scrutinized the anti-osteoarthritis effect of sinomenine against monosodium iodoacetate (MIA) induced OA in rats. METHODS: MIA (3 mg/50 µL) was used for inducing the OA in the rats, and rats received the oral administration of sinomenine (2.5, 5 and 7.5 mg/kg body weight) up to the end of the experimental study (four weeks). The body and organs weight were estimated. Aggrecan, C-terminal cross-linked telopeptide of type II collagen (CTX-II), glycosaminoglycans (GCGs), monocyte chemoattractant protein-1 (MCP-1), Interferon gamma (IFN-γ), antioxidant, inflammatory cytokines, inflammatory mediators and matrix metalloproteinases (MMP) were analyzed. RESULTS: Sinomenine significantly (P < 0.001) boosted the body weight and reduced the heart weight, but the weight of spleen and kidney remain unchanged. Sinomenine significantly (P < 0.001) reduced the level of nitric oxide, MCP-1 and improved the level of aggrecan, IFN-γ and GCGs. Sinomenine remarkably upregulated the level of glutathione, superoxide dismutase and suppressed the level of malonaldehyde. It effectually modulated the level of inflammatory cytokines and inflammatory mediators and significantly (P < 0.001) reduced the level of MMPs, like MMP-1, 2, 3, 9 and 13. CONCLUSIONS: Sinomenine is a beneficial active agent for the treatment of OA disease.
Assuntos
Cartilagem Articular , Morfinanos , Osteoartrite , Ratos , Animais , Ácido Iodoacético/metabolismo , Ácido Iodoacético/farmacologia , Osteoartrite/metabolismo , Agrecanas/metabolismo , Agrecanas/farmacologia , Modelos Animais de Doenças , Cartilagem Articular/metabolismo , Metaloproteinases da Matriz/metabolismo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Peso CorporalRESUMO
We investigated whether different doses of undenatured type II collagen (undenatured collagen, UC-II) help improve monosodium iodoacetate (MIA)-induced (osteoarthritis) OA in young and old rats. A total of 70 rats were divided into five groups: (1) control; (2) MIA (a single intra-articular injection of MIA); (3)-(5) MIA+ Undenatured Collagen with various oral doses (0.66, 1.33, and 2 mg/kg). The results showed that all doses of undenatured collagen in both age groups reduced knee diameter, while the two higher doses (1.33 mg/kg and 2 mg/kg) reduced the Mankin score and increased most gait measurements as early as day 14 compared to the MIA rats. However, the 2 mg/kg dose showed the best efficacy in improving Mankin score and gait measurements by 28 days post-OA induction. In young but not old rats, all doses of undenatured collagen reduced the Kellgren-Lawrence score compared to the MIA group. Undenatured collagen reduced the levels of most inflammatory and cartilage breakdown markers in serum and knee joint cartilage in both age groups. In conclusion, this data suggests that while all doses of undenatured collagen supplementation may ameliorate MIA-induced OA symptoms, the higher doses showed faster improvement in gait measurements and were more efficacious for overall joint health in rats.
Assuntos
Cartilagem Articular , Osteoartrite , Ratos , Animais , Ácido Iodoacético/farmacologia , Colágeno Tipo II/metabolismo , Modelos Animais de Doenças , Cartilagem Articular/metabolismo , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Administração OralRESUMO
Osteoarthritis (OA) is a prevalent articular disease mainly characterized by extracellular matrix degradation, apoptosis, and inflammation, which lead to cartilage destruction and abnormal bone metabolism. With undesirable side effects, current limited symptomatic treatments are aimed at relieving pain and improving joint mobility in patients with OA. Intra-articular (IA) hyaluronic acid (HA) injection, as a nonsurgical therapy, is commonly used in the clinical management of knee OA, but the efficacy of this therapeutic option remains controversial. Ebselen has tremendous pharmacological importance for some diseases due to its antioxidant, antiapoptotic, and anti-inflammatory features. However, there is no research examining the therapeutic effect of Ebselen in OA using the rat OA model. Therefore, we aimed to investigate the therapeutic effect of Ebselen on cartilage degeneration and its role in bone morphogenetic protein 2 (BMP2) and nuclear factor kappa B (NF-κB) signaling in the molecular pathogenesis of OA. We induced a knee OA model in rats with an IA injection of monosodium-iodoacetate (MIA). After the treatment of Ebselen, we evaluated its chondroprotective effects by morphological, histopathological, and immunohistochemical methods and an enzyme-linked immunosorbent assay. We report for the first time that Ebselen treatment alleviated articular cartilage degeneration in the rat knee OA model and reduced MIA-induced BMP2 and NF-κB expressions. In addition, our results unveiled that Ebselen decreased IL-ß and IL-6 levels but did not affect COMP levels in the rat serum. Ebselen could be a promising therapeutic drug for the prevention and treatment of OA by alleviating cartilage degeneration and regulating BMP2 and NF-κB expressions.
Assuntos
Anti-Inflamatórios não Esteroides , Cartilagem Articular , Ácido Iodoacético , Osteoartrite do Joelho , Animais , Ratos , Cartilagem Articular/efeitos dos fármacos , Modelos Animais de Doenças , Ácido Iodoacético/farmacologia , Ácido Iodoacético/uso terapêutico , NF-kappa B/genética , NF-kappa B/metabolismo , Osteoartrite do Joelho/tratamento farmacológico , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-1beta/sangue , Interleucina-6/sangue , Ratos Wistar , MasculinoRESUMO
Iodoacetic acid (IAA) is an unregulated disinfection byproduct in drinking water and has been shown to exert cytotoxicity, genotoxicity, tumorigenicity, and reproductive and developmental toxicity. However, the effects of IAA on gut microbiota and its metabolism are still unknown, especially the association between gut microbiota and the metabolism and toxicity of IAA. In this study, female and male Sprague-Dawley rats were exposed to IAA at 0 and 16 mg/kg bw/day daily for 8 weeks by oral gavage. Results of 16S rRNA gene sequencing showed that IAA could alter the diversity, relative abundance and function of gut microbiota in female and male rats. IAA also increased the abundance of genes related to steroid hormone biosynthesis in the gut microbiota of male rats. Moreover, metabolomics profiling revealed that IAA could significantly disturb 6 and 13 metabolites in the feces of female and male rats, respectively. In female rats, the level of androstanediol increased in the IAA treatment group. These results were consistent with our previous findings, where IAA was identified as an androgen disruptor. Additionally, the perturbed gut microbiota and altered metabolites were correlated with each other. The results of this study indicated that IAA could disturb gut microbiota and its metabolism. These changes in gut microbiota and its metabolism were associated with the reproductive and developmental toxicity of IAA.
Assuntos
Água Potável , Microbioma Gastrointestinal , Animais , Desinfecção/métodos , Água Potável/análise , Feminino , Microbioma Gastrointestinal/genética , Ácido Iodoacético/farmacologia , Masculino , RNA Ribossômico 16S/genética , Ratos , Ratos Sprague-DawleyRESUMO
Water disinfection can generate water disinfection byproducts (DBPs). Iodoacetic acid (IAA) is one DBP, and it has been shown to be an ovarian toxicant in vitro and in vivo. However, it is unknown if prenatal and lactational exposure to IAA affects reproductive outcomes in female offspring. This study tested the hypothesis that prenatal and lactational exposure to IAA adversely affects reproductive parameters in F1 female offspring. Adult female CD-1 mice were dosed with water (control) or IAA (10, 100, and 500 mg/L) in the drinking water for 35 days and then mated with unexposed males. IAA exposure continued throughout gestation. Dams delivered naturally, and pups were continuously exposed to IAA through lactation until postnatal day (PND) 21. Female pups were euthanized on PND 21 and subjected to measurements of anogenital distance, ovarian weight, and vaginal opening. Ovaries were subjected to histological analysis. In addition, sera were collected to measure reproductive hormone levels. IAA exposure decreased vaginal opening rate, increased the absolute weight of the ovaries, increased anogenital index, and decreased the percentage of atretic follicles in female pups compared to control. IAA exposure caused a borderline decrease in the levels of progesterone and follicle-stimulating hormone (FSH) and increased levels of testosterone in female pups compared to control. Collectively, these data show that prenatal and lactational exposure to IAA in drinking water affects vaginal opening, anogenital index, the weight of the ovaries, the percentage of atretic follicles, and hormone levels in the F1 generation in mice.
Assuntos
Água Potável , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Hormônios/farmacologia , Humanos , Ácido Iodoacético/farmacologia , Lactação , Masculino , Camundongos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , ReproduçãoRESUMO
Pain is the most common symptom of osteoarthritis, and spinal glia is known to contribute to this symptom. Therapeutic ultrasound and laser therapy have been used to effectively treat osteoarthritis, with few adverse effects. Thus, this study aimed to investigate the effects of ultrasound and photobiomodulation on the symptoms and evaluate the participation of spinal glia in osteoarthritis-induced nociception in mice. Male Swiss mice were subjected to osteoarthritis induction with a 0.1-mg intra-articular injection of monosodium iodoacetate. Additionally, the mice received chronic ultrasound or photobiomodulation treatment for 21 days or a single treatment at day 14. Nociception was evaluated using von Frey filaments, and osteoarthritis symptoms were assessed by analysis of gait, joint temperature, and knee joint diameter. The role of spinal microglia and astrocytes on nociception was evaluated via an intrathecal injection of minocycline or fluorocitrate, and the spinal release of IL-1ß and TNF-α was assessed by ELISA after chronic treatment with ultrasound or photobiomodulation. Our data showed that both single and chronic treatment with ultrasound or photobiomodulation attenuated the osteoarthritis-induced nociception. No differences in gait, knee joint temperature, or knee joint diameter were found. The intrathecal injection of minocycline and fluorocitrate decreased the osteoarthritis-induced nociception. There was an increase in the spinal levels of TNF-α, which was reverted by chronic ultrasound and laser treatments. These results suggest that osteoarthritis induces nociception and glial activation via spinal release of TNF-α and that the chronic treatment with ultrasound or photobiomodulation decreased nociception and TNF-α release.
Assuntos
Nociceptividade , Osteoartrite , Animais , Modelos Animais de Doenças , Ácido Iodoacético/farmacologia , Masculino , Camundongos , Neuroglia , Osteoartrite/radioterapia , DorRESUMO
The pathophysiology of osteoarthritis (OA) includes the destruction of subchondral bone tissue and inflammation of the synovium. Thus, an effective disease-modifying treatment should act on both of these pathogenetic components. It is known that cSrc kinase is involved in bone and cartilage remodeling, and SYK kinase is associated with the inflammatory component. Thus the aim of this study was to characterize the mechanism of action and efficacy of a small molecule multikinase inhibitor MT-SYK-03 targeting SYK and cSrc kinases among others in different in vitro and in vivo arthritis models. The selectivity of MT-SYK-03 kinase inhibition was assayed on a panel of 341 kinases. The compound was evaluated in a set of in vitro models of OA and in vivo OA and RA models: surgically-induced arthritis (SIA), monosodium iodoacetate-induced arthritis (MIA), collagen-induced arthritis (CIA), adjuvant-induced arthritis (AIA). MT-SYK-03 inhibited cSrc and SYK with IC50 of 14.2 and 23 nM respectively. Only five kinases were inhibited > 90% at 500 nM of MT-SYK-03. In in vitro OA models MT-SYK-03 reduced hypertrophic changes of chondrocytes, bone resorption, and inhibited SYK-mediated inflammatory signaling. MT-SYK-03 showed preferential distribution to joint and bone tissue (in rats) and revealed disease-modifying activity in vivo by halving the depth of cartilage erosion in rat SIA model, and increasing the pain threshold in rat MIA model. Chondroprotective and antiresorptive effects were shown in a monotherapy regime and in combination with methotrexate (MTX) in murine and rat CIA models; an immune-mediated inflammation in rat AIA model was decreased. The obtained preclinical data support inhibition of cSrc and SYK as a viable strategy for disease-modifying treatment of OA. A Phase 2 clinical study of MT-SYK-03 is to be started.
Assuntos
Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/enzimologia , Osso e Ossos/efeitos dos fármacos , Proteína Tirosina Quinase CSK/antagonistas & inibidores , Cartilagem/efeitos dos fármacos , Osteoartrite/tratamento farmacológico , Osteoartrite/enzimologia , Quinase Syk/antagonistas & inibidores , Animais , Artrite Experimental/patologia , Reabsorção Óssea/patologia , Condrócitos/patologia , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Humanos , Inflamação , Concentração Inibidora 50 , Ácido Iodoacético/farmacologia , Receptores de Lipopolissacarídeos/biossíntese , Masculino , Camundongos , Monócitos/citologia , Substâncias Protetoras/farmacologia , Coelhos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Membrana Sinovial/patologiaRESUMO
Osteoarthritis (OA) is a complex disease characterized by structural, functional, and metabolic deteriorations of the whole joint and periarticular tissues. In the current study, we aimed to investigate the possible effects of tempol on knee OA induced by the chemical chondrotoxic monosodium iodoacetate (MIA) which closely mimics both the pain and structural changes associated with human OA. Rats were administrated oral tempol (100 mg/kg) one week post-MIA injection (3 mg/50 µL saline) at the right knee joints for 21 consecutive days. Tempol improved motor performance and debilitated the MIA-related radiological and histological alterations. Moreover, it subsided the knee joint swelling. Tempol decreased the cartilage degradation-related biomarkers as matrix metalloproteinase-13, bone alkaline phosphatase (bone ALP), and fibulin-3. The superoxide dismutase mimetic effect of tempol was accompanied by decreased NADPH oxidase 4 (NOX4), inflammatory mediators, nuclear factor-kappa B (NF-κB), over-released transforming growth factor-ß1 (TGF-ß1). Tempol decreased the expression of chemokine (C-C motif) ligand 2 (CCL2). On the molecular level, tempol reduced the phosphorylated protein levels of p38 mitogen-activated protein kinase (MAPK), and small mother against decapentaplegic 3 homologs (SMAD3). These findings suggest the promising role of tempol in ameliorating MIA-induced knee OA in rats via collateral suppression of the catabolic signaling cascades including TGF-ß1/SMAD3/NOX4, and NOX4/p38MAPK/NF-κB and therefore modulation of oxidative stress, catabolic inflammatory cascades, chondrocyte metabolic homeostasis.
Assuntos
Óxidos N-Cíclicos/farmacologia , Ácido Iodoacético/efeitos adversos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NADPH Oxidase 4/metabolismo , Osteoartrite do Joelho , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Ácido Iodoacético/farmacologia , Masculino , Osteoartrite do Joelho/induzido quimicamente , Osteoartrite do Joelho/tratamento farmacológico , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Ratos , Ratos Wistar , Marcadores de SpinRESUMO
Diabetic retinopathy (DR) is the leading cause of vision impairment in working age adults. In addition to hyperglycemia, retinal inflammation is an important driving factor for DR development. Although DR is clinically described as diabetes-induced damage to the retinal blood vessels, several studies have reported that metabolic dysregulation occurs in the retina prior to the development of microvascular damage. The two most commonly affected metabolic pathways in diabetic conditions are glycolysis and the glutamate pathway. We investigated the role of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and glutamine synthetase (GS) in an in-vitro model of DR incorporating high glucose and pro-inflammatory cytokines. We found that GAPDH and GS enzyme activity were not significantly affected in hyperglycemic conditions or after exposure to cytokines alone, but were significantly decreased in the DR model. This confirmed that pro-inflammatory cytokines IL-1ß and TNFα enhance the hyperglycemic metabolic deficit. We further investigated metabolite and amino acid levels after specific pharmacological inhibition of GAPDH or GS in the absence/presence of pro-inflammatory cytokines. The results indicate that GAPDH inhibition increased glucose and addition of cytokines increased lactate and ATP levels and reduced glutamate levels. GS inhibition did not alter retinal metabolite levels but the addition of cytokines increased ATP levels and caused glutamate accumulation in Müller cells. We conclude that it is the action of pro-inflammatory cytokines concomitantly with the inhibition of the glycolytic or GS mediated glutamate recycling that contribute to metabolic dysregulation in DR. Therefore, in the absence of good glycemic control, therapeutic interventions aimed at regulating inflammation may prevent the onset of early metabolic imbalance in DR.
Assuntos
Retinopatia Diabética/enzimologia , Inibidores Enzimáticos/farmacologia , Glutamato-Amônia Ligase/antagonistas & inibidores , Gliceraldeído-3-Fosfato Desidrogenases/antagonistas & inibidores , Interleucina-1beta/farmacologia , Retina/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Retinopatia Diabética/patologia , Feminino , Glucose/farmacologia , Hiperglicemia/metabolismo , Ácido Iodoacético/farmacologia , L-Lactato Desidrogenase/metabolismo , Metionina Sulfoximina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Retina/enzimologia , Retina/patologiaRESUMO
Iodoacetic acid (IAA) is a water disinfection byproduct that is an ovarian toxicant in vitro. However, information on the effects of IAA on ovarian function in vivo was limited. Thus, we determined whether IAA exposure affects estrous cyclicity, steroidogenesis, and ovarian gene expression in mice. Adult CD-1 mice were dosed with water or IAA (0.5-500 mg/L) in the drinking water for 35-40 days during which estrous cyclicity was monitored for 14 days. Ovaries were analyzed for expression of apoptotic factors, cell cycle regulators, steroidogenic factors, estrogen receptors, oxidative stress markers, and a proliferation marker. Sera were collected to measure pregnenolone, androstenedione, testosterone, estradiol, inhibin B, and follicle-stimulating hormone (FSH) levels. IAA exposure decreased the time that the mice spent in proestrus compared to control. IAA exposure decreased expression of the proapoptotic factor Bok and the cell cycle regulator Ccnd2 compared to control. IAA exposure increased expression of the proapoptotic factors Bax and Aimf1, the antiapoptotic factor Bcl2l10, the cell cycle regulators Ccna2, Ccnb1, Ccne1, and Cdk4, and estrogen receptor Esr1 compared to control. IAA exposure decreased expression of Sod1 and increased expression of Cat, Gpx and Nrf2. IAA exposure did not affect expression of Star, Cyp11a1, Cyp17a1, Hsd17b1, Hsd3b1, Esr2, or Ki67 compared to control. IAA exposure decreased estradiol levels, but did not alter other hormone levels compared to control. In conclusion, IAA exposure alters estrous cyclicity, ovarian gene expression, and estradiol levels in mice.
Assuntos
Inibidores Enzimáticos/farmacologia , Ciclo Estral/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Hormônios/metabolismo , Ácido Iodoacético/farmacologia , Ovário/efeitos dos fármacos , Animais , Ciclo Estral/fisiologia , Feminino , Camundongos , Ovário/fisiologiaRESUMO
Increased afferent input resulting from painful injury augments the activity of central nociceptive circuits via both neuron-neuron and neuron-glia interactions. Microglia, resident immune cells of the central nervous system (CNS), play a crucial role in the pathogenesis of chronic pain. This study provides a framework for understanding how peripheral joint injury signals the CNS to engage spinal microglial responses. During the first week of monosodium iodoacetate (MIA)-induced knee joint injury in male rats, inflammatory and neuropathic pain were characterized by increased firing of peripheral joint afferents. This increased peripheral afferent activity was accompanied by increased Iba1 immunoreactivity within the spinal dorsal horn indicating microglial activation. Pharmacological silencing of C and A afferents with co-injections of QX-314 and bupivacaine, capsaicin, or flagellin prevented the development of mechanical allodynia and spinal microglial activity after MIA injection. Elevated levels of ATP in the cerebrospinal fluid (CSF) and increased expression of the ATP transporter vesicular nucleotide transporter (VNUT) in the ipsilateral spinal dorsal horn were also observed after MIA injections. Selective silencing of primary joint afferents subsequently inhibited ATP release into the CSF. Furthermore, increased spinal microglial reactivity, and alleviation of MIA-induced arthralgia with co-administration of QX-314 with bupivacaine were recapitulated in female rats. Our results demonstrate that early peripheral joint injury activates joint nociceptors, which triggers a central spinal microglial response. Elevation of ATP in the CSF, and spinal expression of VNUT suggest ATP signaling may modulate communication between sensory neurons and spinal microglia at 2 weeks of joint degeneration.
Assuntos
Artrite Experimental/fisiopatologia , Microglia/fisiologia , Neurônios Aferentes/fisiologia , Medula Espinal/fisiopatologia , Trifosfato de Adenosina/fisiologia , Animais , Artralgia/terapia , Modelos Animais de Doenças , Feminino , Hiperalgesia/fisiopatologia , Ácido Iodoacético/farmacologia , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
Hypoxia tolerance in the vertebrate brain often involves chemical modulators that arrest neuronal activity to conserve energy. However, in intact networks, it can be difficult to determine whether hypoxia triggers modulators to stop activity in a protective manner or whether activity stops because rates of ATP synthesis are insufficient to support network function. Here, we assessed the extent to which neuromodulation or metabolic limitations arrest activity in the respiratory network of bullfrogs-a circuit that survives moderate periods of oxygen deprivation, presumably, by activating an inhibitory noradrenergic pathway. We confirmed that hypoxia and norepinephrine (NE) reduce network output, consistent with the view that hypoxia may cause the release of NE to inhibit activity. However, these responses differed qualitatively; hypoxia, but not NE, elicited a large motor burst and silenced the network. The stereotyped response to hypoxia persisted in the presence of both NE and an adrenergic receptor blocker that eliminates sensitivity to NE, indicating that noradrenergic signaling does not cause the arrest. Pharmacological inhibition of glycolysis and mitochondrial respiration recapitulated all features of hypoxia on network activity, implying that reduced ATP synthesis underlies the effects of hypoxia. Finally, activating modulatory mechanisms that dampen neuronal excitability when ATP levels fall, KATP channels and AMP-dependent protein kinase, did not resemble the hypoxic response. These results suggest that energy failure-rather than inhibitory modulation-silences the respiratory network during hypoxia and emphasize the need to account for metabolic limitations before concluding that modulators arrest activity as an adaptation for energy conservation in the nervous system.
Assuntos
Tronco Encefálico/fisiologia , Metabolismo Energético/fisiologia , Consumo de Oxigênio/fisiologia , Rana catesbeiana/fisiologia , Trifosfato de Adenosina/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Desoxiglucose/farmacologia , Feminino , Humanos , Ácido Iodoacético/farmacologia , Norepinefrina/farmacologia , Prazosina/farmacologiaRESUMO
The present work aimed to assess the chondroprotective influence of chitosan and lecithin in a monoiodoacetate (MIA)-induced experimental osteoarthritis (OA) model. Forty male rats weighing 180-200 g were randomly distributed among the following five experimental groups (eight per group): control, MIA-induced OA, MIA-induced OA + chitosan, MIA-induced OA + lecithin, and MIA-induced OA + chitosan + lecithin. The levels of TNF-α, IL6, RF, ROS, and CRP, as well as mitochondrial markers such as mitochondrial swelling, cytochrome C oxidase (complex IV), MMP, and serum oxidative/antioxidant status (MDA level) (MPO and XO activities) were elevated in MIA-induced OA. Also, SDH (complex II) activity in addition to the levels of ATP, glutathione (GSH), and thiol was markedly diminished in the MIA-induced OA group compared to in control rats. These findings show that mitochondrial function is associated with OA pathophysiology and suggest that chitosan and lecithin could be promising potential ameliorative agents in OA animal models. Lecithin was more effective than chitosan in ameliorating all of the abovementioned parameters.
Assuntos
Quitosana/farmacologia , Ácido Iodoacético/farmacologia , Lecitinas/farmacologia , Osteoartrite/induzido quimicamente , Osteoartrite/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/metabolismo , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glutationa/metabolismo , Interleucina-6/metabolismo , Masculino , Metaloproteinases da Matriz/metabolismo , Osteoartrite/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The current animal models of osteoarthritis (OA) can be divided into spontaneous models and induced models, both of which aim to simulate the pathophysiological changes of human OA. However, as the main symptom in the late stage of OA, pain affects the patients' daily life, and there are not many available models. The mono-iodoacetate (MIA)-induced model is the most widely used OA pain model, mainly used in rodents. MIA is an inhibitor of glyceraldehyde-3-phosphate dehydrogenase, which causes chondrocyte death, cartilage degeneration, osteophyte, and measurable changes in animal behavior. Besides, expression changes of matrix metalloproteinase (MMP) and pro-inflammatory cytokines (IL1 ß and TNF α) can be detected in the MIA-induced model. Those changes are consistent with OA pathophysiological conditions in humans, indicating that MIA can induce a measurable and successful OA pain model. This study aims to describe the methodology of intra-articular injection of MIA in rats and discuss the resulting pain-related behaviors and histopathological changes.
Assuntos
Modelos Animais de Doenças , Ácido Iodoacético/administração & dosagem , Ácido Iodoacético/farmacologia , Osteoartrite/complicações , Dor/induzido quimicamente , Animais , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Citocinas/metabolismo , Injeções Intra-Articulares , Masculino , Metaloproteinases da Matriz/metabolismo , Dor/complicações , Dor/patologia , RatosRESUMO
Exosome secretion by cells is a complex, poorly understood process. Studies of exosomes would be facilitated by a method for increasing their production and release. Here, we present a method for stimulating the secretion of exosomes. Cultured cells were treated or not with sodium iodoacetate (IAA; glycolysis inhibitor) plus 2,4-dinitrophenol (DNP; oxidative phosphorylation inhibitor). Exosomes were isolated by size-exclusion chromatography and their morphology, size, concentration, cargo components and functional activity were compared. IAA/DNP treatment (up to 10 µM each) was non-toxic and resulted in a 3 to 16-fold increase in exosome secretion. Exosomes from IAA/DNP-treated or untreated cells had similar biological properties and functional effects on endothelial cells (SVEC4-10). IAA/DNP increased exosome secretion from mouse organ cultures, and in vivo injections enhanced the levels of circulating exosomes. IAA/DNP decreased ATP levels (p < 0.05) in cells. A cell membrane-permeable form of 2',3'-cAMP and 3'-AMP mimicked the potentiating effects of IAA/DNP on exosome secretion. In cells lacking 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase; an enzyme that metabolizes 2',3'-cAMP into 2'- and 3'-AMP), effects of IAA/DNP on exosome secretion were enhanced. The IAA/DNP combination is a powerful stimulator of exosome secretion, and these stimulatory effects are, in part, mediated by intracellular 2',3'-cAMP.
Assuntos
AMP Cíclico/metabolismo , Exossomos/metabolismo , Glicólise/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/deficiência , 2',3'-Nucleotídeo Cíclico Fosfodiesterases/genética , 2,4-Dinitrofenol/farmacologia , Animais , Animais Geneticamente Modificados , Biomarcadores Tumorais/metabolismo , Western Blotting , Linhagem Celular Tumoral , Feminino , Glicólise/genética , Humanos , Ácido Iodoacético/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , RatosRESUMO
Porcine models of ophthalmological diseases are often used in pre-clinical translational studies due to pigs' similarities to humans. In particular, the iodoacetic acid (IAA) model of photoreceptor degeneration seems to mimic well the endstage phenotype of human pathologies as retinitis pigmentosa and age-related macular degeneration, with high potential for prosthesis/retinal devices testing. IAA is capable of inducing photoreceptor death by blockage of glycolysis, and its effects on the retina have been described. Nonetheless, up to date, literature lacks of a comprehensive morpho-functional characterization of the entire visual system of this model. This gap is particularly critical for prosthesis testing as inner retinal structures and optic pathways must be preserved to elicit cortical responses and restore vision. In this study, we investigated the functional and anatomical features of the visual system of IAA-treated pigs and compared them to control animals. IAA was administered intravenously at 12 mg/kg; control animals received saline solution (NaCl 0.9% w/v). Electrophysiological analyses included full-field (ffERGs) and pattern (PERGs) electroretinograms and flash visually evoked potentials (fVEPs). Histological evaluations were performed on the retina and the optic pathways and included thickness of the different retinal layers, ganglion cells count, and immunohistochemistry for microglial cells, macroglial cells, and oligodendrocytes. The histological results indicate that IAA treatment does not affect the morphology of the inner retina and optic pathways. Electrophysiology confirms the selective rod and partial cone degeneration, but is ambiguous as to the functionality of the optic pathways, seemingly preserved as indicated by the still detectable fVEPs. Overall, the work ameliorates the characterization of such rapid and cost-effective model, providing more strength and reliability for future pre-clinical translational trials.
Assuntos
Ácido Iodoacético/farmacologia , Células Fotorreceptoras Retinianas Cones/patologia , Degeneração Retiniana/tratamento farmacológico , Acuidade Visual , Animais , Modelos Animais de Doenças , Eletrorretinografia , Inibidores Enzimáticos/farmacologia , Feminino , Masculino , Reprodutibilidade dos Testes , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/patologia , Degeneração Retiniana/fisiopatologia , SuínosRESUMO
Harvested fruit undergo carbon and energy deprivation. However, the events underlying this energy-related stress in detached fruit and their involvement in cell damage have not yet been elucidated. We showed that supplementing detached sweet oranges with additional carbon or energy sources reduced peel damage, while inhibitors of energy metabolism increased it. We investigated the effect of an exogenous source of carbon (glycerol), energy (ATP), and an inhibitor of energy metabolism 2-deoxy-D-glucose (DeOGlc) + sodium iodoacetate (IAc), on the transcriptome of harvested fruit flavedo (outer peel part). ATP and Gly induced common, but also specific, alternative modes of energy metabolism by reducing the stress caused by energy shortage. They also induced shifts in energy metabolism that led to the production of the intermediates required for plant defense secondary metabolites to form. ATP and Gly triggered changes in the expression of the genes involved in cell lesion containment through a defined pathway involving hormones and redox-mediated signaling. DeOGlc + IAc had a contrasting effect on some of these mechanisms. These chemicals altered the biological processes related to membrane integrity and molecular mechanisms involving reactive oxygen species (ROS) production, and lipid and protein degradation.
Assuntos
Citrus/genética , Citrus/metabolismo , Transcriptoma/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Desoxiglucose/farmacologia , Metabolismo Energético/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Glicerol/farmacologia , Ácido Iodoacético/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genéticaRESUMO
In this study, we investigated age and sex differences in acute and chronic pain in rats. Groups of young (3-6 months) and aged (20-24 months) male and female Fischer 344 rats were used to assess basal thermal and mechanical thresholds, capsaicin-induced acute nocifensive responses and c-Fos expression in the spinal cord, and monoiodoacetate (MIA)-induced knee osteoarthritis (OA)-like pain responses. There was a significant sex, but not age, effect on thermal threshold on the hindpaw and mechanical threshold on the knee joint. No significant age and sex differences in capsaicin-induced nocifensive and c-Fos responses were observed. MIA induced a greater peak reduction of weight-bearing responses in aged males than young rats. Aged females developed the most profound weight-bearing deficit. With knee joint sensitivity as a primary outcome measure, MIA induced more pronounced and longer-lasting hyperalgesia in older rats, with aged female rats showing the worst effect. These data suggest that age may not have significant effect on acute nociceptive processing, but it significantly impacts OA-like pain, making aged rats, especially females, more vulnerable to chronic pain conditions. These preclinical models should provide important tools to investigate basic mechanisms underlying the impact of age and sex in chronic pain conditions.
Assuntos
Envelhecimento/fisiologia , Artrite Experimental/fisiopatologia , Comportamento Animal/fisiologia , Hiperalgesia/fisiopatologia , Animais , Capsaicina/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Ácido Iodoacético/farmacologia , Masculino , Medição da Dor , Limiar da Dor , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Endogâmicos F344 , Fatores Sexuais , Medula Espinal/metabolismo , Suporte de Carga/fisiologiaRESUMO
Osteoarthritis (OA) is characterized with articular cartilage degradation, and monosodium iodoacetate (MIA)-treated chondrocyte is the most commonly used model for mimicking OA progression. Zinc protects chondrocytes from MIA-induced damage. Here, we explored the protective effects of 25⯵M zinc on 5⯵M MIA-treated SW1353â¯cells (human chondrosarcoma cell line) through the analysis of energy metabolism- and autophagy-related parameters. We found that the exposure of SW1353â¯cells to MIA decreased ATP levels, expression of glycolysis-related proteins, including glucose transporter 1, hexokinase 2, and pyruvate dehydrogenase E1 component subunit alpha, and the levels of mitochondrial complex I, II, IV, and V subunits of the oxidative phosphorylation pathway. MIA treatment also decreased the expression of autophagy-related proteins, including autophagic elongation protein 5 (ATG5), ATG7, and microtubule-associated protein 1A/1B light chain 3B (LC3-II) and mitophagy-related proteins, including phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), ubiquitin, and p62. These results indicate that MIA interferes with energy metabolism and the autophagic clearance of dysfunctional mitochondria (so called mitophagy). Interestingly, zinc exposure could almost completely reverse the effects of MIA, suggesting its potential protective role against OA progression.