Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.071
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124242, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581725

RESUMO

The regular overconsumption of high-energy food (rich in lipids and sugars) results in elevated nutrient absorption in intestine and consequently excessive accumulation of lipids in many organs e.g.: liver, adipose tissue, muscles. In the long term this can lead to obesity and obesity-associated diseases e.g. type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease, inflammatory bowel disease (IBD). In the presented paper based on RI data we have proved that Raman maps can be used successfully for subcellular structures visualization and analysis of fatty acids impact on morphology and chemical composition of human colon single cells - normal and cancer. Based on Raman data we have investigated the changes related to endoplasmic reticulum, mitochondria, lipid droplets and nucleus. Analysis of ratios calculated based on Raman bands typical for proteins (1256, 1656 cm-1), lipids (1304, 1444 cm-1) and nucleic acids (750 cm-1) has confirmed for endoplasmic reticulum the increased activity of this organelle in lipoproteins synthesis upon FAs supplementation; for LDs the changes of desaturation of accumulated lipids with the highest unsaturation level for CaCo-2 cells upon EPA supplementation; for mitochondria the stronger effect of FAs supplementation was observed for CaCo-2 cells confirming the increased activity of this organelle responsible for energy production necessary for tumor development; the weakest impact of FAs supplementation was observed for nucleus for both types of cells and both types of acids. Fluorescence imaging was used for the investigations of changes in LDs/ER morphology. Our measurements have shown the increased area of LDs/ER for CaCo-2 cancer cells, and the strongest effect was noticed for CaCo-2 cells upon EPA supplementation. The increased participation of lipid structures for all types of cells upon FAs supplementation has been confirmed also by AFM studies. The lowest YM values have been observed for CaCo-2 cells including samples treated with FAs.


Assuntos
Neoplasias do Colo , Ácido Eicosapentaenoico , Análise Espectral Raman , Humanos , Ácido Eicosapentaenoico/farmacologia , Ácido Eicosapentaenoico/química , Células CACO-2 , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/tratamento farmacológico , Ácido Linoleico/farmacologia , Ácido Linoleico/química , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/patologia , Microscopia de Fluorescência
2.
Nutrients ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474834

RESUMO

Over the past three decades, studies have shown that consuming polyunsaturated fatty acids (PUFAs) can enhance animal and human health and welfare through biological, biochemical, pathological, and pharmacological impacts. Furthermore, omega-6 plays key roles in the cardiopulmonary system, including promoting airway relaxation and inhibiting atherosclerosis and hypertension. However, findings from investigations of the effects of omega-6 fatty acids on molecular and cellular activity and discussions on their influence on biomarkers are still unclear. Therefore, the present study aimed to evaluate omega-6 fatty acids, the arachidonic acid (AA), and linoleic acid (LA) effects on C2C12 proliferation, myogenesis morphology, and relative myogenic biomarker expression through the Wnt pathway. C2C12 cells were cultured with and without 25, 50, 100, and 150 µM of LA and AA and then subjected to CCK8, Giemsa staining, RT qPCR, Western blotting, and RNA Sequencing. The CCK8 Assay results showed that 25, 50, 100, and 150 µM LA significantly decreased the viability after 72 h for 25, 50, 100, and 150 µM concentrations. Also, AA supplementation decreased cell viability after 24 h for 150 µM, 48 h for 150 µM, and 72 h for 50, 100, and 150 µM concentrations. Moreover, the LA and AA inhibitory effects noticed through Gimesa staining were morphological changes during myoblast differentiation. Both LA and AA showed inhibiting IGF1, Cola1, Col6a2, Col6a1, Itga10, Itga11, SFRP2, DAAM2, and NKD2 effects; however, the depressing effect was higher for AA compared to LA. The previous results were confirmed through Western blotting, which showed that 50 µM LA and AA significantly reduced DAAM2 and SFRP2 protein levels compared to the control. Regarding RNA sequencing results, LA and AA increased the number of differentially expressed (DE) Mt-rRNA and snoRNA; however, the numbers of lncRNA detected decreased compared to the control. Our findings demonstrate that high and moderate LA and AA concentrations reduce primary myoblast proliferation and differentiation. Also, they highlight novel biomarkers and regulatory factors to improve our understanding of how the nutrition of fatty acids can control and modulate the myogenesis and differentiation process through different biomarker families.


Assuntos
Ácidos Graxos Ômega-6 , Ácido Linoleico , Animais , Humanos , Ácido Linoleico/farmacologia , Ácido Araquidônico/farmacologia , Biomarcadores , Análise de Sequência de RNA , Proteínas de Ligação ao Cálcio , Proteínas Adaptadoras de Transdução de Sinal
3.
Cancer Biol Ther ; 25(1): 2325130, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38465855

RESUMO

Emerging evidence has provided considerable insights into the integral function of reprogramming fatty acid metabolism in the carcinogenesis and progression of endometrial cancer. Linoleic acid, an essential fatty acid with the highest consumption in the Western diet regimen, has shown pro-tumorigenic or anti-tumorigenic effects on tumor cell growth and invasion in multiple types of cancer. However, the biological role of linoleic acid in endometrial cancer remains unclear. In the present study, we aimed to investigate the functional impact of linoleic acid on cell proliferation, invasion, and tumor growth in endometrial cancer cells and in a transgenic mouse model of endometrial cancer. The results showed that Linoleic acid significantly inhibited the proliferation of endometrial cancer cells in a dose-dependent manner. The treatment of HEC-1A and KLE cells with linoleic acid effectively increased intracellular reactive oxygen species (ROS) production, decreased mitochondrial membrane potential, caused cell cycle G1 arrest, and induced intrinsic and extrinsic apoptosis pathways. The anti-invasive ability of linoleic acid was found to be associated with the epithelial-mesenchymal transition process in both cell lines, including the decreased expression of N-cadherin, snail, and vimentin. Furthermore, treatment of Lkb1fl/flp53fl/fl transgenic mice with linoleic acid for four weeks significantly reduced the growth of endometrial tumors and decreased the expression of VEGF, vimentin, Ki67, and cyclin D1 in tumor tissues. Our findings demonstrate that linoleic acid exhibits anti-proliferative and anti-invasive activities in endometrial cancer cell lines and the Lkb1fl/flp53fl/fl mouse model of endometrial cancer, thus providing a pre-clinical basis for future dietary interventions with linoleic acid in endometrial cancer.


Assuntos
Neoplasias do Endométrio , Ácido Linoleico , Humanos , Feminino , Camundongos , Animais , Vimentina/metabolismo , Ácido Linoleico/farmacologia , Ácido Linoleico/uso terapêutico , Linhagem Celular Tumoral , Proteína Supressora de Tumor p53 , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Carcinogênese , Proliferação de Células
4.
Sci Rep ; 14(1): 6392, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493198

RESUMO

Polycystic ovary syndrome (PCOS) is a complex reproductive endocrinological disorder influenced by a combination of genetic and environmental factors. Linoleic acid (LA) is a widely consumed ω-6 polyunsaturated fatty acid, accounting for approximately 80% of daily fatty acid intake. Building upon the prior investigations of our team, which established a connection between LA levels in the follicular fluid and PCOS, this study deeply examined the specific impact of LA using a granulosa cell line. Our findings revealed that LA exerts its influence on granulosa cells (GCs) by binding to the estrogen receptor (ER). Activated ER triggers the transcription of the FOXO1 gene. Reactive oxygen species (ROS)-related oxidative stress (OS) and inflammation occur downstream of LA-induced FOXO1 activation. Increased OS and inflammation ultimately culminate in GC apoptosis. In summary, LA modulates the apoptosis and inflammation phenotypes of GCs through the ER-FOXO1-ROS-NF-κB pathway. Our study provides additional experimental evidence to comprehend the pathophysiology of PCOS and provides novel insights into the dietary management of individuals with PCOS.


Assuntos
Ácido Linoleico , Síndrome do Ovário Policístico , Feminino , Humanos , Espécies Reativas de Oxigênio/metabolismo , Ácido Linoleico/farmacologia , Ácido Linoleico/metabolismo , Síndrome do Ovário Policístico/metabolismo , Receptores de Estrogênio/metabolismo , Células da Granulosa/metabolismo , Apoptose , Inflamação/metabolismo , Proteína Forkhead Box O1/metabolismo
5.
Sci Rep ; 14(1): 6644, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503857

RESUMO

We investigated whether linoleic acid (LA) supplementation could modulate emotional behavior and microglia-related neuroinflammation. For that, male mice of C57BL/6J genetic background fed either a high-fat diet (HFD) or a standard diet (STD) for 12 weeks, were treated with a vehicle or LA solution for 5 weeks before being evaluated for emotional behavior using a battery of behavioral tests. The animals were subsequently sacrificed and their brains collected and processed for immunofluorescence staining, targeting microglia-specific calcium-binding proteins (IBA-1). Neuroinflammation severity was assessed in multiple hypothalamic, cortical and subcortical brain regions. We show an anxio-depressive-like effect of sustained HFD feeding that was neither alleviated nor worsened with LA supplementation. However, increased IBA-1 expression and microgliosis in the HFD group were largely attenuated by LA supplementation. These observations demonstrate that the anti-neuroinflammatory properties of LA are not restricted to hypothalamic areas but are also evident at the cortical and subcortical levels. This study discloses that neuroinflammation plays a role in the genesis of neuropsychiatric disorders in the context of obesity, and that LA supplementation is a useful dietary strategy to alleviate the impact of obesity-related neuroinflammation.


Assuntos
Ácido Linoleico , Microglia , Camundongos , Masculino , Animais , Ácido Linoleico/farmacologia , Doenças Neuroinflamatórias , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais
6.
J Cosmet Dermatol ; 23(5): 1875-1883, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38450923

RESUMO

BACKGROUND: As a traditional Chinese herbal medicine, Paeonia lactiflora Pall is rich in various active ingredients such as polysaccharides and total flavonoids while having ornamental value. It has potential application value in the development of food and cosmetics. OBJECTIVE: To study the in vitro efficacy of Paeonia lactiflora Pall seeds oil. METHODS: Firstly, the levels of linolenic acid and linoleic acid in Paeonia lactiflora Pall seeds oil were quantified using gas chromatography. The impact of Paeonia lactiflora Pall seeds oil on the proliferation rate of B16F10 cells was assessed through the CCK-8 method, while the melanin content of B16F10 cells was determined using the sodium hydroxide lysis method. The inhibitory effects of Paeonia lactiflora Pall seeds oil on elastase, collagenase and hyaluronidase were evaluated by biochemical techniques in vitro. Lastly, the hen's egg chorioallantoic membrane test (HET-CAM) was conducted to confirm the absence of eye irritation caused by Paeonia lactiflora Pall seeds oil. RESULTS: Paeonia lactiflora Pall seeds oil within a certain volume concentration range (0.5%-4%) had no effect on the proliferation of B16F10 cells. Paeonia lactiflora Pall seeds oil showed significant inhibition of elastase, collagenase and hyaluronidase. Notably, the highest concentration tested, 4% Paeonia lactiflora Pall seed oil, yielded the most pronounced outcomes without causing any irritation. CONCLUSION: A certain concentration of Paeonia lactiflora Pall seeds oil has a significant effect on decreasing the melanin content in B16F10 cells and inhibiting the activities of elastase, collagenase, and hyaluronidase, which can provide a reference for the development of pure natural cosmetics raw materials.


Assuntos
Proliferação de Células , Colagenases , Hialuronoglucosaminidase , Melaninas , Paeonia , Elastase Pancreática , Óleos de Plantas , Sementes , Paeonia/química , Sementes/química , Animais , Camundongos , Melaninas/análise , Elastase Pancreática/metabolismo , Óleos de Plantas/farmacologia , Proliferação de Células/efeitos dos fármacos , Colagenases/metabolismo , Ácido Linoleico/farmacologia , Ácido Linoleico/análise , Cosméticos/química , Cosméticos/farmacologia , Melanoma Experimental/tratamento farmacológico , Ácido alfa-Linolênico/farmacologia , Ácido alfa-Linolênico/análise , Membrana Corioalantoide/efeitos dos fármacos , Linhagem Celular Tumoral , Galinhas
7.
J Ethnopharmacol ; 326: 117858, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38346526

RESUMO

ETHNOPHARMACOLOGY RELEVANCE: The plant Typhonium trilobatum has been utilized in traditional medicine for the treatment of many ailments, including parasitic infections. Recent examinations indicate that the bioactive substances from this plant may have antiparasitic activities against Brugia malayi, which have not been determined. PURPOSE: The parasitic nematodes Brugia malayi, Brugia timori, and Wuchereria bancrofti causing lymphatic filariasis, remain a significant challenge to global public health. Given the ongoing nature of this enduring menace, the current research endeavours to examine the efficacy of an important medicinal plant, Typhonium trilobatum. METHODS: Different extracts of the T. trilobatum tubers were evaluated for their antiparasitic activity. The most prominent extract was subjected to Gas Chromatography Mass Spectrometry (GC-MS) and High Performance Liquid Chromatography (HPLC) followed by Column Chromatography for isolating bioactive molecules. The major compounds were isolated and characterized based on different spectroscopic techniques (FTIR, NMR and HRMS). Further, the antiparasitic activity of the isolated compounds was evaluated against B. malayi and compared with clinically used antifilarial drugs like Diethylcarbamazine and Ivermectin. RESULTS: The methanolic extract of the tuber exhibited significant antiparasitic activity compared to the other extracts. The bioactive molecules isolated from the crude extract were identified as Linoleic acid and Palmitic acid. Antiparasitic activity of both the compounds has been performed against B. malayi and compared with clinically used antifilarial drugs, Ivermectin and DEC. The IC50 value of Linoleic acid was found to be 6.09 ± 0.78 µg/ml after 24 h and 4.27 ± 0.63 µg/ml after 48 h, whereas for Palmitic acid the value was 12.35 ± 1.09 µg/ml after 24 h and 8.79 ± 0.94 µg/ml after 48 h. The IC50 values of both the molecules were found to be similar to the standard drug Ivermectin (IC50 value of 11.88 ± 1.07 µg/ml in 24 h and 2.74 ± 0.43 µg/ml in 48 h), and much better compared to the DEC (IC50 values of 194.2 ± 2.28 µg/ml in 24 h and 101.8 ± 2.06 µg/ml in 48 h). Furthermore, it has been observed that both the crude extracts and the isolated compounds do not exhibit any detrimental effects on the J774.A.1 macrophage cell line. CONCLUSION: The isolation and characterization of bioactive compounds present in the methanolic tuber extract of Typhonium trilobatum were explored. Moreover, the antimicrofilarial activity of the crude extracts and its two major compounds were determined using Brugia malayi microfilarial parasites without any significant side effects.


Assuntos
Brugia Malayi , Filariose , Plantas Medicinais , Animais , Humanos , Filariose/tratamento farmacológico , Filariose/parasitologia , Ivermectina/farmacologia , Ivermectina/uso terapêutico , Ácido Palmítico , Ácido Linoleico/farmacologia , Extratos Vegetais/química , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico
8.
Redox Biol ; 71: 103096, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38387137

RESUMO

Oxidative stress in muscles is closely related to the occurrence of insulin resistance, muscle weakness and atrophy, age-related sarcopenia, and cancer. Aldehydes, a primary oxidation intermediate of polyunsaturated fatty acids, have been proven to be an important trigger for oxidative stress. However, the potential role of linoleic acid (LA) as a donor for volatile aldehydes to trigger oxidative stress has not been reported. Here, we reported that excessive dietary LA caused muscle redox imbalance and volatile aldehydes containing hexanal, 2-hexenal, and nonanal were the main metabolites leading to oxidative stress. Importantly, we identified 5-lipoxygenase (5-LOX) as a key enzyme mediating LA peroxidation in crustaceans for the first time. The inhibition of 5-LOX significantly suppressed the content of aldehydes produced by excessive LA. Mechanistically, the activation of the cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway facilitated the translocation of 5-LOX from the nucleus to the cytoplasm, where 5-LOX oxidized LA, leading to oxidative stress through the generation of aldehydes. This study suggests that 5-LOX is a potential target to prevent the production of harmful aldehydes.


Assuntos
Araquidonato 5-Lipoxigenase , Ácido Linoleico , Ácido Linoleico/farmacologia , Araquidonato 5-Lipoxigenase/metabolismo , Estresse Oxidativo , Oxirredução , Músculos/metabolismo , Aldeídos/metabolismo
9.
Vet Q ; 44(1): 1-11, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38404134

RESUMO

Chinese herbal formula (CHF) has the potential to improve the performance of aged laying hens through integrated regulation of various physiological functions. The present study aimed to investigate the effects of dietary CHF supplementation on the yolk fatty acid profile in aged laying hens. A total of 144 healthy 307-day-old Xinyang black-feather laying hens were randomly allocated into two groups: a control group (CON, fed a basal diet) and a CHF group (fed a basal diet supplemented with 1% CHF; contained 0.30% Leonurus japonicus Houtt., 0.20% Salvia miltiorrhiza Bge., 0.25% Ligustrum lucidum Ait., and 0.25% Taraxacum mongolicum Hand.-Mazz. for 120 days). The fatty acid concentrations in egg yolks were analyzed using a targeted metabolomics technology at days 60 and 120 of the trial. The results showed that dietary CHF supplementation increased (p < .05) the concentrations of several saturated fatty acids (SFA, including myristic acid and stearic acid), monounsaturated fatty acids (MUFA, including petroselinic acid, elaidic acid, trans-11-eicosenoic acid, and cis-11-eicosenoic acid), polyunsaturated fatty acids (PUFA, including linolelaidic acid, linoleic acid, γ-linolenic acid, α-linolenic acid, 11c,14c-eicosadienoic acid, eicosatrienoic acid, homo-γ-linolenic acid, arachidonic acid, and docosapentaenoic acid), and fatty acid indexes (total MUFA, n-3 and n-6 PUFA, PUFA/SFA, hypocholesterolemic/hypercholesterolaemic ratio, health promotion index, and desirable fatty acids) in egg yolks. Collectively, these findings suggest that dietary CHF supplementation could improve the nutritional value of fatty acids in egg yolks of aged laying hens, which would be beneficial for the production of healthier eggs to meet consumer demands.


Assuntos
Galinhas , Ácidos Graxos , Animais , Feminino , Ácidos Graxos/farmacologia , Galinhas/fisiologia , Suplementos Nutricionais , Dieta/veterinária , Gema de Ovo , Ácido Linoleico/farmacologia , Ração Animal/análise
10.
Int J Biol Macromol ; 253(Pt 8): 127522, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37858652

RESUMO

Long chain fatty acids in the colon play important roles in infant development. This study aimed to establish a colon-targeted long chain fatty acid release system in rat pups, with linoleic acid (LA) as the target model. LA-loaded chitosan nanoparticles (LA-CS NPs) synthesized via ionic crosslinkage showed spherical surface morphology and favorable encapsulation efficiency (84.96 %). In vivo distribution studies of LA-CS NPs demonstrated a significant increase in LA concentration in the colonic content after a 12-hour administration period. Additionally, oral administration of the delivery system (CS NPs: 18 µg/g/d, LA-CS NPs: 24 µg/g/d) exhibited no detrimental effects on the health of rat pups. In conclusion, this study presents a promising strategy for the targeted delivery of fatty acid to the colon in rat pups.


Assuntos
Quitosana , Nanopartículas , Humanos , Criança , Ratos , Animais , Quitosana/farmacologia , Ácido Linoleico/farmacologia , Colo , Portadores de Fármacos/farmacologia , Tamanho da Partícula
11.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37540487

RESUMO

The objective of this study was to investigate the effects of dietary linoleic acid level and the ratio of linoleic acid:linolenic acid (LA:ALA) on the growth performance, expression of genes associated with lipid metabolism, and inflammatory status of grow-finish pigs. A total of 300 growing pigs (body weight [BW] = 41.1 ±â€…6.3 kg) were randomly assigned to either a high (30 g/kg; HLA) or low (15 g/kg; LLA) dietary linoleic acid level with a high (23:1; HR), moderate (13:1; MR) or low (4:1; LR) dietary LA:ALA in a 2 × 3 factorial design. Diets were fed across three 28-d phases and were balanced for dietary metabolizable energy. Pigs were housed five pigs per pen in single-sex pens. Blood samples were collected on days 0, 21, 42, and 84, and synovial fluid was collected from the hock joint on days 0 and 84 for inflammatory marker analysis. Data were analyzed as repeated measures using PROC MIXED (SAS 9.4) with initial BW as a covariate, pen as the experimental unit, and LA level, LA:ALA, sex, phases, and their interactions as fixed effects. Compared to HLA, LLA pigs tended to have increased BW at days 56 and 84 (P = 0.088). There was no effect of LA × LA:ALA for growth performance. For the overall days 0 to 84 growth period, pigs fed HR had increased ADG compared to MR, with pigs receiving LR performing intermediate of MR and HR. Gilts receiving HR diets had increased day 84 BW compared to gilts receiving the low and moderate LA:ALA (P = 0.006), which was a result of improved overall days 0 to 84 ADG compared to gilts receiving the MR diets (P = 0.023). Barrows fed LR had improved BW on day 56 compared to MR and HR and higher final BW compared to HR, with MR performing intermediately (P = 0.006). This was a result of greater days 0 to 84 ADG (P = 0.023). Overall, C-reactive protein (CRP), tumor necrosis factor-α (TNFα), and interleukin-6 were reduced in the plasma of pigs over time (P ≤ 0.037). Across all treatments, CRP and TNFα were reduced in the hock and carpus synovial fluid on day 84 vs. day 0 (P ≤ 0.049). In conclusion, LA:ALA ratios utilized in this study can be fed at varying linoleic acid levels without impacting growth or inflammation. Additionally, LA:ALA ratios can differentially impact the growth of gilts and barrows.


Previous research in lactating sows has reported that dietary inclusion of the essential fatty acids linoleic acid and linolenic acid is important for performance. Research in grow­finish pigs has shown an improvement in gilt growth performance when fed differing linoleic:linolenic acid ratios (LA:ALA); however, further research evaluating LA:ALA in diets with similar metabolizable energy is needed in growing pigs. In the present research, a 23:1 dietary essential fatty acid ratio increased the final body weight of gilts compared to a 13:1 or 4:1 LA:ALA, while barrows fed a 4:1 dietary essential fatty acid ratio had increased gain and final body weight compared to a 23:1 LA:ALA. Plasma and synovial fluid inflammatory markers were also reduced with time and were unaffected by dietary LA:ALA or linoleic acid inclusion. Dietary essential fatty acid ratio can differentially impact the growth of barrows and gilts, with no impact on systemic or joint inflammation.


Assuntos
Ácido Linoleico , Fator de Necrose Tumoral alfa , Suínos , Animais , Feminino , Ácido Linoleico/farmacologia , Composição Corporal , Dieta/veterinária , Sus scrofa , Ácidos Graxos/farmacologia , Peso Corporal , Aumento de Peso , Ração Animal/análise
12.
Nutrients ; 15(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571253

RESUMO

Linoleic acid (LA) is an essential omega-6 polyunsaturated fatty acid (PUFA) derived from the diet. Sebocytes, whose primary role is to moisturise the skin, process free fatty acids (FFAs) to produce the lipid-rich sebum. Importantly, like other sebum components such as palmitic acid (PA), LA and its derivative arachidonic acid (AA) are known to modulate sebocyte functions. Given the different roles of PA, LA and AA in skin biology, the aim of this study was to assess the specificity of sebocytes for LA and to dissect the different roles of LA and AA in regulating sebocyte functions. Using RNA sequencing, we confirmed that gene expression changes in LA-treated sebocytes were largely distinct from those induced by PA. LA, but not AA, regulated the expression of genes related to cholesterol biosynthesis, androgen and nuclear receptor signalling, keratinisation, lipid homeostasis and differentiation. In contrast, a set of mostly down-regulated genes involved in lipid metabolism and immune functions overlapped in LA- and AA-treated sebocytes. Lipidomic analyses revealed that the changes in the lipid profile of LA-treated sebocytes were more pronounced than those of AA-treated sebocytes, suggesting that LA may serve not only as a precursor of AA but also as a potent regulator of sebaceous lipogenesis, which may not only influence the gene expression profile but also have further specific biological relevance. In conclusion, we have shown that sebocytes are able to respond selectively to different lipid stimuli and that LA-induced effects can be both AA-dependent and independent. Our findings allow for the consideration of LA application in the therapy of sebaceous gland-associated inflammatory skin diseases such as acne, where lipid modulation and selective targeting of AA metabolism are potential treatment options.


Assuntos
Ácido Linoleico , Ácido Palmítico , Ácido Palmítico/farmacologia , Ácido Palmítico/metabolismo , Ácido Araquidônico/farmacologia , Ácido Araquidônico/metabolismo , Ácido Linoleico/farmacologia , Ácido Linoleico/metabolismo , Glândulas Sebáceas/metabolismo , Sebo , Lipogênese
13.
Food Chem ; 429: 136849, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481983

RESUMO

The study aimed to investigate the impact of fermentation conditions on c9,t11-conjugated linoleic acid (CLA) synthesis by Lactobacillus casei, as well as its effects on whey syneresis, water holding capacity (WHC), and texture characteristics of set yogurt. The amount of whey syneresis decreased about 30% with the adding of 0.1% linoleic acid (LA). The interaction between LA and casein (CS), ß-lactoglobulin (ß-Lg) and bovine serum albumin (BSA) was observed by UV-Vis absorption spectroscopy, 3D fluorescence spectroscopy and CD spectroscopy. It found that LA changed the microenvironment and polarity around amino acids, as well as the conformation of the three milk proteins. Scanning electron microscope (SEM) analysis revealed that the addition of LA resulted in a more uniform and compact microstructure of the set yogurt. It indicates that LA can promote the crosslink of milk proteins, which may be the reason for the reduction of whey syneresis in set yogurt.


Assuntos
Ácidos Linoleicos Conjugados , Proteínas do Leite , Proteínas do Leite/química , Soro do Leite/metabolismo , Ácido Linoleico/farmacologia , Ácidos Linoleicos Conjugados/metabolismo , Iogurte/análise , Fermentação , Proteínas do Soro do Leite/química
14.
Environ Int ; 178: 108105, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37517176

RESUMO

Cadmium (Cd) and polycyclic aromatic hydrocarbons (PAHs) are prominent soil contaminants found in industrial sites, and their combined effects on plants are not yet fully understood. To investigate the mechanisms underlying the co-exposure of Cd and PAHs and identify key biomarkers for their co-effects, an integrated analysis of metabolomics, transcriptomics, and proteomics was conducted on ryegrass leaves cultivated in soil. In nontarget metabolomics analysis, nine differentially expressed metabolites that were specifically induced by the compound exposure were identified. When combined with the analysis of differentially expressed genes and proteins, it was determined that the major pathways involved in the response to the co-stress of Cd and PAHs were linoleic acid metabolism and phenylpropanoid biosynthesis. The upregulation of 12,13-dihydroxy-9Z-octadecenoic acid and the downregulation of sinapyl alcohol were identified as typical biomarkers, respectively. Compared to scenarios of single exposures, the compound exposure to Cd and PAHs disrupted the oxidation of linoleic acid, leading to alterations in the profiles of linoleate metabolites. Additionally, it intensified hydroxylation, carboxylation, and methylation processes, and interfered with reactions involving coenzyme A, thus inhibiting lignin production. As a result, oxidative stress was elevated, and the cell wall defense system in ryegrass was weakened. The findings of this study highlight the ecological risks associated with unique biological responses in plants co-exposed to Cd and PAHs in polluted soils.


Assuntos
Lolium , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Cádmio/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Lolium/metabolismo , Ácido Linoleico/metabolismo , Ácido Linoleico/farmacologia , Proteômica , Transcriptoma , Biodegradação Ambiental , Solo , Metabolômica , Biomarcadores/metabolismo , Poluentes do Solo/análise
15.
J Biochem Mol Toxicol ; 37(11): e23481, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37497988

RESUMO

Acute myeloid leukemia (AML) is a deadly hematologic malignancy. In this study, miR-361-3p and BTG2 gene expression in AML blood and healthy specimens were analyzed using quantitative real-time reverse transcription polymerase chain reaction. A significant negative correlation between miR-361-3p and BTG2 was observed. The cell viability and apoptosis were measured by CCK-8 assay, EdU incorporation assay and flow cytometry. A dual-luciferase reporter gene assay was performed to confirm the binding sequence between miR-361-3p and BTG2 messenger RNA 3'-untranslated region. 9s-Hydroxyoctadecadienoic acid (9s-HODE), a major active derivative of linoleic acid, reduced the viability and induced cell apoptosis of HL-60 cells. Furthermore, the miR-361-3p mimics and siBTG2 reversed the above effects of 9s-HODE. 9s-HODE exerted an anti-AML effect through, at least partly, regulating the miR-361-3p/BTG2 axis.


Assuntos
Proteínas Imediatamente Precoces , Leucemia Mieloide Aguda , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Ácido Linoleico/farmacologia , Proliferação de Células/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células HL-60 , Apoptose/genética , Linhagem Celular Tumoral , Proteínas Supressoras de Tumor/genética
16.
FASEB J ; 37(7): e23009, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37273180

RESUMO

Human and animal studies support that consuming a high level of linoleic acid (LA, 18:2ω-6), an essential fatty acid and key component of the human diet, increases the risk of colon cancer. However, results from human studies have been inconsistent, making it challenging to establish dietary recommendations for optimal LA intake. Given the importance of LA in the human diet, it is crucial to better understand the molecular mechanisms underlying its potential colon cancer-promoting effects. Using LC-MS/MS-based targeted lipidomics, we find that the cytochrome P450 (CYP) monooxygenase pathway is a major pathway for LA metabolism in vivo. Furthermore, CYP monooxygenase is required for the colon cancer-promoting effects of LA, since the LA-rich diet fails to exacerbate colon cancer in CYP monooxygenase-deficient mice. Finally, CYP monooxygenase mediates the pro-cancer effects of LA by converting LA to epoxy octadecenoic acids (EpOMEs), which have potent effects on promoting colon tumorigenesis via gut microbiota-dependent mechanisms. Overall, these results support that CYP monooxygenase-mediated conversion of LA to EpOMEs plays a crucial role in the health effects of LA, establishing a unique mechanistic link between dietary fatty acid intake and cancer risk. These results could help in developing more effective dietary guidelines for optimal LA intake and identifying subpopulations that may be especially vulnerable to LA's negative effects.


Assuntos
Neoplasias do Colo , Ácido Linoleico , Humanos , Camundongos , Animais , Ácido Linoleico/farmacologia , Ácido Linoleico/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Eicosanoides , Sistema Enzimático do Citocromo P-450/metabolismo , Dieta , Neoplasias do Colo/etiologia
17.
Food Funct ; 14(13): 5949-5961, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37334498

RESUMO

Numerous studies have shown that 1-oleate-2-palmitate-3-linoleate (OPL) is the most abundant TAG in Chinese human milk, which is significantly different from human milk in other countries, where 1,3-oleate-2-palmitate (OPO) is the most abundant TAG. However, there have been few studies revealing the nutritional outcomes of OPL. Hence, the present study investigated the effects of an OPL supplementation diet on mice's nutritional outcomes, including liver lipid parameters, inflammation, lipidomes in the liver and serum, and the gut bacterial community. A high OPL (HOPL) diet decreased body weight, weight gain, liver TG, TC and LDL-C, and TNF-α, IL-1ß, and IL-6 in mice relative to low OPL (LOPL) diet. Lipidomics results showed that HOPL feeding elevated the level of anti-inflammatory lipids, such as very long-chain Cer, LPC, PC and ether TG in the liver, and serum PC, and reduced the level of oxidized lipids (liver OxTG, HexCer 18:1;2O/22:0) and serum TG. In the gut, intestinal probiotics, including Parabacteroides, Alistipes, Bacteroides, Alloprevotella and Parasutterrlla, were enriched in the HOPL-fed group. Meanwhile, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results showed that the HOPL diet up-regulated energy metabolism and the immune system. Correlation analysis further showed that there was a relationship among the gut bacteria, lipidome profile, and nutritional outcomes. Altogether, these results indicated that an OPL-supplemented diet improved lipid metabolism and gut bacteria, reducing the level of pro-inflammatory cytokines.


Assuntos
Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Citocinas/farmacologia , Ácido Oleico/farmacologia , Ácido Linoleico/farmacologia , Glicerol , Metabolismo dos Lipídeos , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
18.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37186172

RESUMO

The study aimed to investigate whether linoleic acid could improve the intestinal barrier function of squabs under weaning stress conditions. Totally 320 7-d-old weaned squabs were randomly divided into four treatment groups, including control group (CON), 0.7% linoleic acid addition group (LA007), 1.4% linoleic acid addition group (LA014) and 2.1% linoleic acid addition group (LA021). At 21 d, eight squabs were randomly selected from each treatment group for sampling and determination. The results showed that adding linoleic acid could improve (P < 0.05) the body weight of weaned squabs, and LA014 had the best effect. With the increase of linoleic acid dosage, villi height and villi area increased linearly or quadratically (P < 0.05), and reached the maximum in LA021 or LA014, respectively. The linoleic acid supplementation could improve the intestinal tight junction of weaned squabs, and the LA014 was the most significant (P < 0.05). With the linoleic acid increasing, the levels of intestinal IL-6 and TNF-α decreased linearly (P < 0.05), while intestinal IL-10 increased quadratically (P < 0.05) and reached the maximum in LA014. Serum endotoxin and diamine oxidase levels decreased linearly (P < 0.05) and reached the lowest level in LA014. The ultrastructure of villi revealed that the length of ileal microvilli in LA014 was significantly increased (P < 0.05) and the microvilli became dense, and the mitochondria in epithelial cells returned to normal state. Further exploring the mechanism of linoleic acid alleviating intestinal injury caused by weaning stress in squabs, it was found that linoleic acid down-regulated (P < 0.05) the relative protein expression of TLR4, MyD88, phosphorylated JNK, and phosphorylated p38, reducing secretion of pro-inflammatory factors IL-6 and TNF-α. This study indicated that linoleic acid could alleviate intestinal barrier injury of early weaned squabs by down-regulating TLR4-MyD88-JNK/p38-IL6/TNF-α pathway.


Artificial feeding of early weaned squabs can reduce the burden of breeding pigeons and shorten the breeding cycle. However, similar to early weaned mammals, early weaned squabs would also inevitably undergo severe physiological and psychological stress responses in the early stage. The growth performance and immunity of early weaned squabs were inferior to those of the parent feeding squabs. Previous studies suggest that linoleic acid played an important role in the growth and development of squabs. Therefore, the study aimed to investigate whether linoleic acid could improve the intestinal barrier function of squabs under weaning stress conditions. Totally 320 7-d-old weaned squabs were randomly divided into four treatment groups, including control group and linoleic acid addition groups with three different doses. At 21 d, eight squabs were randomly selected from each treatment group for sampling and determination. The results indicated that under weaning stress conditions, linoleic acid could weaken the inflammatory response, and alleviate the intestinal epithelial barrier damage of weaned squabs, specifically by promoting the development of intestinal villi, strengthening the tight junction, reducing intestinal permeability, and promoting the secretion of anti-inflammatory factors.


Assuntos
Columbidae , Ácido Linoleico , Animais , Columbidae/fisiologia , Ácido Linoleico/farmacologia , Ácido Linoleico/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Desmame , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/metabolismo , Interleucina-6/metabolismo
19.
Nutrients ; 15(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37049588

RESUMO

A great number of chemically diverse pancreatic lipase (PL) inhibitors have been identified to tackle obesity; however, very few of them have entered clinical studies. The ethanolic extract of sesame meal is a potent PL inhibitor, and its activity hinges exclusively on two free fatty acids: linoleic acid and oleic acid, which were proven to reduce postprandial triglyceride excursion in rats. Herein, to investigate the clinical efficacy of the sesame meal extract, in a crossover trial, 30 healthy volunteers were randomized to receive the sesame meal extract containing experimental food or placebo along with a high-fat meal. Treatment with the sesame meal extract significantly lowered the incremental postprandial serum triglyceride concentration and reduced the incremental area under the curve (iAUC) by 16.8% (p-value = 0.03) compared to placebo. Significant decreases in postprandial remnant-like lipoprotein particle cholesterol and low-density lipoprotein particles were also observed, whereas high-density lipoprotein cholesterol was increased. These results suggest that treatment with the sesame meal extract significantly reduced the postprandial excursion of triglycerides and improved the lipidemic profile after high dietary fat intake in healthy individuals, indicating the substantial potential of free linoleic acid and oleic acid and natural products rich in these compounds for the management of obesity and related conditions.


Assuntos
Ácido Oleico , Sesamum , Animais , Ratos , Humanos , Estudos Cross-Over , Ácido Oleico/farmacologia , Ácido Linoleico/farmacologia , Lipase , Voluntários Saudáveis , Triglicerídeos , Colesterol , Obesidade , Período Pós-Prandial , Gorduras na Dieta
20.
Pestic Biochem Physiol ; 192: 105423, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37105613

RESUMO

Citrus canker disease caused by Xanthomonas citri subsp. citri (Xac) severely influences the quality and quantity of citrus fruits. The current management of this disease mainly relies on the application of copper-associated chemicals, which poses a threat to human health and the environment. The present study isolated an endophytic fungus HT-79 from the healthy navel orange tree, whose crude fermentation product significantly inhibited the growth of Xac. The strain HT-79 was identified as a species of the Diaporthe genus. The petroleum ether extract (PEE) of the crude fermentation product of HT-79 exhibited remarkable activity against Xac with a MIC (minimum inhibitory concentration) value of 0.0625 mg/mL, significantly better than the positive control CuSO4 (MIC = 0.125 mg/mL). Bioassay-guided isolation of PEE resulted in the discovery of one highly potent anti-Xac subfraction, namely fraction 5 (MIC = 0.0156 mg/mL). Gas chromatography-mass spectrometry (GC-MS) analysis revealed that fraction 5 mainly consisted of palmitic acid (18.17%), ethyl palmitate (15.66%), linoleic acid (6.80%), oleic acid (18.32%), ethyl linoleate (21.58%), ethyl oleate (15.87%), and ethyl stearate (3.60%). Among these seven compounds, linoleic acid (MIC = 0.0078 mg/mL) was found to be the most potent against Xac, followed by oleic acid (MIC = 0.0156 mg/mL), while all others were less pronounced than CuSO4. Linoleic acid highly inhibited the growth of Xac via the destruction of the cell membrane and overproduction of reactive oxygen species (ROS). A preliminary in vivo experiment revealed that linoleic acid was effective in the control of citrus canker disease.


Assuntos
Citrus , Xanthomonas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Ácido Linoleico/farmacologia , Ácido Linoleico/metabolismo , Ácido Oleico/metabolismo , Ácido Oleico/farmacologia , Membrana Celular , Fungos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Citrus/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA