Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
Fungal Genet Biol ; 169: 103843, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922979

RESUMO

Penicillium brevicompactum is a critical industrial strain for the production of mycophenolic acid (MPA). However, the genetic background of Penicillium brevicompactum is unclear, and there are few tools available for genetic manipulation. To investigate its gene function, we first verified the feasibility of a pair of citrate synthase promoter (Pcit) and terminator (Tcit) from P. brevicompactum by constructing a fluorescent expression cassette. Based on this, an RNAi vector was designed and constructed with reverse promoters. This study focused on the functional investigation of the pbpcz gene in P. brevicompactum, a regulator belonging to the Zn(II)2Cys6 family. RNAi was used to silence the pbpcz gene, providing a valuable tool for genetic studies in P. brevicompactum. After seven days, we observed differences in the number of spores between different phenotypes strains of pbpcz gene. Compared to the wild-type strain (WT), the spore yield of the pbpcz gene silencing mutant (M2) was only 51.4 %, while that of the pbpcz gene overexpressed mutant (SE4) was increased by 50 %. Expression levels of the three genes (brlA, abaA, and wetA) comprising conidia's central regulatory pathway were significantly reduced in the pbpcz gene silencing mutant, while fluorescence localization showed that PbPCZ protein was mainly distributed in spores. The results indicated that the pbpcz gene is critical for conidia and asexual development of P. brevicompactum. In addition, overexpressing the pbpcz gene resulted in a 30.3 % increase in MPA production compared to the wild type, with a final yield of 3.57 g/L. These results provide evidence that PbPCZ acts as a positive regulator in P. brevicompactum, controlling MPA production and regulating conidia and asexual development.


Assuntos
Ácido Micofenólico , Penicillium , Interferência de RNA , Ácido Micofenólico/metabolismo , Penicillium/genética , Penicillium/metabolismo , Inativação Gênica
2.
BMC Microbiol ; 23(1): 135, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198535

RESUMO

Mycophenolic acid (MPA) is the active ingredient in the most important immunosuppressive pharmaceuticals. It has antifungal, antibacterial, antiviral, anti-psoriasis, and antitumor activities. Therefore, its overproduction in addition to gene expression analysis was our main target. Through this study, we isolated a novel potent mycophenolic acid (MPA) producer strain of the genus Penicillium from the refrigerated Mozzarella cheese and it was identified with the molecular marker ITS and benA genes as P. arizonenseHEWt1. Three MPA overproducer mutants were isolated by exposing the wild type to different doses of gamma-rays, and the fermentation conditions for the highest production of MPA were optimized. The results indicated that MPA amounts produced by the mutants MT1, MT2, and MT3 were increased by 2.1, 1.7, and 1.6-fold, respectively, compared with the wild-type. The growth of both mutant and wild-type strains on PD broth, adjusted to pH 6 and incubated at 25 °C for 15 d, were the best conditions for maximum production of MPA. In a silico study, five orthologs genes of MPA biosynthesizing gene clusters in P. brevicompactum were predicted from the genome of P. arizonense. Sequencing and bioinformatic analyses proved the presence of five putative genes namely mpaA, mpaC, mpaF, mpaG, and mpaH in the P. arizonense HEWt1 genome. Gene expression analysis by qRT-PCR indicated an increase in the transcription value of all annotated genes in the three mutants over the wild type. A highly significant increase in the gene expression of mpaC, mpaF, and mpaH was observed in P. arizonense-MT1 compared with wild-type. These results confirmed the positive correlation of these genes in MPA biosynthesis and are the first report regarding the production of MPA by P. arizonense.Kew word.Mycophenolic acid, Penicillium arizonense, mutagenesis, gene expression.


Assuntos
Ácido Micofenólico , Penicillium , Ácido Micofenólico/farmacologia , Ácido Micofenólico/metabolismo , Imunossupressores , Penicillium/genética , Reação em Cadeia da Polimerase
3.
Mol Pharm ; 20(5): 2675-2685, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36996486

RESUMO

Targeted delivery of immunomodulators to the lymphatic system has the potential to enhance therapeutic efficacy by increasing colocalization of drugs with immune targets such as lymphocytes. A triglyceride (TG)-mimetic prodrug strategy has been recently shown to enhance the lymphatic delivery of a model immunomodulator, mycophenolic acid (MPA), via incorporation into the intestinal TG deacylation-reacylation and lymph lipoprotein transport pathways. In the current study, a series of structurally related TG prodrugs of MPA were examined to optimize structure-lymphatic transport relationships for lymph-directing lipid-mimetic prodrugs. MPA was conjugated to the sn-2 position of the glyceride backbone of the prodrugs using linkers of different chain length (5-21 carbons) and the effect of methyl substitutions at the alpha and/or beta carbons to the glyceride end of the linker was examined. Lymphatic transport was assessed in mesenteric lymph duct cannulated rats, and drug exposure in lymph nodes was examined following oral administration to mice. Prodrug stability in simulated intestinal digestive fluid was also evaluated. Prodrugs with straight chain linkers were relatively unstable in simulated intestinal fluid; however, co-administration of lipase inhibitors (JZL184 and orlistat) was able to reduce instability and increase lymphatic transport (2-fold for a prodrug with a 6-carbon spacer, i.e., MPA-C6-TG). Methyl substitutions to the chain resulted in similar trends in improving intestinal stability and lymphatic transport. Medium- to long-chain spacers (C12, C15) between MPA and the glyceride backbone were most effective in promoting lymphatic transport, consistent with increases in lipophilicity. In contrast, short-chain (C6-C10) linkers appeared to be too unstable in the intestine and insufficiently lipophilic to associate with lymph lipid transport pathways, while very long-chain (C18, C21) linkers were also not preferred, likely as a result of increases in molecular weight reducing solubility or permeability. In addition to more effectively promoting drug transport into mesenteric lymph, TG-mimetic prodrugs based on a C12 linker resulted in marked increases (>40 fold) in the exposure of MPA in the mesenteric lymph nodes in mice when compared to administration of MPA alone, suggesting that optimizing prodrug design has the potential to provide benefit in targeting and modulating immune cells.


Assuntos
Pró-Fármacos , Ratos , Camundongos , Animais , Pró-Fármacos/química , Triglicerídeos , Ácido Micofenólico/metabolismo , Linfonodos/metabolismo , Intestinos , Glicerídeos , Fatores Imunológicos/farmacologia , Fatores Imunológicos/metabolismo , Adjuvantes Imunológicos , Administração Oral
4.
Microb Biotechnol ; 16(8): 1629-1638, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36700385

RESUMO

The worldwide demand for reduced and restricted use of pesticides in agriculture due to serious environmental effects, health risks and the development of pathogen resistance calls for the discovery of new bioactive compounds. In the medical field, antibiotic-resistant microorganisms have become a major threat to man, increasing mortality. Endophytes are endosymbiotic microorganisms that inhabit plant tissues without causing any visible damage to their host. Many endophytes secrete secondary metabolites with biological activity against a broad range of pathogens, making them potential candidates for novel drugs and alternative pesticides of natural origin. We isolated endophytes from wild plants in Israel, focusing on endophytes that secrete secondary metabolites with biological activity. We isolated 302 different endophytes from 30 different wild plants; 70 of them exhibited biological activity against phytopathogens. One biologically active fungal endophyte from the genus Penicillium, isolated from a squill (Urginea maritima) leaf, was further examined. Chloroform-based extraction of its growth medium was similarly active against phytopathogens. High-performance liquid chromatography separation followed by gas chromatography/mass spectrometry analysis revealed a single compound-mycophenolic acid-as the main contributor to the biological activity of the organic extract.


Assuntos
Penicillium , Praguicidas , Humanos , Ácido Micofenólico/metabolismo , Fungos/metabolismo , Antibacterianos/farmacologia , Plantas/metabolismo , Praguicidas/metabolismo , Endófitos
5.
J Biol Chem ; 298(10): 102456, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063990

RESUMO

Adipocyte browning is one of the potential strategies for the prevention of obesity-related metabolic syndromes, but it is a complex process. Although previous studies make it increasingly clear that several transcription factors and enzymes are essential to induce browning, it is unclear what dynamic and metabolic changes occur in induction of browning. Here, we analyzed the effect of a beta-adrenergic receptor agonist (CL316243, accelerator of browning) on metabolic change in mice adipose tissue and plasma using metabolome analysis and speculated that browning is regulated partly by inosine 5'-monophosphate (IMP) metabolism. To test this hypothesis, we investigated whether Ucp-1, a functional marker of browning, mRNA expression is influenced by IMP metabolism using immortalized adipocytes. Our study showed that mycophenolic acid, an IMP dehydrogenase inhibitor, increases the mRNA expression of Ucp-1 in immortalized adipocytes. Furthermore, we performed a single administration of mycophenolate mofetil, a prodrug of mycophenolic acid, to mice and demonstrated that mycophenolate mofetil induces adipocyte browning and miniaturization of adipocyte size, leading to adipose tissue weight loss. These findings showed that IMP metabolism has a significant effect on adipocyte browning, suggesting that the regulator of IMP metabolism has the potential to prevent obesity.


Assuntos
Adipócitos , Inosina Monofosfato , Ácido Micofenólico , Animais , Camundongos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Inosina Monofosfato/metabolismo , Metabolômica , Camundongos Endogâmicos C57BL , Ácido Micofenólico/farmacologia , Ácido Micofenólico/metabolismo , Obesidade/metabolismo , RNA Mensageiro/metabolismo
6.
Rev Col Bras Cir ; 49: e20223233, 2022.
Artigo em Inglês, Português | MEDLINE | ID: mdl-35946636

RESUMO

OBJECTIVE: to evaluate the renal toxicity caused by tacrolimus and mycophenolate mofetil (MMF) in a single kidney ischemia and reperfusion model. METHOD: experimental study using Wistar rats, submitted to right nephrectomy and left renal ischemia for 20 minutes, separated into groups in the postoperative period (PO): 1) Control (nonoperated); 2) Sham (operated, without PO drug); 3) TAC0.1, TAC1 and TAC10, tacrolimus administered PO at doses of 0.1mg/kg, 1mg/kg and 10mg/kg via gavage, respectively; 4) MMF, administered mycophenolate mofetil 20mg/kg; 5) MMF/TAC1 and MMF/TAC0.5, with an association of mycophenolate mofetil 20mg/kg and tacrolimus 1mg/kg and 0.5mg/kg, respectively. They were killed on the 14th PO and the kidney was removed for tissue oxidative stress analysis, by the dosage of reduced glutathione (GSH), lipoperoxidation (LPO) and protein carbonylation (PCO), and histological analysis by glomerular stereology (Glomerular volume density, Numerical density glomerular and mean glomerular volume). Renal function was evaluated by the measurement of serum creatinine and urea. RESULTS: both drugs caused alterations in renal function, and the toxicity of tacrolimus was dose-dependent. Subacute toxicity did not show significant glomerular histological changes, and there was renal and compensatory glomerular hypertrophy in all groups except TAC10. CONCLUSION: Both drugs cause changes in renal function. Glomerular morphometry and stereology showed negative interference of immunosuppressants during compensatory glomerular hypertrophy.


Assuntos
Ácido Micofenólico , Tacrolimo , Animais , Hipertrofia/complicações , Hipertrofia/metabolismo , Imunossupressores/toxicidade , Isquemia/induzido quimicamente , Isquemia/complicações , Rim , Ácido Micofenólico/metabolismo , Ratos , Ratos Wistar , Reperfusão , Tacrolimo/toxicidade
7.
Fungal Biol ; 126(6-7): 461-470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35667833

RESUMO

Although Penicillium brevicompactum is a widely used commercial strain for the manufacture of mycophenolic acid, there are few findings of Ca2+, Mn2+, and reactive oxygen species (ROS) interaction. Metal ions play a crucial role in physiological metabolism. Calcium, as the important second messenger, influences fungus growth, virulence, and stress responses. The concentration of cytosolic Ca2+ was influenced by the Mn2+, which demonstrated the crosstalk between calcium and manganese. In the previous study, the crosstalk between calcium and ROS has been discovered and verified, which modified the secondary metabolism and enhanced the yield of MPA (Mycophenolic Acid). A higher concentration of Mn2+ in the fermentation broth causes an increase in cytoplasmic Ca2+ and ROS (Reactive Oxygen Species), enhancing the yield of MPA by about 20 % higher and disclosing the cascade regulation with the Mn2+, Ca2+, and ROS. To be more specific, the intracellular concentration of ROS at 6 mM Mn2+ is about 1.5 times higher than that at 0.6 mM. Furthermore, we identify an Mn2+ transport protein, designated as Pb-PHO, which shows 71.2 % identity to the inorganic phosphate transporter PHO84 (Q0CBJ6) from Aspergillus terreus. At the same time, the △Pb-pho exhibits damage to the cell wall integrity, while the OE-pho displays a more normal phenotype at high osmotic stress. The high-affinity Ca2+ channel, Pb-CCH, is examined via knockdown to demonstrate the crosstalk between Mn2+ and Ca2+. The results show that the addition of Mn2+ remits the negative influence of pb-cch knockdown and the addition of Ca2+ remits the negative influence of pb-pho knockdown, demonstrating the relationship between cytoplasmic Mn2+ and Ca2+. Taken together, our results demonstrate the mechanism of a manganese-induced cascade of manganese-calcium-ROS and reveal a signal pathway-relative method to illustrate the manganese-induced increase of MPA production in Penicillium brevicompactum. Furthermore, we discover and identify an Mn2+ transport protein, Pb-PHO, which is subcellular localized at the plasma membrane and proved to affect the cell wall integrity.


Assuntos
Chumbo , Ácido Micofenólico , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Chumbo/metabolismo , Manganês , Ácido Micofenólico/metabolismo , Penicillium , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
8.
Basic Clin Pharmacol Toxicol ; 131(1): 60-73, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35567285

RESUMO

Clinical and genetic influencing factors on free fraction of mycophenolic acid (MPA) have rarely been discussed. The present study investigated whether the clinical and genetic factors could explain the variability in the pharmacokinetics of free MPA (fMPA) and total MPA (tMPA) in Chinese paediatric and adult renal transplant recipients. Twenty-eight paediatric and 31 adult patients were enrolled, and the concentrations of tMPA and fMPA were determined at 0 h (predose) and 0.5, 1, 1.5, 2, 4, 5, 8, 9, 10 and 12 h after mycophenolate mofetil administration. Genetic polymorphisms of UGTs (rs671448, rs1042597, rs2741049, rs62298861, rs7439366, rs12233719) and ABCC2 (rs717620) were simultaneously determined. The clinical and genetic data were analysed and reported. tMPA and fMPA concentrations adjusted for dose per body weight were consistently higher in adults than in paediatric patients. In the paediatric group, only albumin and time after transplantation correlated significantly with the MPA-free fraction variation, which could explain 32.4% of the variability. Besides, ABCC2 polymorphism, albumin and time after transplantation correlated significantly with the MPA-free fraction variation in adults, which could explain 56.9% of the variability. The influencing factors in the paediatric group are different from those in adults, which may be due to age-related transporter expression.


Assuntos
Transplante de Rim , Ácido Micofenólico , Adulto , Albuminas/metabolismo , Área Sob a Curva , Criança , Humanos , Imunossupressores/farmacocinética , Rim/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Ácido Micofenólico/metabolismo
9.
Toxicol Mech Methods ; 32(8): 580-587, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35321622

RESUMO

The gastrointestinal side effects of mycophenolic acid affect its efficacy in kidney transplant patients, which may be due to its toxicity to the intestinal epithelial mechanical barrier, including intestinal epithelial cell apoptosis and destruction of tight junctions. The toxicity mechanism of mycophenolic acid is related to oxidative stress-mediated, the activation of mitogen-activated protein kinases (MAPK). Schisandrin A (Sch A), one of the main active components of the Schisandra chinensis, can protect intestinal epithelial cells from deoxynivalenol-induced cytotoxicity and oxidative damage by antioxidant effects. The aim of this study was to investigate the protective effect and potential mechanism of Sch A on mycophenolic acid-induced damage in intestinal epithelial cell. The results showed that Sch A significantly reversed the mycophenolic acid-induced cell viability reduction, restored the expression of tight junction protein ZO-1, occludin, and reduced cell apoptosis. In addition, Sch A inhibited mycophenolic acid-mediated MAPK activation and reactive oxygen species (ROS) increase. Collectively, our study showed that Sch A protected intestinal epithelial cells from mycophenolic acid intestinal toxicity, at least in part, by reducing oxidative stress and inhibiting MAPK signaling pathway.


Assuntos
Ciclo-Octanos , Ácido Micofenólico , Apoptose , Ciclo-Octanos/metabolismo , Ciclo-Octanos/farmacologia , Humanos , Mucosa Intestinal , Lignanas , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ácido Micofenólico/metabolismo , Ácido Micofenólico/toxicidade , Estresse Oxidativo , Compostos Policíclicos , Junções Íntimas/metabolismo
10.
ACS Synth Biol ; 11(1): 273-285, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34941247

RESUMO

Although Penicillium brevicompactum is a very important industrial strain for mycophenolic acid production, there are no reports on Ca2+/reactive oxygen species (ROS) synergistic regulation and calcium channels, Cch-pb. This study initially intensified the concentration of the intracellular Ca2+ in the high yielding mycophenolic acid producing strain NRRL864 to explore the physiological role of intracellular redox state in metabolic regulation by Penicillium brevicompactum. The addition of Ca2+ in the media caused an increase of intracellular Ca2+, which was accompanied by a strong increase, 1.5 times, in the higher intracellular ROS concentration. In addition, the more intensive ROS sparked the production of an unreported pigment and increase in mycophenolic acid production. Furthermore, the Ca2+ channel, the homologous gene of Cch1, Cch-pb, was investigated to verify the relationship between Ca2+ and the intracellular ROS. The Vitreoscilla hemoglobin was overexpressed, which was bacterial hemoglobin from Vitreoscilla, reducing the intracellular ROS concentration to verify the relationship between the redox state and the yield of mycophenolic acid. The strain pb-VGB expressed the Vitreoscilla hemoglobin exhibited a lower intracellular ROS concentration, 30% lower, and decreased the yield of mycophenolic acid as 10% lower at the same time. Subsequently, with the NRRL864 fermented under 1.7 and 28 mM Ca2+, the [NADH]/[NAD+] ratios were detected and the higher [NADH]/[NAD+] ratios (4 times higher with 28 mM) meant a more robust primary metabolism which provided more precursors to produce the pigment and the mycophenolic acid. Finally, the 10 times higher calcium addition in the media resulted in 25% enhanced mycophenolic acid production to 6.7 g/L and induced pigment synthesis in NRRL864.


Assuntos
Ácido Micofenólico , Penicillium , Fermentação , Ácido Micofenólico/metabolismo , Penicillium/genética , Penicillium/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Int J Pediatr Otorhinolaryngol ; 151: 110916, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34537545

RESUMO

OBJECTIVE: Mycophenolate embryopathy (ME) is a congenital malformation induced by mycophenolic acid (MA). Microtia is the most common ME phenotype. This study aimed to identify the key genes in the pathological process of microtia caused by mycophenolate mofetil (MM) through bioinformatics methods, to explore the potential pathogenesis, and to provide a direction for future genetic research on aetiology. METHODS: Genes related to MM and microtia were obtained from the GeneCards database for bioinformatics. Metacore was used to identify and visualize the upstream and downstream gene relationships in the protein-protein interaction (PPI) results of these genes. The clusterProfiler R software package was used to simulate and visualize the enrichment results based on data from Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. RESULTS: Fifty-nine genes were associated with microtia and MM/MA. The hub genes with the most significant effects on MM/MA-induced microtia pathogenesis included tumour protein P53 (p53), MDM2 proto-oncogene (MDM2), ribosomal protein L5 (RPL5) and ribosomal protein S14 (RBS14). The GO term with the most enriched genes was peptidyl-tyrosine phosphorylation. For the KEGG terms, there was significant enrichment regarding the haematopoietic cell lineage, apoptosis, p53 signalling, proteasome and necroptosis. CONCLUSIONS: We propose that an axis composed of MA, microtia, TP53 and related genes is involved in ME pathogenesis. The important role of TP53-associated ribosome stress in ME pathogenesis is consistent with our previous findings from MA-induced cleft lip and palate. Deregulation of genes protective against TP53 overexpression, such as MDM2, could be a strategy for constructing a microtia animal model.


Assuntos
Fenda Labial , Fissura Palatina , Microtia Congênita , Biologia Computacional , Humanos , Ácido Micofenólico/metabolismo , Mapas de Interação de Proteínas , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Ribossomos/metabolismo , Proteína Supressora de Tumor p53/genética
12.
Commun Biol ; 4(1): 822, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193958

RESUMO

Stochastic gene expression leads to inherent variability in expression outcomes even in isogenic single-celled organisms grown in the same environment. The Drop-Seq technology facilitates transcriptomic studies of individual mammalian cells, and it has had transformative effects on the characterization of cell identity and function based on single-cell transcript counts. However, application of this technology to organisms with different cell size and morphology characteristics has been challenging. Here we present yeastDrop-Seq, a yeast-optimized platform for quantifying the number of distinct mRNA molecules in a cell-specific manner in individual yeast cells. Using yeastDrop-Seq, we measured the transcriptomic impact of the lifespan-extending compound mycophenolic acid and its epistatic agent guanine. Each treatment condition had a distinct transcriptomic footprint on isogenic yeast cells as indicated by distinct clustering with clear separations among the different groups. The yeastDrop-Seq platform facilitates transcriptomic profiling of yeast cells for basic science and biotechnology applications.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação Fúngica da Expressão Gênica/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Análise de Célula Única/métodos , Transcriptoma/genética , Análise por Conglomerados , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Guanina/metabolismo , Guanina/farmacologia , Ácido Micofenólico/metabolismo , Ácido Micofenólico/farmacologia , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/citologia , Análise de Sequência de RNA/métodos , Transcriptoma/efeitos dos fármacos
13.
Molecules ; 26(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207320

RESUMO

We evaluated mycophenolic acid (MPA) limited sampling strategies (LSSs) established using multiple linear regression (MLR) in children with nephrotic syndrome treated with mycophenolate mofetil (MMF). MLR-LSS is an easy-to-determine approach of therapeutic drug monitoring (TDM). We assessed the practicability of different LSSs for the estimation of MPA exposure as well as the optimal time points for MPA TDM. The literature search returned 29 studies dated 1998-2020. We applied 53 LSSs (n = 48 for MPA, n = 5 for free MPA [fMPA]) to predict the area under the time-concentration curve (AUCpred) in 24 children with nephrotic syndrome, for whom we previously determined MPA and fMPA concentrations, and compare the results with the determined AUC (AUCtotal). Nine equations met the requirements for bias and precision ±15%. The MPA AUC in children with nephrotic syndrome was predicted the best by four time-point LSSs developed for renal transplant recipients. Out of five LSSs evaluated for fMPA, none fulfilled the ±15% criteria for bias and precision probably due to very high percentage of bound MPA (99.64%). MPA LSS for children with nephrotic syndrome should include blood samples collected 1 h, 2 h and near the second MPA maximum concentration. MPA concentrations determined with the high performance liquid chromatography after multiplying by 1.175 may be used in LSSs based on MPA concentrations determined with the immunoassay technique. MPA LSS may facilitate TDM in the case of MMF, however, more studies on fMPA LSS are required for children with nephrotic syndrome.


Assuntos
Ácido Micofenólico/metabolismo , Síndrome Nefrótica/metabolismo , Adolescente , Coleta de Amostras Sanguíneas/métodos , Criança , Pré-Escolar , Cromatografia Líquida de Alta Pressão/métodos , Feminino , Humanos , Transplante de Rim/métodos , Modelos Lineares , Masculino , Análise Multivariada , Manejo de Espécimes/métodos
14.
J Pharm Pharmacol ; 73(1): 52-59, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33791812

RESUMO

OBJECTIVES: We aimed to characterize diurnal rhythms in CES1 expression and activity in mouse intestine, and to investigate a potential role of the core clock gene Bmal1 in generating diurnal rhythms. METHODS: The regulatory effects of intestinal Bmal1 on diurnal CES1 expression were assessed using intestine-specific Bmal1 knockout (Bmal1iKO) mice and colon cancer cells. The relative mRNA and protein levels were determined by qPCR and Western blotting, respectively. Metabolic activity of CES1 in vitro and in vivo were determined by microsomal assays and pharmacokinetic studies, respectively. Transcriptional gene regulation was investigated using luciferase reporter assay. KEY FINDINGS: Total CES1 protein varied significantly according to time of the day in wild-type (Bmal1fl/fl) mice, peaking at ZT6. Of detectable Ces1 genes, Ces1d mRNA displayed a robust diurnal rhythm with a peak level at ZT6, whereas mRNAs of Ces1e, 1f and 1g showed no rhythms in wild-type mice. Loss of intestinal Bmal1 reduced the levels of total CES1 protein and Ces1d mRNA, and blunted their diurnal rhythms in mice. In vitro microsomal assays indicated that intestinal metabolism of mycophenolate mofetil (MMF, a known CES1 substrate) was more extensive at ZT6 than at ZT18. ZT6 dosing of MMF to wild-type mice generated a higher systemic exposure of mycophenolic acid (the active metabolite of MMF) as compared with ZT18 dosing. Intestinal ablation of Bmal1 down-regulated CES1 metabolism at ZT6, and abolished its time-dependency both in vitro and in vivo. Furthermore, Ces1d/CES1 rhythmicity and positive regulation of Ces1d/CES1 by BMAL1 were confirmed in CT26 and Caco-2 cells. Mechanistically, BMAL1 trans-activated Ces1d/CES1 probably via binding to the E-box elements in the gene promoters. CONCLUSIONS: Bmal1 controls diurnal rhythms in expression and activity of intestinal CES1. Our findings have implications for understanding the crosstalk between circadian clock and xenobiotic metabolism in the intestine.


Assuntos
Fatores de Transcrição ARNTL/genética , Hidrolases de Éster Carboxílico/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica , Intestinos/fisiologia , Xenobióticos/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Animais , Células CACO-2 , Hidrolases de Éster Carboxílico/metabolismo , Regulação para Baixo , Humanos , Inativação Metabólica , Camundongos Knockout , Ácido Micofenólico/metabolismo , RNA Mensageiro/metabolismo
15.
FEBS J ; 288(19): 5768-5780, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33843134

RESUMO

Mycophenolic acid (MPA) is a fungal natural product and first-line immunosuppressive drug for organ transplantations and autoimmune diseases. In the compartmentalized biosynthesis of MPA, the acyl-coenzyme A (CoA) hydrolase MpaH' located in peroxisomes catalyzes the highly specific hydrolysis of MPA-CoA to produce the final product MPA. The strict substrate specificity of MpaH' not only averts undesired hydrolysis of various cellular acyl-CoAs, but also prevents MPA-CoA from further peroxisomal ß-oxidation catabolism. To elucidate the structural basis for this important property, in this study, we solve the crystal structures of the substrate-free form of MpaH' and the MpaH'S139A mutant in complex with the product MPA. The MpaH' structure reveals a canonical α/ß-hydrolase fold with an unusually large cap domain and a rare location of the acidic residue D163 of catalytic triad after strand ß6. MpaH' also forms an atypical dimer with the unique C-terminal helices α13 and α14 arming the cap domain of the other protomer and indirectly participating in the substrate binding. With these characteristics, we propose that MpaH' and its homologs form a new subfamily of α/ß hydrolase fold protein. The crystal structure of MpaH'S139A /MPA complex and the modeled structure of MpaH'/MPA-CoA, together with the structure-guided mutagenesis analysis and isothermal titration calorimetry (ITC) measurements, provide important mechanistic insights into the high substrate specificity of MpaH'.


Assuntos
Acil Coenzima A/química , Hidrolases/ultraestrutura , Ácido Micofenólico/metabolismo , Peroxissomos/ultraestrutura , Sequência de Aminoácidos/genética , Domínio Catalítico/genética , Hidrolases/química , Hidrolases/genética , Ácido Micofenólico/química , Penicillium/genética , Penicillium/ultraestrutura , Peroxissomos/enzimologia , Estrutura Secundária de Proteína/genética , Especificidade por Substrato/genética
16.
Ultrasound Med Biol ; 47(3): 777-786, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33334625

RESUMO

Described here is the modeling used to improve the mycophenolic acid (MPA) titer from Penicillium brevicompactum using central composite design and a comparatively newer, data-centric approach method k-nearest-neighbor algorithm. The two models for enhancing MPA production using P. brevicompactum were compared with respect to ultrasonic stimulation. During the ultrasonic treatment, we studied different independent factors such as ultrasound power, irradiation duration, treatment frequency and duty cycle to determine their ability to enhance the MPA titer value. The optimized factors such as a treatment time of 10 min (50% duty cycles) with a 12-h interlude at fixed ultrasonic power and frequency (200 W, 40 kHz) were used for ultrasonic treatment of a mycelial culture from the 2nd to 10th day of fermentation. Thus the production of MPA was improved 1.64-fold under the optimized sonication conditions compared with the non-sonicated batch fermentation (non-optimized conditions).


Assuntos
Fermentação , Aprendizado de Máquina , Modelos Teóricos , Ácido Micofenólico/metabolismo , Penicillium/metabolismo , Sonicação
17.
Xenobiotica ; 51(1): 105-114, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32820679

RESUMO

Mycophenolic acid (MPA) has become a cornerstone of immunosuppressive therapy, in particular for transplant patients. In the gastrointestinal tract, the liver and the kidney, MPA is mainly metabolized into phenyl-ß-d glucuronide (MPAG). Knowledge about the interactions between MPA/MPAG and membrane transporters is still fragmented. The aim of the present study was to explore these interactions with the basolateral hepatic MRP4 transporter. The inhibition of the MRP4-driven transport by various drugs which can be concomitantly prescribed was also evaluated. In vitro experiments using vesicles overexpressing MRP4 showed an ATP-dependent transport of MPAG driven by MRP4 (Michaelis-Menten constant of 233.9 ± 32.8 µM). MPA was not effluxed by MRP4. MRP4-mediated transport of MPAG was inhibited (from -43% to -84%) by ibuprofen, cefazolin, cefotaxime and micafungin. An in silico approach based on molecular docking and molecular dynamics simulations rationalized the mode of binding of MPAG to MRP4. The presence of the glucuronide moiety in MPAG was highlighted as key, being prone to make electrostatic and H-bond interactions with specific residues of the MRP4 protein chamber. This explains why MPAG is a substrate of MRP4 whereas MPA is not.


Assuntos
Glucuronídeos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Ácido Micofenólico/análogos & derivados , Transporte Biológico , Hepatócitos/metabolismo , Humanos , Rim/metabolismo , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Simulação de Acoplamento Molecular , Ácido Micofenólico/metabolismo
18.
Biomark Med ; 14(12): 1165-1181, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32969246

RESUMO

Liver transplantation has been widely accepted as an effective intervention for end-stage liver diseases and early hepatocellular carcinomas. However, a variety of postoperative complications and adverse reactions have baffled medical staff and patients. Currently, transplantation monitoring relies primarily on nonspecific biochemical tests, whereas diagnosis of multiple complications depends on invasive pathological examination. Therefore, a noninvasive monitoring method with high selectivity and specificity is desperately needed. This review summarized the potential of endogenous small-molecule metabolites as biomarkers for assessing graft function, ischemia-reperfusion injury and liver rejection. Exogenous metabolites, mainly those immunosuppressive agents with high intra- and inter-individual variability, were also discussed for transplantation monitoring.


Assuntos
Transplante de Fígado/efeitos adversos , Metaboloma , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia , Biomarcadores/metabolismo , Carcinoma Hepatocelular/cirurgia , Everolimo/metabolismo , Everolimo/uso terapêutico , Rejeição de Enxerto/metabolismo , Humanos , Imunossupressores , Neoplasias Hepáticas/cirurgia , Ácido Micofenólico/metabolismo , Complicações Pós-Operatórias/metabolismo , Prognóstico , Traumatismo por Reperfusão , Tacrolimo/metabolismo , Tacrolimo/uso terapêutico
19.
J Vet Intern Med ; 34(3): 1206-1213, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32052895

RESUMO

BACKGROUND: Dogs are often adminstered >1 immunosuppressive medication when treating immune-mediated diseases, and determining whether these different medications affect IL-2 expression would be useful when performing pharmacodynamic monitoring during cyclosporine therapy. HYPOTHESIS/OBJECTIVES: To determine the effects of 5 medications (prednisone, cyclosporine, azathioprine, mycophenolate mofetil, and leflunomide) on activated T-cell expression of the cytokines IL-2 and interferon-gamma (IFN-γ). ANIMALS: Eight healthy dogs. METHODS: Randomized, cross-over study comparing values before and after treatment, and comparing values after treatment among drugs. Dogs were administered each drug at standard oral doses for 1 week, with a washout of at least 21 days. Activated T-cell expression of IL-2 and IFN-γ mRNA was measured by quantitative reverse transcription polymerase chain reaction. Blood drug concentrations were measured for cyclosporine, mycophenolate, and leflunomide metabolites. RESULTS: Least squares means (with 95% confidence interval) before treatment for IL-2 (2.91 [2.32-3.50] ΔCt) and IFN-γ (2.33 [1.66-3.00 ΔCt]) values were significantly lower (both P < .001) than values after treatment (10.75 [10.16-11.34] and 10.79 [10.11-11.46] ΔCt, respectively) with cyclosporine. Similarly, least squares means before treatment for IL-2 (1.55 [1.07-2.02] ΔCt) and IFN-γ (2.62 [2.32-2.92] ΔCt) values were significantly lower (both P < .001) than values after treatment (3.55 [3.06-4.00] and 5.22 [4.92-5.52] ΔCt, respectively) with prednisone. Comparing delta cycle threshold values after treatment among drugs, cyclosporine was significantly different than prednisone (IL-2 and IFN-γ both P < .001), with cyclosporine more suppressive than prednisone. CONCLUSIONS AND CLINICAL IMPORTANCE: Prednisone and cyclosporine both affected expression of IL-2 and IFN-γ, suggesting that both have the ability to influence results when utilizing pharmacodynamic monitoring of cyclosporine treatment.


Assuntos
Imunossupressores/farmacologia , Interferon gama/metabolismo , Interleucina-2/metabolismo , Linfócitos T/efeitos dos fármacos , Administração Oral , Animais , Azatioprina/administração & dosagem , Azatioprina/farmacologia , Estudos Cross-Over , Ciclosporina/administração & dosagem , Ciclosporina/metabolismo , Ciclosporina/farmacologia , Cães , Feminino , Imunossupressores/metabolismo , Leflunomida/metabolismo , Leflunomida/farmacologia , Masculino , Ácido Micofenólico/administração & dosagem , Ácido Micofenólico/metabolismo , Ácido Micofenólico/farmacologia , Prednisona/administração & dosagem , Prednisona/farmacologia , Distribuição Aleatória , Linfócitos T/metabolismo
20.
Appl Biochem Biotechnol ; 191(2): 867-880, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31907779

RESUMO

The microbial fermentation of Penicillium brevicompactum produces secondary metabolite mycophenolic acid (MPA), which exhibits antifungal, antiviral, antibacterial, and antitumor activity. It is also a potent, selective, non-competitive, and reversible inhibitor of the human inosine monophosphate dehydrogenase (IMPDH). This study is an attempt to optimize the MPA production through a fermentation process using Penicillium brevicompactum and its further purification process optimization. In the batch fermentation process, the maximum concentration of MPA (1.84 g/L) was attained in a 3.7 L stirred tank reactor. Response surface methodology (RSM) using central composite design (CCD) was employed as a statistical tool to investigate the effect of pH, the volume of eluent and flow rate of the mobile phase on MPA purification process. Under optimum conditions, the experimental yield was observed to be 84.12%, which matched well with the predictive yield of 84.42%. High-performance liquid chromatography (HPLC) and Fourier-transform infrared spectroscopy (FTIR) analysis of the fermented product was carried out to confirm the presence of mycophenolic acid. The MPA purification was done by using column chromatography technique. The purification of broth involved mycophenolic acid extraction by selecting different solvents on the basis of polarity and the extraction efficiency of solvent. Various solid support materials were used for MPA purification in column chromatography. The MPA recovery through alumina column was observed to be 84.12% under the optimum conditions, which was maximum elution as compared with other support materials. The optimized purification process yielded pure MPA crystals.


Assuntos
Ácido Micofenólico/isolamento & purificação , Ácido Micofenólico/metabolismo , Penicillium/metabolismo , Biomassa , Reatores Biológicos , Cromatografia , Cromatografia Líquida de Alta Pressão , Meios de Cultura/química , Fermentação , Glucose , Concentração de Íons de Hidrogênio , IMP Desidrogenase/antagonistas & inibidores , Ácido Micofenólico/química , Metabolismo Secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA