Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.177
Filtrar
1.
Carbohydr Res ; 539: 109123, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669826

RESUMO

Sialic acid, the terminal structure of cell surface glycans, has essential functions in regulating immune response, cell-to-cell communication, and cell adhesion. More importantly, an increased level of sialic acid, termed hypersialylation, has emerged as a commonly observed phenotype in cancer. Therefore, targeting sialic acid ligands (sialoglycans) and their receptors (Siglecs) may provide a new therapeutic approach for cancer immunotherapy. We highlight the complexity of the sialic acid metabolism and its involvement in malignant transformation within individual cancer subtypes. In this review, we focus on the dysregulation of sialylation, the intricate nature of sialic acid synthesis, and clinical perspective. We aim to provide a brief insight into the mechanism of hypersialylation and how our understanding of these processes can be leveraged for the development of novel therapeutics.


Assuntos
Ácido N-Acetilneuramínico , Neoplasias , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/química , Animais
2.
Microbiology (Reading) ; 170(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38488830

RESUMO

Sialic acid (Sia) transporters are critical to the capacity of host-associated bacteria to utilise Sia for growth and/or cell surface modification. While N-acetyl-neuraminic acid (Neu5Ac)-specific transporters have been studied extensively, little is known on transporters dedicated to anhydro-Sia forms such as 2,7-anhydro-Neu5Ac (2,7-AN) or 2,3-dehydro-2-deoxy-Neu5Ac (Neu5Ac2en). Here, we used a Sia-transport-null strain of Escherichia coli to investigate the function of members of anhydro-Sia transporter families previously identified by computational studies. First, we showed that the transporter NanG, from the Glycoside-Pentoside-Hexuronide:cation symporter family, is a specific 2,7-AN transporter, and identified by mutagenesis a crucial functional residue within the putative substrate-binding site. We then demonstrated that NanX transporters, of the Major Facilitator Superfamily, also only transport 2,7-AN and not Neu5Ac2en nor Neu5Ac. Finally, we provided evidence that SiaX transporters, of the Sodium-Solute Symporter superfamily, are promiscuous Neu5Ac/Neu5Ac2en transporters able to acquire either substrate equally well. The characterisation of anhydro-Sia transporters expands our current understanding of prokaryotic Sia metabolism within host-associated microbial communities.


Assuntos
Ácido N-Acetilneuramínico , Ácido N-Acetilneuramínico/análogos & derivados , Transportadores de Ânions Orgânicos , Simportadores , Ácido N-Acetilneuramínico/química , Simportadores/genética , Simportadores/metabolismo , Bactérias/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
3.
Langmuir ; 40(14): 7471-7478, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38554266

RESUMO

Neuraminidases (NA) are sialic acid-cleaving enzymes that are used by both bacteria and viruses. These enzymes have sialoside structure-related binding and cleaving preferences. Differentiating between these enzymes requires using a large array of hard-to-access sialosides. In this work, we used electrochemical impedimetric biosensing to differentiate among several pathogene-related NAs. We used a limited set of sialosides and tailored the surface properties. Various sialosides were grafted on two different surfaces with unique properties. Electrografting on glassy carbon electrodes provided low-density sialoside-functionalized surfaces with a hydrophobic submonolayer. A two-step assembly on gold electrodes provided a denser sialoside layer on a negatively charged submonolayer. The synthesis of each sialoside required dozens of laborious steps. Utilizing the unique protein-electrode interaction modes resulted in richer biodata without increasing the synthetic load. These principles allowed for profiling NAs and determining the efficacy of various antiviral inhibitors.


Assuntos
Técnicas Biossensoriais , Ácidos Siálicos , Ácidos Siálicos/química , Neuraminidase/química , Neuraminidase/metabolismo , Ácido N-Acetilneuramínico/química , Bactérias
4.
J Virol ; 98(4): e0194123, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38470143

RESUMO

Influenza A viruses (IAVs) can overcome species barriers by adaptation of the receptor-binding site of the hemagglutinin (HA). To initiate infection, HAs bind to glycan receptors with terminal sialic acids, which are either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc); the latter is mainly found in horses and pigs but not in birds and humans. We investigated the influence of previously identified equine NeuGc-adapting mutations (S128T, I130V, A135E, T189A, and K193R) in avian H7 IAVs in vitro and in vivo. We observed that these mutations negatively affected viral replication in chicken cells but not in duck cells and positively affected replication in horse cells. In vivo, the mutations reduced virus virulence and mortality in chickens. Ducks excreted high viral loads longer than chickens, although they appeared clinically healthy. To elucidate why these viruses infected chickens and ducks despite the absence of NeuGc, we re-evaluated the receptor binding of H7 HAs using glycan microarray and flow cytometry studies. This re-evaluation demonstrated that mutated avian H7 HAs also bound to α2,3-linked NeuAc and sialyl-LewisX, which have an additional fucose moiety in their terminal epitope, explaining why infection of ducks and chickens was possible. Interestingly, the α2,3-linked NeuAc and sialyl-LewisX epitopes were only bound when presented on tri-antennary N-glycans, emphasizing the importance of investigating the fine receptor specificities of IAVs. In conclusion, the binding of NeuGc-adapted H7 IAV to tri-antennary N-glycans enables viral replication and shedding by chickens and ducks, potentially facilitating interspecies transmission of equine-adapted H7 IAVs.IMPORTANCEInfluenza A viruses (IAVs) cause millions of deaths and illnesses in birds and mammals each year. The viral surface protein hemagglutinin initiates infection by binding to host cell terminal sialic acids. Hemagglutinin adaptations affect the binding affinity to these sialic acids and the potential host species targeted. While avian and human IAVs tend to bind to N-acetylneuraminic acid (sialic acid), equine H7 viruses prefer binding to N-glycolylneuraminic acid (NeuGc). To better understand the function of NeuGc-specific adaptations in hemagglutinin and to elucidate interspecies transmission potential NeuGc-adapted viruses, we evaluated the effects of NeuGc-specific mutations in avian H7 viruses in chickens and ducks, important economic hosts and reservoir birds, respectively. We also examined the impact on viral replication and found a binding affinity to tri-antennary N-glycans containing different terminal epitopes. These findings are significant as they contribute to the understanding of the role of receptor binding in avian influenza infection.


Assuntos
Galinhas , Patos , Cavalos , Vírus da Influenza A , Influenza Aviária , Ácidos Neuramínicos , Animais , Humanos , Galinhas/genética , Galinhas/metabolismo , Galinhas/virologia , Patos/genética , Patos/metabolismo , Patos/virologia , Epitopos/química , Epitopos/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Cavalos/genética , Cavalos/metabolismo , Cavalos/virologia , Vírus da Influenza A/química , Vírus da Influenza A/classificação , Vírus da Influenza A/metabolismo , Influenza Aviária/genética , Influenza Aviária/transmissão , Influenza Aviária/virologia , Mutação , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/química , Ácidos Neuramínicos/metabolismo , Receptores Virais/química , Receptores Virais/genética , Receptores Virais/metabolismo , Suínos/virologia , Zoonoses Virais/metabolismo , Zoonoses Virais/transmissão , Zoonoses Virais/virologia
5.
Angew Chem Int Ed Engl ; 63(20): e202319849, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38439625

RESUMO

Glycans on tumor cell surface have significant impacts in the immune-killing process. Here an ultra-galactocation to sialic acid (Sia) strategy is designed to hugely introduce galactose (Gal) to Sia and on tumor cells in vivo by using a penta-functional dendritic probe (Den@5F), which efficiently enhances the immune-killing of tumor cells. The Den@5F contains five different kinds of functional groups, including Gal, Cy5, amino, phenylboronic acid (PBA) and 4-(4-(hydroxymethyl)-2-methoxy-5-nitrophenoxy) butanoate (mNB), which can be conveniently prepared through a two-step reaction. After injecting into the tumor-bearing mouse, Den@5F can efficiently block Sia through the specific recognition between PBA and Sia on tumor cells and hugely introduce Gal through the subsequent photo-crosslinking between mNB and amino groups to multiply conjugate excessive Den@5Fs. The comprehensively blocked Sia can prevent the immune escape, and the hugely introduced Gal can promote the immune stimulation of the immune cells, which lead to an efficient enhancement of the immune-killing. The proposed strategy provides a significant and promising tool to promote the clinical immunotherapy of tumor.


Assuntos
Galactose , Ácido N-Acetilneuramínico , Ácido N-Acetilneuramínico/química , Humanos , Animais , Camundongos , Galactose/química , Linhagem Celular Tumoral , Dendrímeros/química , Dendrímeros/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia
6.
Mol Pharm ; 21(4): 1625-1638, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38403951

RESUMO

Cationic lipids play a pivotal role in developing novel drug delivery systems for diverse biomedical applications, owing to the success of mRNA vaccines against COVID-19 and the Phase III antitumor agent EndoTAG-1. However, the therapeutic potential of these positively charged liposomes is limited by dose-dependent toxicity. While an increased content of cationic lipids in the formulation can enhance the uptake and cytotoxicity toward tumor-associated cells, it is crucial to balance these advantages with the associated toxic side effects. In this work, we synthesized the cationic lipid HC-Y-2 and incorporated it into sialic acid (SA)-modified cationic liposomes loaded with paclitaxel to target tumor-associated immune cells efficiently. The SA-modified cationic liposomes exhibited enhanced binding affinity toward both RAW264.7 cells and 4T1 tumor cells in vitro due to the increased ratios of cationic HC-Y-2 content while effectively inhibiting 4T1 cell lung metastasis in vivo. By leveraging electrostatic forces and ligand-receptor interactions, the SA-modified cationic liposomes specifically target malignant tumor-associated immune cells such as tumor-associated macrophages (TAMs), reduce the proportion of cationic lipids in the formulation, and achieve dual objectives: high cellular uptake and potent antitumor efficacy. These findings highlight the potential advantages of this innovative approach utilizing cationic liposomes.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Humanos , Feminino , Lipossomos/química , Ácido N-Acetilneuramínico/química , Neoplasias da Mama/tratamento farmacológico , Vacinas contra COVID-19 , Paclitaxel/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Lipídeos , Cátions , Linhagem Celular Tumoral
7.
Elife ; 122024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38349818

RESUMO

Tripartite ATP-independent periplasmic (TRAP) transporters are secondary-active transporters that receive their substrates via a soluble-binding protein to move bioorganic acids across bacterial or archaeal cell membranes. Recent cryo-electron microscopy (cryo-EM) structures of TRAP transporters provide a broad framework to understand how they work, but the mechanistic details of transport are not yet defined. Here we report the cryo-EM structure of the Haemophilus influenzae N-acetylneuraminate TRAP transporter (HiSiaQM) at 2.99 Å resolution (extending to 2.2 Å at the core), revealing new features. The improved resolution (the previous HiSiaQM structure is 4.7 Å resolution) permits accurate assignment of two Na+ sites and the architecture of the substrate-binding site, consistent with mutagenic and functional data. Moreover, rather than a monomer, the HiSiaQM structure is a homodimer. We observe lipids at the dimer interface, as well as a lipid trapped within the fusion that links the SiaQ and SiaM subunits. We show that the affinity (KD) for the complex between the soluble HiSiaP protein and HiSiaQM is in the micromolar range and that a related SiaP can bind HiSiaQM. This work provides key data that enhances our understanding of the 'elevator-with-an-operator' mechanism of TRAP transporters.


Assuntos
Haemophilus influenzae , Ácido N-Acetilneuramínico , Haemophilus influenzae/metabolismo , Microscopia Crioeletrônica , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo
8.
Sensors (Basel) ; 24(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38400238

RESUMO

An overexpression of sialic acid is an indicator of metastatic cancer, and selective detection of sialic acid shows potential for cancer diagnosis. Boronic acid is a promising candidate for this purpose because of its ability to specifically bind to sialic acid under acidic conditions. Notably, the binding strength can be easily modulated by adjusting the pH, which allows for a simple dissociation of the bound sialic acid. In this study, we developed 5-boronopicolinic acid (5-BPA)-modified magnetic particles (BMPs) to selectively capture sialic acid biomolecules. We successfully captured fetuin, a well-known sialoglycoprotein, on BMPs at >104 molecules/particle using an acetate buffer (pH 5.0). Facile dissociation then occurred when the system was changed to a pH 7.6 phosphate buffer. This capture-and-release process could be repeated at least five times. Moreover, this system could enrich fetuin by more than 20 times. In summary, BMPs are functional particles for facile purification and concentration through the selective capture of sialic acid proteins and can improve detection sensitivity compared with conventional methods. This technology shows potential for the detection of sialic acid overexpression by biological particles.


Assuntos
Ácido N-Acetilneuramínico , Neoplasias , Humanos , Ácido N-Acetilneuramínico/química , Sialoglicoproteínas/metabolismo , Ácidos Borônicos/química , Fetuínas
9.
Org Biomol Chem ; 22(8): 1639-1645, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38180439

RESUMO

Sialic acid (SA) is a naturally occurring monosaccharide found in glycoproteins and glycolipids. Changes in the expression of SA are associated with several diseases; thus, the detection of SA is of great significance for biological research, cancer diagnosis, and treatment. Boronic acid analogs have emerged as a promising tool for detecting sugars such as SA due to its reversible covalent bonding ability. In this study, 11 bis-boronic acid compounds and 2 mono-boronic acid compounds were synthesized via a highly efficient Ugi-4CR strategy. The synthesized compounds were subjected to affinity fluorescence binding experiments to evaluate their binding capability to SA. Compound A1 was shown to have a promising binding constant of 2602 ± 100 M-1 at pH = 6.0. Density Functional Theory (DFT) calculations examining the binding modes between A1 and SA indicated that the position of the boronic acid functional group was strongly correlated with its interaction with SA's α-hydroxy acid unit. The DFT calculations were consistent with the observations from the fluorescence experiments, demonstrating that the number and relative positions of the boronic acid functional groups are critical factors in enhancing the binding affinity to SA. DFT calculations of both S and R configuration of A1 indicated that the effect of the S/R configuration of A1 on its binding with ß-sialic acid was insignificant as the Ugi-4CR generated racemic products. A fluorine atom was incorporated into the R2 substituent of A1 as an electron-withdrawing group to produce A5, which possessed a significantly higher capability to bind to SA (Keq = 7015 ± 5 M-1 at pH = 6.0). Finally, A1 and A5 were shown to possess exceptional binding selectivity toward ß-sialic acid under pH of 6.0 and 6.5 while preferring to bind with glucose, fructose, and galactose under pH of 7.0 and 7.5.


Assuntos
Ácidos Borônicos , Ácido N-Acetilneuramínico , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Ácidos Borônicos/química , Monossacarídeos , Glucose , Galactose
10.
Biomacromolecules ; 25(1): 222-237, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38130077

RESUMO

Phenylboronic acid (PBA) has been highly acknowledged as a significant cancer recognition moiety in sialic acid-overexpressing cancer cells. In this investigation, lipid-mediated biomaterial integrated PBA molecules onto the surface of natural killer (NK) cells to make a receptor-mediated immune cell therapeutic module. Therefore, a 1,2-distearoyl-sn-glycero-3-phosphorylethanolamine (DSPE) lipid-conjugated di-PEG-PBA (DSPEPEG-di(PEG-PBA) biomaterial was synthesized. The DSPEPEG-di(PEG-PBA) biomaterial exhibited a high affinity for sialic acid (SA), confirmed by fluorescence spectroscopy at pH 6.5 and 7.4. DSPEPEG-di(PEG-PBA) was successfully anchored onto NK cell surfaces (PBA-NK), and this biomaterial maintains intrinsic properties such as viability, ligand availability (FasL & TRAIL), and cytokine secretion response to LPS. The anticancer efficacy of PBA-NK cells was evaluated against 2D cancer cells (MDA-MB-231, HepG2, and HCT-116) and 3D tumor spheroids of MDA-MB-231 cells. PBA-NK cells exhibited greatly enhanced anticancer effects against SA-overexpressing cancer cells. Thus, PBA-NK cells represent a new anticancer strategy for cancer immunotherapy.


Assuntos
Ácido N-Acetilneuramínico , Neoplasias , Humanos , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/uso terapêutico , Neoplasias/tratamento farmacológico , Células Matadoras Naturais , Lipídeos , Materiais Biocompatíveis/uso terapêutico
11.
Anal Chem ; 95(50): 18388-18397, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38069741

RESUMO

Determination of the relative expression levels of the α2,3/α2,6-sialic acid linkage isomers on glycoproteins is critical to the analysis of various human diseases such as cancer, inflammation, and viral infection. However, it remains a challenge to separate and differentiate site-specific linkage isomers at the glycopeptide level. Some derivatization methods on the carboxyl group of sialic acid have been developed to generate mass differences between linkage isomers. In this study, we utilized chemical derivatization that occurred on the vicinal diol of sialic acid to separate linkage isomers on a reverse-phase column using a relatively short time. 2-Aminobenzamide (2AB) labeling derivatization, including periodate oxidation and reductive amination, took only ∼3 h and achieved high labeling efficiency (>90%). Within a 66 min gradient, the sialic acid linkage isomers of 2AB-labeled glycopeptides from model glycoproteins can be efficiently resolved compared to native glycopeptides. Two different methods, neuraminidase digestion and higher-energy collision dissociation tandem mass spectrometry (HCD-MS2) fragmentation, were utilized to differentiate those isomeric peaks. By calculating the diagnostic oxonium ion ratio of Gal2ABNeuAc and 2ABNeuAc fragments, significant differences in chromatographic retention times and in mass spectral peak abundances were observed between linkage isomers. Their corresponding MS2 PCA plots also helped to elucidate the linkage information. This method was successfully applied to human blood serum. A total of 514 2AB-labeled glycopeptide structures, including 152 sets of isomers, were identified, proving the applicability of this method in linkage-specific structural characterization and relative quantification of sialic acid isomers.


Assuntos
Ácido N-Acetilneuramínico , Espectrometria de Massas em Tandem , Humanos , Ácido N-Acetilneuramínico/química , Espectrometria de Massas em Tandem/métodos , Sialoglicoproteínas , Espectrometria de Massa com Cromatografia Líquida , Cromatografia Líquida , Glicoproteínas , Glicopeptídeos/análise , Polissacarídeos/química
12.
AAPS J ; 26(1): 9, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114736

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive fatal interstitial lung disease that affects three million patients worldwide and currently without an effective cure. Zinpentraxin alfa, a recombinant human pentraxin-2 (rhPTX-2) protein, has been evaluated as a potential drug candidate for the treatment of IPF. Clinical pharmacokinetic analysis of zinpentraxin alfa has been challenging historically due to interference from serum amyloid P component (SAP), an endogenous human pentraxin-2 protein. These molecules share an identical primary amino acid sequence and glycan composition; however, zinpentraxin alfa possesses α2,3-linked terminal sialic acid residues while SAP is an α2,6-linked isomer. By taking advantage of this only structural difference, we developed a novel assay strategy where α2,3-sialidase was used to selectively hydrolyze α2,3-linked sialic acid residues, resulting in desialylated zinpentraxin alfa versus unchanged sialylated SAP, following an immunoaffinity capture step. Subsequent tryptic digestion produced a unique surrogate asialo-glycopeptide from zinpentraxin alfa and allowed specific quantification of the biotherapeutic in human plasma. In addition, a common peptide shared by both molecules was selected as a surrogate to determine total hPTX-2 concentrations, i.e., sum of zinpentraxin alfa and SAP. The quantification methods for both zinpentraxin alfa and total hPTX-2 were validated and used in pharmacokinetic assessment in IPF patients. The preliminary results suggest that endogenous SAP levels remained largely constant in IPF patients throughout the treatment with zinpentraxin alfa. Our novel approach provides a general bioanalytical strategy to selectively quantify α2,3-sialylated glycoproteins in the presence of their corresponding α2,6-linked isomers.


Assuntos
Fibrose Pulmonar Idiopática , Espectrometria de Massa com Cromatografia Líquida , Humanos , Cromatografia Líquida , Ácido N-Acetilneuramínico/análise , Ácido N-Acetilneuramínico/química , Espectrometria de Massas em Tandem , Fibrose Pulmonar Idiopática/tratamento farmacológico
13.
J Am Soc Mass Spectrom ; 34(10): 2127-2135, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37621000

RESUMO

Glycosidic linkages in oligosaccharides play essential roles in determining their chemical properties and biological activities. MSn has been widely used to infer glycosidic linkages but requires a substantial amount of starting material, which limits its application. In addition, there is a lack of rigorous research on what MSn protocols are proper for characterizing glycosidic linkages. In this work, to deliver high-quality experimental data and analysis results, we propose a machine learning-based framework to establish appropriate MSn protocols and build effective data analysis methods. We demonstrate the proof-of-principle by applying our approach to elucidate sialic acid linkages (α2'-3' and α2'-6') in a set of sialyllactose standards and NIST sialic acid-containing N-glycans as well as identify several protocol configurations for producing high-quality experimental data. Our companion data analysis method achieves nearly 100% accuracy in classifying α2'-3' vs α2'-6' using MS5, MS4, MS3, or even MS2 spectra alone. The ability to determine glycosidic linkages using MS2 or MS3 is significant as it requires substantially less sample, enabling linkage analysis for quantity-limited natural glycans and synthesized materials, as well as shortens the overall experimental time. MS2 is also more amenable than MS3/4/5 to automation when coupled to direct infusion or LC-MS. Additionally, our method can predict the ratio of α2'-3' and α2'-6' in a mixture with 8.6% RMSE (root-mean-square error) across data sets using MS5 spectra. We anticipate that our framework will be generally applicable to analysis of other glycosidic linkages.


Assuntos
Ácido N-Acetilneuramínico , Polissacarídeos , Ácido N-Acetilneuramínico/química , Polissacarídeos/análise , Espectrometria de Massas/métodos , Oligossacarídeos/química , Cromatografia Líquida
14.
Carbohydr Res ; 531: 108891, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37393628

RESUMO

In this work, a mannan-oligosaccharide conjugate with sialic acid capable of perturbing Aß42 aggregation was designed and synthesized. Mannan oligosaccharides with degree polymerization of 3-13 were obtained by stepwise hydrolysis of locust bean gum using ß-mannanase and α-galactosidase, named as LBOS. The activated LBOS was further chemically conjugated with sialic acid (Sia, N-acetylneuraminic acid) by fluoro-mercapto chemical coupling to synthesize a conjugate LBOS-Sia, and then phosphorylated to obtain pLBOS-Sia. The successful synthesis of pLBOS-Sia was confirmed by infrared1 chromatography, mass spectrometry, and 1H NMR. The soluble protein analysis, microscopic observation, thioflavin T-labeling, and circular dichroism spectroscopy revealed that both LBOS-Sia and pLBOS-Sia can inhibit Aß42 aggregation. MTT assay showed that LBOS-Sia and pLBOS-Sia had no cytotoxicity to BV-2 cells, and could substantially reduce the release of pro-inflammatory factor TNF-α induced by Aß42 in BV-2 cells, and inhibit the occurrence of neuroinflammation. In future, this novel structure of mannan oligosaccharide-sialic acid conjugate can be potentially used to for the development of glycoconjugates against AD targeting Aß.


Assuntos
Mananas , Ácido N-Acetilneuramínico , Ácido N-Acetilneuramínico/química , Mananas/farmacologia , Peptídeos beta-Amiloides/química , Oligossacarídeos/farmacologia , Oligossacarídeos/química
15.
Anal Chem ; 95(19): 7458-7467, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37146167

RESUMO

Herein, we report a novel liquid chromatography coupled with tandem mass spectrometry method to characterize N-acetylneuraminic acid (Neu5Ac, Sa) linkage in N-linked glycans in glycopeptides with no sialic acid derivatization. First, we established a separation in reversed-phase high-performance liquid chromatography (HPLC) using a higher formic acid concentration in the mobile phases, which separated the N-glycopeptides depending on the Sa linkage. We also demonstrated a novel characterization method of Sa linkages in N-glycopeptides using electron-activated dissociation. We found that hot electron capture dissociation using an electron beam energy higher than 5 eV cleaved glycosidic bonds in glycopeptides, resulting in each glycosidic bond in the antennas being broken on both sides of the oxygen atom. Such glycosidic bond cleavage at the reducing end (C-type ion) showed the difference in Sa linkages between Sa-Gal, Gal-GlcNAc, and GlcNAc-Man. We proposed a rule to characterize the Sa linkages using the Sa-Gal products. This method was applied to N-glycopeptides in tryptic fetuin digest separated by an optimized reversed-phase HPLC. We successfully identified a number of isomeric glycoforms in the glycopeptides with different Sa links, whose peptide backbones were also simultaneously sequenced by hot ECD.


Assuntos
Glicopeptídeos , Ácido N-Acetilneuramínico , Humanos , Ácido N-Acetilneuramínico/química , Glicopeptídeos/análise , Elétrons , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos
16.
Carbohydr Res ; 527: 108804, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37031650

RESUMO

In nature, almost all cells are covered with a complex array of glycan chain namely sialic acids or nuraminic acids, a negatively charged nine carbon sugars which is considered for their great therapeutic importance since long back. Owing to its presence at the terminal end of lipid bilayer (commonly known as terminal sugars), the well-defined sialosides or sialoconjugates have served pivotal role on the cell surfaces and thus, the sialic acid-containing glycans can modulate and mediate a number of imperative cellular interactions. Understanding of the sialo-protein interaction and their roles in vertebrates in regard of normal physiology, pathological variance, and evolution has indeed a noteworthy journey in medicine. In this tutorial review, we present a concise overview about the structure, linkages in chemical diversity, biological significance followed by chemical and enzymatic modification/synthesis of sialic acid containing glycans. A more focus is attempted about the recent advances, opportunity, and more over growing impact of sialosides and sialoconjugates in future drug discovery and development.


Assuntos
Ácido N-Acetilneuramínico , Ácidos Siálicos , Animais , Ácido N-Acetilneuramínico/química , Ácidos Siálicos/química , Polissacarídeos/química , Sialiltransferases/metabolismo , Açúcares
17.
Food Chem ; 421: 136166, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37086518

RESUMO

Glycosylation of milk whey proteins, specifically the presence of sialic acid-containing glycan residues, causes functional changes in these proteins. This study aimed to analyze the N-glycome of milk whey glycoproteins from various milk sources using a linkage-specific ethyl esterification approach with MALDI-MS (matrix-assisted laser desorption/ionization-mass spectrometry). The results showed that the N-glycan profiles of bovine and buffalo whey mostly overlapped. Acetylated N-glycans were only detected in donkey milk whey at a rate of 16.06%. a2,6-linked N-Acetylneuraminic acid (a2,6-linked NeuAc, E) was found to be the predominant sialylation type in human milk whey (65.16%). The amount of a2,6-linked NeuAc in bovine, buffalo, goat, and donkey whey glycoproteomes was 42.33%, 44.16%, 39.00%, and 34.86%, respectively. The relative abundances of a2,6-linked N-Glycolylneuraminic acid (a2,6-linked NeuGc, Ge) in bovine, buffalo, goat, and donkey whey were 7.52%, 5.41%, 28.24%, and 17.31%, respectively. Goat whey exhibited the highest amount of a2,3-linked N-Glycolylneuraminic acid (a2,3-linked NeuGc, Gl, 8.62%), while bovine and donkey whey contained only 2.14% and 1.11%, respectively.


Assuntos
Búfalos , Soro do Leite , Animais , Bovinos , Humanos , Proteínas do Soro do Leite/metabolismo , Soro do Leite/química , Esterificação , Búfalos/metabolismo , Glicoproteínas/química , Leite Humano/química , Polissacarídeos/química , Ácido N-Acetilneuramínico/química , Proteínas do Leite/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Cabras/metabolismo
18.
Glycoconj J ; 40(2): 259-267, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36877384

RESUMO

Characterization of O-glycans linked to serine or threonine residues in glycoproteins has mostly been achieved using chemical reaction approaches because there are no known O-glycan-specific endoglycosidases. Most O-glycans are modified with sialic acid residues at the non-reducing termini through various linkages. In this study, we developed a novel approach for sialic acid linkage-specific O-linked glycan analysis through lactone-driven ester-to-amide derivatization combined with non-reductive ß-elimination in the presence of hydroxylamine. O-glycans released by non-reductive ß-elimination were efficiently purified using glycoblotting via chemoselective ligation between carbohydrates and a hydrazide-functionalized polymer, followed by modification of methyl or ethyl ester groups of sialic acid residues on solid-phase. In-solution lactone-driven ester-to-amide derivatization of ethyl-esterified O-glycans was performed, and the resulting sialylated glycan isomers were discriminated by mass spectrometry. In combination with PNGase F digestion, we carried out simultaneous, quantitative, and sialic acid linkage-specific N- and O-linked glycan analyses of a model glycoprotein and human cartilage tissue. This novel glycomic approach will facilitate detailed characterization of biologically relevant sialylated N- and O-glycans on glycoproteins.


Assuntos
Ésteres , Ácido N-Acetilneuramínico , Humanos , Ácido N-Acetilneuramínico/química , Glicoproteínas/química , Polissacarídeos/química , Lactonas
19.
Biomacromolecules ; 24(4): 1901-1911, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36989087

RESUMO

A series of four oxime-linked octavalent sialic acid and oligosialic acid poly(ether amidoamine) glycodendrimers were synthesized. In the attachment of the sialic acids to the dendrimer core, chemoselective oxime bonds were formed between the unprotected sugars (sialic acid or α-2,8-linked di- through tetra-sialic acids) and the aminooxy-terminated dendrimer core in a microwave-mediated reaction, resulting in good to excellent yields (58-100%) of the fully functionalized octavalent glycodendrimers. Next, using a combination of 1D and 2D nuclear magnetic resonance and working from the inside outward, we employed a systematic method to assign the proton and carbon signals starting with the smallest linkers and dendrimer cores and moving gradually up to the completed octavalent glycodendrimers. Through this approach, the assignment of the protons and carbons was possible, including the E- and Z-isomers related to the oxime dendrimer to sugar connections and relative quantities of each. These glycodendrimers were designed as broad-spectrum inhibitors of viral pathogens.


Assuntos
Dendrímeros , Ácido N-Acetilneuramínico , Ácido N-Acetilneuramínico/química , Oximas/química , Dendrímeros/química , Espectroscopia de Ressonância Magnética , Ácidos Siálicos
20.
J AOAC Int ; 106(4): 1003-1009, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-36929916

RESUMO

BACKGROUND: Edible bird's nest (EBN) is one of the most valuable tonic Chinese foods, made from glutinous salivary secretion with highly concentrated mucin glycoprotein. For ease of consumption, manufacturers have marketed different ready-to-eat EBN products, in which the EBN content varies. This is the first study to analyze the EBN content in ready-to-eat beverages. OBJECTIVE: To determine the EBN content in ready-to-eat beverages by its active ingredient, N-acetylneuraminic acid (sialic acid). METHOD: Sialic acid in ready-to-eat beverages and raw EBN was extracted in sodium hydrogen sulfate solution, followed by derivatization using o-phenylenediamine dihydrochloride and determination using high-performance liquid chromatography (HPLC). Method precision, recovery of extraction, degradation of sialic acid due to cooking, and measurement uncertainty were evaluated. RESULTS: The mean concentrations of raw EBN in different origins and colors ranged from 5.77 to 10.92%. Ten different brands of traditional ready-to-eat EBN beverages from the market were analyzed, in which estimated concentrations of EBN were diversified, ranging from 0.014 ± 0.010 to 0.66 ± 0.069% (w/w) (95% confidence level). The concentration of sialic acid was found to range from 11.4 to 527 mg/kg. CONCLUSIONS: Based on the results, sialic acid content can provide a better estimation of the EBN content in traditional ready-to-eat beverages. Neither the selling price nor dried matter could be used as an indicator of the quality of the ready-to-eat EBN beverage among the samples obtained. HIGHLIGHTS: Sialic acid can be used as an indicator to estimate EBN content, where the sialic acid and EBN content in ready-to-eat beverages from the market were found to vary significantly.


Assuntos
Aves , Ácido N-Acetilneuramínico , Animais , Ácido N-Acetilneuramínico/química , Aves/metabolismo , Bebidas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA