Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 477
Filtrar
1.
Chemosphere ; 358: 142115, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657689

RESUMO

Extracellular polymeric substance (EPS) with highly hydrophilic groups and sludge with high compressibility are determined sludge dewaterability. Herein, Fe2+ catalyzed calcium peroxide (CaO2) assisted by oxalic acid (OA) Fenton-like process combined with coal slime was applied to improve sludge dewaterability. Results demonstrated that the sludge treated by 0.45/1/1.1-OA/Fe2+/CaO2 mM/g DS, the water content (WC), specific resistance to filtration and capillary suction time dropped to 53.01%, 24.3 s and 1.2 × 1012 m/kg, respectively. Under coal slime ratio as 0.6, WC and compressibility were further reduced to 42.72% and 0.66, respectively. The hydroxyl radicals generated by OA/Fe2+/CaO2 under near-neutral pH layer by layer collapsed EPS, resulting in the degradation and migration of inner releasing components and the exposure of inner sludge flocs skeleton. The hydrophilic tryptophan-like protein of TB-EPS were degraded into aromatic protein of S-EPS and exposed inner hydrophobic sites. The protein secondary structures were transformed by destroying hydrophilic functional groups, which were attributed to the reducing α-helix ratio and reconstructing ß-sheet. Moreover, coal slime as the skeleton builder lowered compressibility and formed more macropores to increase the filterability of pre-oxidized sludge for the higher intensity of rigid substances. This study deepened the understanding of OA enhanced Fenton-like system effects on sludge dewaterability and proposed a cost-effective and synergistic waste treatment strategy in sludge dewatering.


Assuntos
Ácido Oxálico , Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Ácido Oxálico/química , Eliminação de Resíduos Líquidos/métodos , Ferro/química , Peróxidos/química , Matriz Extracelular de Substâncias Poliméricas/química , Peróxido de Hidrogênio/química , Interações Hidrofóbicas e Hidrofílicas , Água/química , Carvão Mineral
2.
Environ Sci Pollut Res Int ; 31(20): 30039-30058, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38594565

RESUMO

Heedless disposal of oil-based fly ash contributes to the contamination of the air, water, and soil. Acid leaching of industrial solid wastes is recognized as a versatile, cost-effective, and environmentally friendly solid waste treatment approach. The present study investigated the viability of conventional leaching (CL) and microwave-assisted leaching (MAL) of predominant heavy metals from Mazut-burnt fly ash. For this purpose, the practicality of four organic acids with various specifications (ascorbic, gluconic, citric, and oxalic acids) on the dissolution efficiency of fly ash components was examined. Utilization of oxalic acid led to achieving full V recovery, complete Fe removal, and Ni enrichment in the residue in both CL and MAL setups. The Ni content of the sample was enriched from 6% in the calcinated sample to 23.7% in the oxalic acid leaching residue. Using citric acid resulted in the co-extraction of V, Ni, and Fe with nearly 70% V, 50% Ni, and 89% Fe dissolved in CL. The dissolution efficiencies were slightly lower in MAL. Oxalic acid was selected as the most promising organic acid reagent for fly ash treatment, so its CL kinetics was studied and defined by the shrinking particle model. The model showed that the controlling steps in the leaching of V differ over time, changing from a chemical reaction before 60 min to fluid film diffusion or mixing afterward. The kinetic study proved MAL as an effective technique in overcoming the leaching kinetic barriers. A life cycle assessment study was conducted to determine the environmental impacts of the proposed process. Accordingly, the MAL using oxalic acid was the most environmentally friendly process among the studied ones, and the utilization of microwaves leads to the reduction of the leaching processes' environmental impacts by decreasing the processing time.


Assuntos
Cinza de Carvão , Micro-Ondas , Cinza de Carvão/química , Cinética , Metais Pesados/química , Ácido Oxálico/química
3.
Waste Manag ; 181: 168-175, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38615500

RESUMO

The recovery of valuable metals from used lithium batteries is essential from an environmental and resource management standpoint. However, the most widely used acid leaching method causes significant ecological harm. Here, we proposed a method of recovering Li and Fe selectively from used lithium iron phosphate batteries by using low-concentration organic acid and completing the closed-loop regeneration. Low-concentration oxalic acid is used to carry out PO43-, which is significantly less soluble in aqueous solution than Li, two-stage selective leaching Li, where the leaching rate of Li reaches 99 %, and the leaching rate of Fe is only 2.4 %. The leach solution is then decontaminated. The solubility of Li3PO4 in aqueous solution is much smaller than that of Li2C2O4, which was required to recover Li to change the pH and Li can be recovered as Li3PO4; Fe can be retrieved as FeC2O4·2H2O, and re-prepared into lithium iron phosphate.


Assuntos
Compostos Férricos , Lítio , Ácido Oxálico , Fosfatos , Reciclagem , Ácido Oxálico/química , Fosfatos/química , Lítio/química , Reciclagem/métodos , Ferro/química , Fontes de Energia Elétrica
4.
Biomed Mater ; 19(3)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38636501

RESUMO

Palygorskite (Pal) is a naturally available one-dimensional clay mineral, featuring rod-shaped morphology, nanoporous structure, permanent negative charges as well as abundant surface hydroxyl groups, exhibiting promising potential as a natural hemostatic material. In this study, the hemostatic performance and mechanisms of Pal were systematically investigated based on the structural regulate induced by oxalic acid (OA) gradient leaching from perspectives of structure, surface attributes and ion release.In vitroandin vivohemostasis evaluation showed that Pal with OA leaching for 1 h exhibited a superior blood procoagulant effect compared with the raw Pal as well as the others leached for prolonging time. This phenomenon might be ascribed to the synergistic effect of the intact nanorod-like morphology, the increase in the surface negative charge, the release of metal ions (Fe3+and Mg2+), and the improved blood affinity, which promoted the intrinsic coagulation pathway, the fibrinogenesis and the adhesion of blood cells, thereby accelerating the formation of robust blood clots. This work is expected to provide experimental and theoretical basis for the construction of hemostatic biomaterials based on clay minerals.


Assuntos
Coagulação Sanguínea , Hemostáticos , Compostos de Magnésio , Ácido Oxálico , Compostos de Silício , Compostos de Magnésio/química , Ácido Oxálico/química , Animais , Compostos de Silício/química , Coagulação Sanguínea/efeitos dos fármacos , Hemostáticos/química , Hemostáticos/farmacologia , Materiais Biocompatíveis/química , Hemostasia/efeitos dos fármacos , Teste de Materiais , Humanos , Propriedades de Superfície , Argila/química , Magnésio/química , Ratos
5.
Ecotoxicol Environ Saf ; 266: 115593, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856985

RESUMO

Vermicompost is a promising amendment for immobilization of cadmium (Cd) in soils; however, its effectiveness can be influenced by rhizosphere environment conditions, such as pH and the presence of low-molecular-weight organic acids (LMWOAs). In this study, a batch experiment was conducted to examine the characteristics of Cd adsorption by vermicompost at different pH (pH = 3, 5, and 7) and after the addition of different LMWOAs (oxalic acid; citric acid; malic acid). Furthermore, a series of morphology and structural analyses were conducted to elucidate the mechanisms of observed effects. The results showed that the adsorption capacity of vermicompost for Cd increased as pH increased, and chemisorption dominated the adsorption process. Changes in pH altered adsorption performance by affecting the -OH groups of alcohol/phenol and the -CH2 groups of aliphatics. Further, the addition of oxalic acid promoted Cd adsorption, and the effect was concentration dependent. Modifying the verimicompost surface with more adsorption sites might be the main reason. Conversely, citric acid and malic acid showed the ability to inhibit Cd adsorption by vermicompost. Citric acid caused a blocking effect by covering flocculent substances on the vermicompost surface while reducing surface adsorption sites by dissolving mineral components such as iron oxides. However, the action of malic acid did not appear to be related to changes in morphology or the structure of vermicompost. Overall, the results of this study partially explain the limited effectiveness of Cd immobilization within the rhizosphere by vermicompost, and provide theoretical support for regulating rhizosphere environments to improve the effectiveness of vermicompost immobilization of Cd.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Adsorção , Rizosfera , Solo/química , Compostos Orgânicos , Ácido Oxálico/química , Ácido Cítrico/química , Concentração de Íons de Hidrogênio , Poluentes do Solo/análise
6.
Appl Microbiol Biotechnol ; 107(23): 7331-7346, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37736792

RESUMO

In the context of e-waste recycling by fungal bioleaching, nickel and cobalt precipitate as toxic metals by oxalic acid, whereas organic acids, such as citric, act as a high-performance chelating agent in dissolving these metals. Oxalic acid elimination requires an excess and uneconomical carbon source concentration in culture media. To resolve this issue, a novel and straightforward systems metabolic engineering method was devised to switch metabolic flux from oxalic acid to citric acid. In this technique, the genome-scale metabolic model of Aspergillus niger was applied to predicting flux variability and key reactions through the calculation of multiple optimal solutions for cellular regulation. Accordingly, BRENDA regulators and a novel molecular docking-oriented approach were defined a regulatory medium for this end. Then, ligands were evaluated in fungal culture to assess their impact on organic acid production for bioleaching of copper and nickel from waste telecommunication printed circuit boards. The protein structure of oxaloacetate hydrolase was modeled based on homology modeling for molecular docking. Metformin, glutathione, and sodium fluoride were found to be effective as inhibitors of oxalic acid production, enabling the production of 8100 ppm citric acid by controlling cellular metabolism. Indirect bioleaching demonstrated that nickel did not precipitate, and the bioleaching efficiency of copper and nickel increased from 40% and 24% to 61% and 100%, respectively. Bioleaching efficiency was evaluated qualitatively by FE-SEM, EDX, mapping, and XRD analysis. KEY POINTS: • A regulatory-systemic procedure for controlling cellular metabolism was introduced • Metformin inhibited oxalic acid, leading to 8100 ppm citric acid production • Bioleaching of copper and nickel in TPCBs improved by 21% and 76.


Assuntos
Aspergillus niger , Metformina , Aspergillus niger/metabolismo , Cobre/metabolismo , Níquel , Simulação de Acoplamento Molecular , Ácido Oxálico/química , Ácido Oxálico/metabolismo , Ácido Cítrico/metabolismo , Metformina/metabolismo
7.
Chemosphere ; 311(Pt 1): 136973, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36283433

RESUMO

Oxalic acid is the most abundant low molecular weight organic acid (LMWOA) in many environments and offers enormous prospects for treating Cr(VI) contamination. In this study, laboratory batch experiments were conducted to estimate the roles of oxalic acid in Cr(VI) removal by Penicillium oxalicum SL2. Oxalic acid changed the initial pH and provided a suitable condition for the growth of strain SL2 when the penicillium was applied to bioremediation of Cr(VI) contamination in alkaline soil. Gompertz model analysis indicated that initial pH affected the lag time of the growth curve of strain SL2. Scanning electron microscopy and scanning transmission X-ray microscopy analysis showed strain SL2 sufficiently contacted with contaminated soil and reduced Cr(VI) to Cr(III) in the hyphae. The results suggested that oxalic acid could enhance the bioremediation efficiency of strain SL2 though improving chromium bioleaching from the contaminated soil and strengthening Cr(VI) removal in the leaching solution. This study provided oxalic acid as a green reagent for stimulating Cr(VI) removal by strain SL2 and would expand knowledge on the roles of LMWOA in Cr(VI) bioremediation.


Assuntos
Penicillium , Poluentes do Solo , Biodegradação Ambiental , Ácido Oxálico/química , Cromo , Solo
8.
Environ Technol ; 44(6): 739-750, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34534044

RESUMO

In this study, expanded graphite (EG) was prepared by the oxidation and intercalation of the natural flake graphite using perchloric acid and potassium permanganate at different expansion temperatures (300, 400, 500, and 600°C), and were characterized by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). EG prepared at 500°C was found to be highly effective for the mineralization of oxalic acid aqueous solution during ozonation at pH 3, which was ascribed to the formation of hydroxyl radicals from the surface reaction of surface hydroxyl groups on EG with ozone. The performance of expanded graphite in this catalytic system was basically unchanged after three repeated use. The presence of Cl-, SO42-, HPO42-/H2PO4- and NO3- could inhibit the degradation of oxalic acid in catalytic ozonation with EG. Degradations of oxamic acid and pyruvic acid in catalytic ozonation with EG were pH-dependent, which were lower than that of oxalic acid. The degradations of oxalic acid and oxamic acid were identified as mineralization process by the determination of TOC, while pyruvic acid may transform into organic products such as acetic acid by O3/EG. Manganese ion (Mn2+) could promote the degradation of oxalic acid by O3/EG at pH 3 because permanganate was produced by O3/EG in oxalic acid solution and then reacted with oxalic acid readily at acidic pH. Catalytic ozonation by EG exhibited great application potential for the destruction of refractory organic compounds.


Assuntos
Grafite , Ozônio , Poluentes Químicos da Água , Grafite/química , Ácido Oxâmico , Ácido Pirúvico , Água , Ácido Oxálico/química , Catálise , Ozônio/química , Poluentes Químicos da Água/química
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121784, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36054954

RESUMO

Spectrophotometry is an economic and rapid method for detecting oxalic acid (OA), while the reported methods have some drawbacks, such as narrow linear range, long response time, delicate operation and required expensive reagents. Herein, we found that the as-synthesized Fe(III)-sulfosalicylate (FeSSA) could be used as an efficient colorimetric chemosensor to detect OA, and the established FeSSA-based fading spectrophotometry showed prominent advantages over the existing ones in detecting OA. The as-established method has wider linear range of 0.80-160 mg/L with regression coefficient ≥ 0.999, while the widest linear range is just 2.7-54 mg/L among the reported ones. Moreover, the method has low limit of detection (0.74 mg/L), extremely fast response (several seconds), satisfactory selectivity, high accuracy and precision. Most importantly, its reliability was further verified by employing it to determine OA concentration during the degradation process of organic pollutants. The measured OA concentration at any time interval was perfectly consistent with those determined by the well-recognized high performance liquid chromatography (HPLC). These confirmed that the FeSSA-based fading spectrophotometry is an efficient, simple, fast, accurate and economic method to determine OA in a wide concentration range.


Assuntos
Poluentes Ambientais , Ácido Oxálico , Colorimetria/métodos , Poluentes Ambientais/análise , Compostos Férricos , Ácido Oxálico/análise , Ácido Oxálico/química , Reprodutibilidade dos Testes , Espectrofotometria/métodos
10.
Environ Sci Technol ; 56(24): 17753-17762, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36445928

RESUMO

Hydroxyl radical-dominated oxidation in catalytic ozonation is, in particular, important in water treatment scenarios for removing organic contaminants, but the mechanism about ozone-based radical oxidation processes is still unclear. Here, we prepared a series of transitional metal (Co, Mn, Ni) single-atom catalysts (SACs) anchored on graphitic carbon nitride to accelerate ozone decomposition and produce highly reactive ·OH for oxidative destruction of a water pollutant, oxalic acid (OA). We experimentally observed that, depending on the metal type, OA oxidation occurred dominantly either in the bulk phase, which was the case for the Mn catalyst, or via a combination of the bulk phase and surface reaction, which was the case for the Co catalyst. We further performed density functional theory simulations and in situ X-ray absorption spectroscopy to propose that the ozone activation pathway differs depending on the oxygen binding energy of metal, primarily due to differential adsorption of O3 onto metal sites and differential coordination configuration of a key intermediate species, *OO, which is collectively responsible for the observed differences in oxidation mechanisms and kinetics.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Radical Hidroxila/química , Oxirredução , Metais , Catálise , Ácido Oxálico/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
11.
Molecules ; 27(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36144561

RESUMO

A batch experiment was conducted to examine the behavior of nitrate, organic ligands, and phosphate in the co-presence of biochar and three common low-molecular-weight organic acids (LMWOAs). The results show that citrate, oxalate, and malate ions competed with nitrate ion for the available adsorption sites on the biochar surfaces. The removal rate of LMWOA ligands by the biochar via adsorption grew with increasing solution pH. The adsorbed divalent organic ligands created negatively charged sites to allow binding of cationic metal nitrate complexes. A higher degree of biochar surface protonation does not necessarily enhance nitrate adsorption. More acidic conditions formed under a higher dose of LMWOAs tended to make organic ligands predominantly in monovalent forms and failed to create negatively charged sites to bind cationic metal nitrate complexes. This could adversely affect nitrate removal efficiency in the investigated systems. LMWOAs caused significant release of phosphate from the biochar. The phosphate in the malic acid treatment tended to decrease over time, while the opposite was observed in the citric- and oxalic-acid treatments. This was caused by re-immobilization of phosphate in the former due to the marked increase in solution pH over time.


Assuntos
Nitratos , Fosfatos , Adsorção , Carvão Vegetal/química , Ácido Cítrico/química , Malatos/química , Nitratos/química , Compostos Orgânicos/química , Ácido Oxálico/química , Fosfatos/química
12.
Environ Sci Pollut Res Int ; 29(32): 49116-49125, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35212902

RESUMO

Phosphate rock powder (PR) has been shown to possess the potential to stabilize lead (Pb) in soil. Most of the phosphorus (P) minerals in the world are low-grade ores, making it difficult to achieve the expected stabilization effect on heavy metals. This study compared the changes in the phase composition and structure of PR and three kinds of activated phosphate rock powder (APR) (organic acid-activated PR, thermal-activated PR, and thermal-organic acid-activated PR). The stabilization effectiveness of APR on Pb-contaminated soil was evaluated by toxicity leaching procedure; the Pb products adsorbed on APR and stabilization mechanism of APR on Pb were analyzed. The results demonstrated that APR showed decreased crystallinity and 3.4-fold increase in specific surface area, and a 53.07% and 49.32% increase in soluble P content in oxalic acid-activated PR and citric acid-activated PR, respectively, when compared with those of PR. These changes improved the stabilization effect of APR on Pb-contaminated soil, in which oxalic acid-600 °C-activated PR showed the best effect, presenting 94.0-99.8% reduction in Pb leaching concentration following addition of 2-10% modifier. Product characterization after Pb adsorption on APR showed that Pb was adsorbed onto APR by forming fluoropyromophite precipitation with APR.


Assuntos
Poluentes do Solo , Chumbo , Ácido Oxálico/química , Fosfatos/química , Pós , Solo/química , Poluentes do Solo/análise
13.
Environ Sci Pollut Res Int ; 29(24): 36281-36294, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35064507

RESUMO

Bone meal (BM) is a cost-effective and low-carbon material to remediate heavy metal contaminated soils. Moreover, its immobilization efficiency for heavy metals still requires improvement. This study aimed to assess the activation effect of oxalic acid on the BM to develop an oxalic acid-activated bone meal (ABM) for improving immobilization efficiency. Several series of tests, including the available phosphorus content test, toxicity characteristic leaching procedure (TCLP), modified European Community Bureau of Reference (BCR) sequential extraction procedure, and X-ray diffraction (XRD) analysis, are used to investigate the effect of activation on the immobilization ability and chemical speciation of lead (Pb) and cadmium (Cd) in soils and the different mechanisms of Pb/Cd immobilization using the ABM and BM. The results indicate that the ABM possesses a higher solubility than the BM. The activation of BM achieves optimal effect when using 1 mol/L oxalic acid solution with a liquid-solid ratio of 2:1. The TCLP and BCR test results show that the ABM significantly outperforms the BM in terms of Pb immobilization. The leaching concentration of Pb from ABM immobilized soils can meet regulatory limits in China and the USA, and it is also 30 to 75% lower than that from BM immobilized soils. Regarding Cd immobilization, ABM outperforms BM after 90 days of curing. The XRD analysis shows that heavy metal phosphates are the primary products of Pb and Cd immobilized by ABM, whereas heavy metal carbonates are the main products after the immobilization by BM.


Assuntos
Metais Pesados , Poluentes do Solo , Produtos Biológicos , Cádmio/análise , Chumbo/análise , Metais Pesados/análise , Minerais , Ácido Oxálico/química , Solo/química , Poluentes do Solo/análise
14.
Carbohydr Polym ; 278: 118992, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973795

RESUMO

Acidic deep eutectic solvents (DESs) are promising media for lignin valorization and cellulose conversion due to their good ability in efficient deconstruction of plant cell wall. However, hemicellulose extraction from lignocellulose using acidic DESs remains a challenge. Herein, novel and green Brønsted acidic DESs (BDESs) were synthesized from natural organic acids and common polyols and successively adopted to deconstruct corncob for mild fractionation of hemicelluloses. Oxalic acid (OA)-based BDESs were preferred for corncob processing due to the high solubility of xylan. The results revealed that the suitable acidity of DESs and mild temperature effectively avoided the over-degradation of hemicelluloses. The chemical composition and structural features of the recovered hemicelluloses were investigated systematically. Moreover, after ethylene glycol (EG)-OA BDES was recycled and reused three times, the extraction still resulted in a satisfactory hemicellulose yield. The novel and eco-friendly processing offers a practical and sustainable route for hemicellulose extraction in acidic condition.


Assuntos
Ácido Oxálico/química , Polissacarídeos/química , Reciclagem , Solventes Eutéticos Profundos/química , Estrutura Molecular
15.
Sci Rep ; 11(1): 24239, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930985

RESUMO

The present work focuses on the revealing the patterns of copper oxalates formation under the influence of lichens and fungi by combination of the results of field studies and model experiments. These findings create the scientific basis for the potential microbial technology applications (ore enrichment, monuments conservation, environment bioremediation, etc.). Copper oxalate moolooite Cu(C2O4)·H2O was discovered in saxicolous lichen Lecidea inops on the weathered chalcopyrite ore of Voronov Bor deposit (Central Karelia, Russia). Bioinspired syntheses of moolooite and wheatleyite Na2Cu(C2O4)2 2H2O with the participation of the microscopic fungi Aspergillus niger (active producer of oxalic acid) were carried out on weathered Cu-ore from the Voronov Bor deposit. It was shown that morphology of moolooite crystals is controlled both by the underlying rock and by the species composition of microorganisms. Iron ions (sourced from the underlying rock) in the crystallization medium inhibits the moolooite formation. The observed intensive dissolution of moolooite crystals are well explained by washing effect of the intratalline solutions which depends on repeatedly dehydration / rehydration cycles in the lichens. Joint interpretation of original and published data shows that moolooite along with other cooper oxalates are biominerals.


Assuntos
Cobre/química , Fungos/metabolismo , Líquens/metabolismo , Oxalatos/química , Aspergillus niger/metabolismo , Fenômenos Bioquímicos , Biodegradação Ambiental , Cristalização , Geologia , Íons , Ferro/química , Microscopia Eletrônica de Varredura , Ácido Oxálico/química , Sulfetos/química , Difração de Raios X
16.
Chem Pharm Bull (Tokyo) ; 69(9): 877-885, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34470952

RESUMO

The aim of this study was to evaluate the effect of three coformers and five disintegrants in the granulation formulation on the dissociation of cocrystal during the granulation process by monitoring wet granulation with probe-type low-frequency Raman (LF-Raman) spectroscopy. As model cocrystals, paracetamol (APAP)-oxalic acid (OXA), APAP-maleic acid (MLA), and APAP-trimethylglycine (TMG) were used. The monitoring of the granulation recipe containing cocrystals during wet granulation was performed over time with high-performance LF-Raman spectrometry and the dissociation rate was calculated from the results of multivariate analysis of LF-Raman spectra. The dissociation rate decreased in the order of APAP-TMG, APAP-OXA, and APAP-MLA, showing the same order as observed in Powder X-ray diffraction measurements. Furthermore, to compare the effect of disintegrants on the dissociation rate of APAP-OXA, LF-Raman monitoring was performed for the granulation recipes containing five typical disintegrants (two low-substitution hydroxypropyl cellulose (HPC), cornstarch (CSW), carmellose sodium (CMC), and crospovidone (CRP)). The dissociation rate of APAP-OXA decreased in the order of CSW, HPCs, CMC, and CRP. This difference in the dissociation rate of APAP-OXA was thought to be due to the disintegration mechanism of the disintegrants and the water absorption ratio, which was expected to affect the water behavior on the disintegrant surface during wet granulation. These results suggested that probe-type LF-Raman spectroscopy is useful to monitor the dissociation behavior of cocrystals during wet granulation and can compare the relative stability of cocrystal during wet granulation between different formulations.


Assuntos
Acetaminofen/química , Glicina/química , Maleatos/química , Ácido Oxálico/química , Cristalografia por Raios X , Glicina/análogos & derivados , Modelos Moleculares , Análise Espectral Raman
17.
J Oleo Sci ; 70(10): 1481-1494, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34497174

RESUMO

In the past decade, natural deep eutectic solvents (NADESs) as green and sustainable extraction solvents with great potential for the efficient extraction of bioactive compounds from the plants are emerging. In this study, a microwave-assisted technology is used to prepare natural deep eutectic solvents. And natural deep eutectic solvents as pretreatment solvents coupled with microwave-assisted hydrodistillation (MAHD) for isolating essential oil (EO) derived from turmeric (Curcuma longa L.) is investigated. To improve the essential oil yield of turmeric (Curcuma longa L.) as a target, various factors affecting extraction efficiency including the type and amount of natural deep eutectic solvents, pretreatment time, pretreatment temperature and hydrodistillation (HD) time are discussed and optimized through central composite design (CCD) of the response surface methodology (RSM). The optimal conditions are as follows: natural deep eutectic solvent composed of choline chloride and oxalic acid (molar ratio with 1:1) as a pretreatment solvent, an amount of 60 g, a pretreatment time of 5 min, a pretreatment temperature of 84 ºC, a hydrodistillation time of 76 min. Under the optimum conditions, the highest essential oil yield of 0.85% is achieved. Additionally, the essential oil is analyzed by using gas chromatography-mass spectrometry (GC-MS), with a total of 49 compounds being identified. Through combining natural deep eutectic solvents with a microwave-assisted hydrodistillation technique, this work provides an eco-friendly extraction way of isolating essential oil, which boosts development in the monitoring other spice quality field.


Assuntos
Curcuma/química , Solventes Eutéticos Profundos/química , Destilação/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Extração Líquido-Líquido/métodos , Micro-Ondas , Óleos Voláteis/análise , Colina/química , Óleos Voláteis/isolamento & purificação , Ácido Oxálico/química , Temperatura , Fatores de Tempo
18.
J Mol Model ; 27(9): 258, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34414490

RESUMO

Using density functional theory, structural, electronic, and optical properties of GCN (graphitic carbon nitride) and OAGCN (graphitic carbon nitride combined with oxalic acid) were studied. By comparing HOMOs and LUMOs and excitonic binding energies, OAGCN has lower photoinduced electron-hole recombination rate than GCN. VBM and CBM levels of GCN and OAGCN were calculated, which shows that for GCN, only the electron at CBM contributes to produce radicals for removing pollutants, and for OAGCN, both the electron at CBM and the hole at VBM contribute to produce radicals for removing pollutants. In total, it can be said that OAGCN has higher photocatalytic activity than GCN.


Assuntos
Grafite/química , Compostos de Nitrogênio/química , Ácido Oxálico/química , Processos Fotoquímicos , Catálise
19.
Eur J Med Chem ; 222: 113560, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34111828

RESUMO

HTS campaign of the corporate compound collection resulted in a novel, oxalic acid diamide scaffold of α7 nACh receptor positive allosteric modulators. During the hit expansion, several derivatives, such as 4, 11, 17 demonstrated not only high in vitro potency, but also in vivo efficacy in the mouse place recognition test. The advanced hit molecule 11 was further optimized by the elimination of the putatively mutagenic aromatic-amine building block that resulted in a novel, aminomethylindole compound family. The most balanced physico-chemical and pharmacological profile was found in case of compound 55. Docking study revealed an intersubunit binding site to be the most probable for our compounds. 55 demonstrated favorable cognitive enhancing profile not only in scopolamine-induced amnesia (place recognition test in mice) but also in natural forgetting (novel object recognition test in rats). Compound 55 was, furthermore, active in a cognitive paradigm of high translational value, namely in the rat touch screen visual discrimination test. Therefore, 55 was selected as a lead compound for further optimization. Based on the obtained favorable results, the invented aminomethylindole cluster may provide a viable approach for cognitive enhancement through positive allosteric modulation of α7 nAChRs.


Assuntos
Amidas/farmacologia , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Ácido Oxálico/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Regulação Alostérica/efeitos dos fármacos , Amidas/síntese química , Amidas/química , Animais , Relação Dose-Resposta a Droga , Humanos , Masculino , Estrutura Molecular , Ácido Oxálico/síntese química , Ácido Oxálico/química , Ratos , Ratos Wistar , Relação Estrutura-Atividade
20.
Wilderness Environ Med ; 32(1): 98-101, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33518496

RESUMO

Star fruit (Averrhoa carambola) is a popular fruit in many tropical countries, including Sri Lanka. It is rich in oxalic acid, which is nephrotoxic in higher concentrations. The development of both acute (AKI) and chronic kidney injury after oxalate nephropathy is often underrecognized. Here we discuss the risk factors, clinical features, treatment, and outcomes of 4 patients who developed AKI after star fruit ingestion. Baseline clinical characteristics, the amount of star fruit ingested, clinical presentation, investigation, and outcome of the patients (ages 28, 50, 54, and 55 y; all male) were traced. More common symptoms of acute star fruit intoxication were nausea, vomiting, and abdominal and back pain, followed by low urine output and high serum creatinine over hours to days. Urinary analysis of all patients demonstrated oxalate crystals. Histopathologic examination of renal tissues of all 4 patients revealed acute tubular damage with calcium oxalate crystals, interstitial edema, and inflammatory cellular infiltration. The presence of calcium oxalate crystals was further confirmed with the brilliant birefringence seen under polarized light. Two patients needed intermittent hemodialysis over a week owing to oliguria and uremia. The other 2 patients did not require hemodialysis and had improvement of renal function with supportive treatment. All had high renal function on discharge but were back to normal within a month. This study highlights AKI as a serious complication of star fruit ingestion. The type and quantity of star fruit ingested and some patient factors may play a role in the pathogenesis of AKI. Public education about this serious uncommon complication is important.


Assuntos
Injúria Renal Aguda/etiologia , Averrhoa/química , Frutas/química , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Ácido Oxálico/química , Diálise Renal , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA