Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sheng Li Xue Bao ; 74(4): 505-512, 2022 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-35993201

RESUMO

The purpose of the present study was to investigate the effect of glutamate scavenger oxaloacetate (OA) combined with CGS21680, an adenosine A2A receptor (A2AR) agonist, on acute traumatic brain injury (TBI), and to elucidate the underlying mechanisms. C57BL/6J mice were subjected to moderate-level TBI by controlled cortical impact, and then were treated with OA, CGS21680, or OA combined with CGS21680 at acute stage of TBI. At 24 h post TBI, neurological severity score, brain water content, glutamate concentration in cerebrospinal fluid (CSF), mRNA and protein levels of IL-1ß and TNF-α, mRNA level and activity of glutamate oxaloacetate aminotransferase (GOT), and ATP level of brain tissue were detected. The results showed that neurological deficit, brain water content, glutamate concentration in CSF, and the inflammatory cytokine IL-1ß and TNF-α production were exacerbated in CGS21680 treated mice. Administrating OA suppressed the rise of both glutamate concentration in CSF and brain water content, and elevated the ATP level of cerebral tissue. More interestingly, neurological deficit, brain edema, glutamate concentration, IL-1ß and TNF-α levels were ameliorated significantly in mice treated with OA combined with CGS21680. The combined treatment exhibited better therapeutic effects than single OA treatment. We also observed that GOT activity was enhanced in single CGS21680 treatment group, and both the GOT mRNA level and GOT activity were up-regulated in early-stage combined treatment group. These results suggest that A2AR can improve the efficiency of GOT and potentiate the ability of OA to metabolize glutamate. This may be the mechanism that A2AR activation in combination group augmented the neuroprotective effect of OA rather than aggravated the brain damages. Taken together, the present study provides a new insight for the clinical treatment of TBI with A2AR agonists and OA.


Assuntos
Agonistas do Receptor A2 de Adenosina , Lesões Encefálicas Traumáticas , Fármacos Neuroprotetores , Ácido Oxaloacético , Receptor A2A de Adenosina , Agonistas do Receptor A2 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/uso terapêutico , Trifosfato de Adenosina , Animais , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/genética , Lesões Encefálicas/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/metabolismo , Ácido Glutâmico , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ácido Oxaloacético/farmacologia , Ácido Oxaloacético/uso terapêutico , RNA Mensageiro , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Fator de Necrose Tumoral alfa/genética , Água
2.
J Transl Med ; 20(1): 295, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764955

RESUMO

BACKGROUND: There is no approved pharmaceutical intervention for Myalgic Encephalomyelitis/ Chronic Fatigue Syndrome (ME/CFS). Fatigue in these patients can last for decades. Long COVID may continue to ME/CFS, and currently, it is estimated that up to 20 million Americans have significant symptoms after COVID, and the most common symptom is fatigue. Anhydrous Enol-Oxaloacetate, (AEO) a nutritional supplement, has been anecdotally reported to relieve physical and mental fatigue and is dimished in ME/CFS patients. Here, we examine the use of higher dosage AEO as a medical food to relieve pathological fatigue. METHODS: ME/CFS and Long-COVID patients were enrolled in an open label dose escalating "Proof of Concept" non-randomized controlled clinical trial with 500 mg AEO capsules. Control was provided by a historical ME/CFS fatigue trial and supporting meta-analysis study, which showed average improvement with oral placebo using the Chalder Scale of 5.9% improvement from baseline. At baseline, 73.7% of the ME/CFS patients were women, average age was 47 and length of ME/CFS from diagnosis was 8.9 years. The Long-COVID patients were a random group that responded to social media advertising (Face Book) with symptoms for at least 6 months. ME/CFS patients were given separate doses of 500 mg BID (N = 23), 1,000 mg BID (N = 29) and 1000 mg TID (N = 24) AEO for six weeks. Long COVID patients were given 500 mg AEO BID (N = 22) and 1000 mg AEO (N = 21), again over a six-week period. The main outcome measure was to compare baseline scoring with results at 6 weeks with the Chalder Fatigue Score (Likert Scoring) versus historical placebo. The hypothesis being tested was formulated prior to data collection. RESULTS: 76 ME/CFS patients (73.7% women, median age of 47) showed an average reduction in fatigue at 6 weeks as measured by the "Chalder Fatigue Questionnaire" of 22.5% to 27.9% from baseline (P < 0.005) (Likert scoring). Both physical and mental fatigue were significantly improved over baseline and historical placebo. Fatigue amelioration in ME/CFS patients increased in a dose dependent manner from 21.7% for 500 mg BID to 27.6% for 1000 mg Oxaloacetate BID to 33.3% for 1000 mg TID. Long COVID patients' fatigue was significantly reduced by up to 46.8% in 6-weeks. CONCLUSIONS: Significant reductions in physical and metal fatigue for ME/CFS and Long-COVID patients were seen after 6 weeks of treatment. As there has been little progress in providing fatigue relief for the millions of ME/CFS and Long COVID patients, anhydrous enol oxaloacetate may bridge this important medical need. Further study of oxaloacetate supplementation for the treatment of ME/CFS and Long COVID is warranted. Trial Registration https://clinicaltrials.gov/ct2/show/NCT04592354 Registered October 19, 2020. 1,000 mg BID Normalized Fatigue Data for Baseline, 2-weeks and 6-weeks evaluated by 3 Validated Fatigue Scoring Questionnaires.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Síndrome de Fadiga Crônica , Ácido Oxaloacético , COVID-19/complicações , Síndrome de Fadiga Crônica/complicações , Síndrome de Fadiga Crônica/tratamento farmacológico , Feminino , Humanos , Masculino , Fadiga Mental/tratamento farmacológico , Fadiga Mental/virologia , Pessoa de Meia-Idade , Ácido Oxaloacético/uso terapêutico , Síndrome de COVID-19 Pós-Aguda
3.
J Virol ; 96(4): e0194221, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-34878915

RESUMO

Rabies, caused by rabies virus (RABV), is a widespread zoonosis that is nearly 100% fatal. Alteration of the metabolic environment affects viral replication and the immune response during viral infection. In this study, glucose uptake was increased in mouse brains at the late stage of infection with different RABV strains (lab-attenuated CVS strain and wild-type DRV strain). To illustrate the mechanism underlying glucose metabolism alteration, comprehensive analysis of lysine acetylation and target analysis of energy metabolites in mouse brains infected with CVS and DRV strains were performed. A total of 156 acetylated sites and 115 acetylated proteins were identified as significantly different during RABV infection. Compared to CVS- and mock-infected mice, the lysine acetylation levels of glycolysis and tricarboxylic acid (TCA) cycle enzymes were decreased, and enzyme activity was upregulated in DRV-infected mouse brains. Metabolomic analysis revealed high levels of oxaloacetate (OAA) in RABV-infected mouse brains. Specifically, the OAA level in CVS-infected mouse brains was higher than that in DRV-infected mouse brains, which contributed to the enhancement of the metabolic rate at the substrate level. Finally, we confirmed that OAA could reduce excessive neuroinflammation in CVS-infected mouse brains by inhibiting JNK and P38 phosphorylation. Taken together, this study provides fresh insight into the different strategies the host adapts to regulate glucose metabolism for energy requirements after different RABV strain infections and suggests that OAA treatment is a strategy to prevent neural damage during RABV infection. IMPORTANCE Both viral replication and the host immune response are highly energy dependent. It is important to understand how the rabies virus affects energy metabolism in the brain. Glucose is the direct energy source for cell metabolism. Previous studies have revealed that there is some association between acetylation and metabolic processes. In this study, comprehensive protein acetylation and glucose metabolism analysis were conducted to compare glucose metabolism in mouse brains infected with different RABV strains. Our study demonstrates that the regulation of enzyme activity by acetylation and OAA accumulation at the substrate level are two strategies for the host to respond to energy requirements after RABV infection. Our study also indicates the role OAA could play in neuronal protection by suppressing excessive neuroinflammation.


Assuntos
Encéfalo/metabolismo , Glucose/metabolismo , Vírus da Raiva/patogenicidade , Raiva/metabolismo , Acetilação , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/virologia , Metabolismo Energético , Inflamação , Camundongos , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Ácido Oxaloacético/metabolismo , Ácido Oxaloacético/uso terapêutico , Proteoma/metabolismo , Raiva/tratamento farmacológico , Raiva/virologia
4.
Sci Rep ; 11(1): 11051, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040085

RESUMO

Amyotrophic lateral sclerosis (ALS) remains a devastating motor neuron disease with limited treatment options. Oxaloacetate treatment has a neuroprotective effect in rodent models of seizure and neurodegeneration. Therefore, we treated the ALS model superoxide dismutase 1 (SOD1) G93A mice with oxaloacetate and evaluated their neuromuscular function and lifespan. Treatment with oxaloacetate beginning in the presymptomatic stage significantly improved neuromuscular strength measured during the symptomatic stage in the injected mice compared to the non-treated group. Oxaloacetate treatment starting in the symptomatic stage significantly delayed limb paralysis compared with the non-treated group. For lifespan analysis, oxaloacetate treatment did not show a statistically significant positive effect, but the treatment did not shorten the lifespan. Mechanistically, SOD1G93A mice showed increased levels of tumor necrosis factor-α (TNFα) and peroxisome proliferative activated receptor gamma coactivator 1α (PGC-1α) mRNAs in the spinal cord. However, oxaloacetate treatment reverted these abnormal levels to that of wild-type mice. Similarly, the altered expression level of total NF-κB protein returned to that of wild-type mice with oxaloacetate treatment. These results suggest that the beneficial effects of oxaloacetate treatment in SOD1G93A mice may reflect the effects on neuroinflammation or bioenergetic stress.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Atividade Motora/efeitos dos fármacos , Ácido Oxaloacético/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Medula Espinal/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Animais , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Longevidade/efeitos dos fármacos , Camundongos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Ácido Oxaloacético/uso terapêutico , Medula Espinal/metabolismo , Superóxido Dismutase/metabolismo
5.
Alzheimers Dement ; 17(1): 7-17, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32715609

RESUMO

INTRODUCTION: Brain bioenergetics are defective in Alzheimer's disease (AD). Preclinical studies find oxaloacetate (OAA) enhances bioenergetics, but human safety and target engagement data are lacking. METHODS: We orally administered 500 or 1000 mg OAA, twice daily for 1 month, to AD participants (n = 15 each group) and monitored safety and tolerability. To assess brain metabolism engagement, we performed fluorodeoxyglucose positron emission tomography (FDG PET) and magnetic resonance spectroscopy before and after the intervention. We also assessed pharmacokinetics and cognitive performance. RESULTS: Both doses were safe and tolerated. Compared to the lower dose, the higher dose benefited FDG PET glucose uptake across multiple brain regions (P < .05), and the higher dose increased parietal and frontoparietal glutathione (P < .05). We did not demonstrate consistent blood level changes and cognitive scores did not improve. CONCLUSIONS: 1000 mg OAA, taken twice daily for 1 month, is safe in AD patients and engages brain energy metabolism.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Ácido Oxaloacético/administração & dosagem , Ácido Oxaloacético/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/psicologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Relação Dose-Resposta a Droga , Metabolismo Energético/efeitos dos fármacos , Feminino , Fluordesoxiglucose F18 , Glucose/metabolismo , Glutationa/metabolismo , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Ácido Oxaloacético/efeitos adversos , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos
6.
J Cereb Blood Flow Metab ; 35(7): 1206-12, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25735920

RESUMO

Recent studies have shown that blood glutamate grabbing is an effective strategy to reduce the excitotoxic effect of extracellular glutamate released during ischemic brain injury. The purpose of the study was to investigate the effect of two of the most efficient blood glutamate grabbers (oxaloacetate and recombinant glutamate oxaloacetate transaminase 1: rGOT1) in a rat model of intracerebral hemorrhage (ICH). Intracerebral hemorrhage was produced by injecting collagenase into the basal ganglia. Three treatment groups were developed: a control group treated with saline, a group treated with oxaloacetate, and a final group treated with human rGOT1. Treatments were given 1 hour after hemorrhage. Hematoma volume (analyzed by magnetic resonance imaging (MRI)), neurologic deficit, and blood glutamate and GOT levels were quantified over a period of 14 days after surgery. The results observed showed that the treatments used induced a significant reduction of blood glutamate levels; however, they did not reduce the hematoma, nor did they improve the neurologic deficit. In the present experimental study, we have shown that this novel therapeutic strategy is not effective in case of ICH pathology. More importantly, these findings suggest that blood glutamate grabbers are a safe treatment modality that can be given in cases of suspected ischemic stroke without previous neuroimaging.


Assuntos
Aspartato Aminotransferase Citoplasmática/uso terapêutico , Hemorragia Cerebral/sangue , Hemorragia Cerebral/tratamento farmacológico , Ácido Glutâmico/sangue , Hematoma/sangue , Hematoma/tratamento farmacológico , Ácido Oxaloacético/uso terapêutico , Animais , Hemorragia Cerebral/complicações , Hemorragia Cerebral/fisiopatologia , Terapia Enzimática , Hematoma/complicações , Hematoma/fisiopatologia , Humanos , Masculino , Ratos Sprague-Dawley , Proteínas Recombinantes/uso terapêutico
7.
Cell Mol Neurobiol ; 35(1): 17-22, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24807461

RESUMO

During an ischemic event, the well-regulated glutamate (Glu) homeostasis is disturbed, which gives rise to extremely high levels of this excitatory neurotransmitter in the brain tissues. It was earlier reported that the administration of oxaloacetate (OxAc) as a Glu scavenger reduces the Glu level in the brain by enhancing the brain-to-blood Glu efflux. Here, we studied the neuroprotective effect of OxAc administration in a new focal ischemic model in rats. Occlusion of the middle cerebral artery resulted in immediate reduction of the somatosensory-evoked responses (SERs), and the amplitudes remained at the reduced level throughout the whole ischemic period. On reperfusion, the SERs started to increase, but never reached the control level. OxAc proved to be protective, since the amplitudes started to recover even during the ischemia, and finally fully regained the control level. The findings of the histological measurements were in accordance with the electrophysiological data. After Fluoro Jade C staining, significantly fewer labeled cells were detected in the OxAc-treated group relative to the control. These results provide new evidence of the neuroprotective effect of OxAc against ischemic injury, which strengthens the likelihood of its future applicability as a novel neuroprotective agent for the treatment of ischemic stroke patients.


Assuntos
Isquemia Encefálica/patologia , Isquemia Encefálica/prevenção & controle , Modelos Animais de Doenças , Fármacos Neuroprotetores/uso terapêutico , Ácido Oxaloacético/uso terapêutico , Animais , Masculino , Ratos , Ratos Wistar , Resultado do Tratamento
8.
Neurotherapeutics ; 9(3): 649-57, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22711471

RESUMO

Blood glutamate scavengers have been shown to effectively reduce blood glutamate concentrations and improve neurological outcome after traumatic brain injury and stroke in rats. This study investigates the efficacy of blood glutamate scavengers oxaloacetate and pyruvate in the treatment of subarachnoid hemorrhage (SAH) in rats. Isotonic saline, 250 mg/kg oxaloacetate, or 125 mg/kg pyruvate was injected intravenously in 60 rats, 60 minutes after induction of SAH at a rate of 0.1 ml/100 g/min for 30 minutes. There were 20 additional rats that were used as a sham-operated group. Blood samples were collected at baseline and 90 minutes after SAH. Neurological performance was assessed at 24 h after SAH. In half of the rats, glutamate concentrations in the cerebrospinal fluid were measured 24 h after SAH. For the remaining half, the blood brain barrier permeability in the frontal and parieto-occipital lobes was measured 48 h after SAH. Blood glutamate levels were reduced in rats treated with oxaloacetate or pyruvate at 90 minutes after SAH (p < 0.001). Cerebrospinal fluid glutamate was reduced in rats treated with pyruvate (p < 0.05). Neurological performance was significantly improved in rats treated with oxaloacetate (p < 0.05) or pyruvate (p < 0.01). The breakdown of the blood brain barrier was reduced in the frontal lobe in rats treated with pyruvate (p < 0.05) and in the parieto-occipital lobes in rats treated with either pyruvate (p < 0.01) or oxaloacetate (p < 0.01). This study demonstrates the effectiveness of blood glutamate scavengers oxaloacetate and pyruvate as a therapeutic neuroprotective strategy in a rat model of SAH.


Assuntos
Antioxidantes/uso terapêutico , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/etiologia , Ácido Oxaloacético/uso terapêutico , Ácido Pirúvico/uso terapêutico , Hemorragia Subaracnóidea/complicações , Animais , Antioxidantes/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/fisiopatologia , Modelos Animais de Doenças , Ácido Glutâmico/sangue , Ácido Glutâmico/líquido cefalorraquidiano , Masculino , Doenças do Sistema Nervoso/sangue , Doenças do Sistema Nervoso/líquido cefalorraquidiano , Ácido Oxaloacético/sangue , Ácido Pirúvico/sangue , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas , Hemorragia Subaracnóidea/sangue , Hemorragia Subaracnóidea/líquido cefalorraquidiano , Hemorragia Subaracnóidea/tratamento farmacológico , Fatores de Tempo
9.
Int J Biochem Cell Biol ; 44(2): 262-5, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22085530

RESUMO

It is well established that glutamate acts as an important mediator of neuronal degeneration during cerebral ischemia. Different kind of glutamate antagonists have been used to reduce the deleterious effects of glutamate. However, their preclinical success failed to translate into practical treatments. Far from the classical use of glutamate antagonists employed so far, the systemic administration of oxaloacetate represents a novel neuroprotective strategy to minimize the deleterious effect of glutamate in the brain tissue after ischemic stroke. The neuroprotective effect of oxaloacetate is based on the capacity of this molecule to reduce the brain and blood glutamate levels as a result of the activation of the blood-resident enzyme glutamate-oxaloacetate transaminase. Here we review the recent experimental and clinical results where it is demonstrated the potential applicability of oxaloacetate as a novel and powerful neuroprotective treatment against ischemic stroke.


Assuntos
Antagonistas de Aminoácidos Excitatórios/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Ácido Oxaloacético/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Encéfalo/patologia , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/fisiopatologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/farmacologia , Ácido Glutâmico/uso terapêutico , Humanos , Degeneração Neural/tratamento farmacológico , Degeneração Neural/fisiopatologia , Fármacos Neuroprotetores/farmacologia , Ácido Oxaloacético/química , Ácido Oxaloacético/farmacologia , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/fisiopatologia
10.
Eur J Neurosci ; 34(9): 1432-41, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21936878

RESUMO

In previous studies, we have shown that by increasing the brain-to-blood glutamate efflux upon scavenging blood glutamate with either oxaloacetate or pyruvate, one achieves highly significant neuroprotection particularly in the context of traumatic brain injury. The current study examines, for the first time, how the blood glutamate scavenging properties of glutamate-pyruvate transaminase (GPT), alone or in combination with pyruvate, may contribute to the spectrum of its neuroprotective mechanisms and improve the outcome of rats exposed to brain ischemia, as they do after head trauma. Rats that were exposed to permanent middle cerebral artery occlusion (MCAO) and treated with intravenous 250 mg/kg pyruvate had a smaller volume of infarction and reduced brain edema, resulting in an improved neurological outcome and reduced mortality compared to control rats treated with saline. Intravenous pyruvate at the low dose of 31.3 mg/kg did not demonstrate any neuroprotection. However, when combined with 0.6 mg/kg of GPT there was a similar neuroprotection observed as seen with pyruvate at 250 mg/kg. Animals treated with 1.69 g/kg glutamate had a worse neurological outcome and a larger extent of brain edema. The decrease in mortality, infarcted brain volume and edema, as well as the improved neurological outcome following MCAO, was correlated with a decrease in blood glutamate levels. We therefore suggest that the blood glutamate scavenging activity of GPT and pyruvate contributes to the spectrum of their neuroprotective mechanisms and may serve as a new neuroprotective strategy for the treatment of ischemic stroke.


Assuntos
Ácido Glutâmico/sangue , Infarto da Artéria Cerebral Média/sangue , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Ácido Pirúvico/administração & dosagem , Animais , Aspartato Aminotransferases/uso terapêutico , Edema Encefálico/etiologia , Edema Encefálico/prevenção & controle , Infarto Encefálico/etiologia , Infarto Encefálico/patologia , Infarto Encefálico/prevenção & controle , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Infarto da Artéria Cerebral Média/complicações , Masculino , Atividade Motora/efeitos dos fármacos , Exame Neurológico , Ácido Oxaloacético/uso terapêutico , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Estatísticas não Paramétricas , Fatores de Tempo
12.
J Cereb Blood Flow Metab ; 31(6): 1378-86, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21266983

RESUMO

As ischemic stroke is associated with an excessive release of glutamate into the neuronal extracellular space, a decrease in blood glutamate levels could provide a mechanism to remove it from the brain tissue, by increasing the brain-blood gradient. In this regard, the ability of glutamate oxaloacetate transaminase (GOT) to metabolize glutamate in blood could represent a potential neuroprotective tool for ischemic stroke. This study aimed to determine the neuroprotective effects of GOT in an animal model of cerebral ischemia by means of a middle cerebral arterial occlusion (MCAO) following the Stroke Therapy Academic Industry Roundtable (STAIR) group guidelines. In this animal model, oxaloacetate-mediated GOT activation inhibited the increase of blood and cerebral glutamate after MCAO. This effect is reflected in a reduction of infarct size, smaller edema volume, and lower sensorimotor deficits with respect to controls. Magnetic resonance spectroscopy confirmed that the increase of glutamate levels in the brain parenchyma after MCAO is inhibited after oxaloacetate-mediated GOT activation. These findings show the capacity of the GOT to remove glutamate from the brain by means of blood glutamate degradation, and suggest the applicability of this enzyme as an efficient and novel neuroprotective tool against ischemic stroke.


Assuntos
Aspartato Aminotransferases/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/enzimologia , Ácido Glutâmico/sangue , Fármacos Neuroprotetores/uso terapêutico , Ácido Oxaloacético/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Encéfalo/patologia , Isquemia Encefálica/patologia , Células Cultivadas , Células Endoteliais/metabolismo , Ativação Enzimática/efeitos dos fármacos , Infarto da Artéria Cerebral Média/enzimologia , Infarto da Artéria Cerebral Média/patologia , Imageamento por Ressonância Magnética , Masculino , Fármacos Neuroprotetores/administração & dosagem , Ácido Oxaloacético/administração & dosagem , Ratos , Ratos Sprague-Dawley
13.
Neurochem Int ; 58(3): 385-90, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21185899

RESUMO

Recent research data have shown that systemic administration of pyruvate and oxaloacetate causes an increased brain-to-blood glutamate efflux. Since increased release of glutamate during epileptic seizures can lead to excitotoxicity and neuronal cell death, we tested the hypothesis that glutamate scavenging mediated by pyruvate and oxaloacetate systemic administration could have a neuroprotective effect in rats subjected to status epilepticus (SE). SE was induced by a single dose of pilocarpine (350mg/kgi.p.). Thirty minutes after SE onset, a single dose of pyruvate (250mg/kgi.p.), oxaloacetate (1.4mg/kgi.p.), or both substances was administrated. Acute neuronal loss in hippocampal regions CA1 and hilus was quantitatively determined five hours after SE onset, using the optical fractionator method for stereological cell counting. Apoptotic cascade in the hippocampus was also investigated seven days after SE using caspase-1 and -3 activity assays. SE-induced neuronal loss in CA1 was completely prevented in rats treated with pyruvate plus oxaloacetate. The SE-induced caspase-1 activation was significantly reduced when rats were treated with oxaloacetate or pyruvate plus oxaloacetate. The treatment with pyruvate and oxaloacetate caused a neuroprotective effect in rats subjected to pilocarpine-induced SE.


Assuntos
Degeneração Neural/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Ácido Oxaloacético/farmacologia , Ácido Pirúvico/farmacologia , Estado Epiléptico/prevenção & controle , Animais , Modelos Animais de Doenças , Masculino , Degeneração Neural/etiologia , Ácido Oxaloacético/uso terapêutico , Ácido Pirúvico/metabolismo , Ratos , Ratos Wistar , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/complicações
14.
Cell Mol Neurobiol ; 29(6-7): 827-35, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19259807

RESUMO

A traumatic brain injury or a focal brain lesion is followed by acute excitotoxicity caused by the presence of abnormally high glutamate (Glu) levels in the cerebrospinal and interstitial fluids. It has recently been demonstrated that this excess Glu in the brain can be eliminated into the blood following the intravenous administration of oxaloacetate (OxAc), which, by scavenging the blood Glu, induces an enhanced and neuroprotective brain-to-blood Glu efflux. In this study, we subjected rats to a photothrombotic lesion and treated them after the illumination with a single 30-min-long administration of OxAc (1.2 mg/100 g, i.v.). Following induction of the lesion, we measured the infarct size and the amplitudes of the somatosensory evoked potentials (SEPs) as recorded from the skull surface. The photothrombotic lesion resulted in appreciably decreased amplitudes of the evoked potentials, but OxAc administration significantly attenuated this reduction, and also the infarct size assessed histologically. We suggest that the neuroprotective effects of OxAc are due to its blood Glu-scavenging activity, which, by increasing the brain-to-blood Glu efflux, reduces the excess Glu responsible for the anatomical and functional correlates of the ischemia, as evaluated by electrophysiological evoked potential (EP) measurements.


Assuntos
Infarto Cerebral/tratamento farmacológico , Potenciais Somatossensoriais Evocados/fisiologia , Ácido Oxaloacético/uso terapêutico , Córtex Somatossensorial/patologia , Córtex Somatossensorial/fisiopatologia , Animais , Infarto Cerebral/induzido quimicamente , Infarto Cerebral/patologia , Potenciais Somatossensoriais Evocados/efeitos dos fármacos , Fluoresceínas , Masculino , Compostos Orgânicos , Ratos , Rosa Bengala/toxicidade , Córtex Somatossensorial/irrigação sanguínea
15.
Exp Neurol ; 203(1): 213-20, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17014847

RESUMO

Excess glutamate in brain fluids characterizes acute brain insults such as traumatic brain injury and stroke. Its removal could prevent the glutamate excitotoxicity that causes long-lasting neurological deficits. As blood glutamate scavenging has been demonstrated to increase the efflux of excess glutamate from brain into blood, we tested the prediction that oxaloacetate-mediated blood glutamate scavenging causes neuroprotection in a pathological situation such as closed head injury (CHI), in which there is a well established deleterious increase of glutamate in brain fluids. We observed highly significant improvements of the neurological status of rats submitted to CHI following an intravenous treatment with 1 mmol oxaloacetate/100 g rat weight which decreases blood glutamate levels by 40%. No detectable therapeutic effect was obtained when rats were treated IV with 1 mmol oxaloacetate together with 1 mmol glutamate/100 g rat. The treatment with 0.005 mmol/100 g rat oxaloacetate was no more effective than saline but when it was combined with the intravenous administration of 0.14 nmol/100 g of recombinant glutamate-oxaloacetate transaminase, recovery was almost complete. Oxaloacetate provided neuroprotection when administered before CHI or at 60 min post CHI but not at 120 min post CHI. Since neurological recovery from CHI was highly correlated with the decrease of blood glutamate levels (r=0.89, P=0.001), we conclude that blood glutamate scavenging affords brain neuroprotection Blood glutamate scavenging may open now new therapeutic options.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Ácido Glutâmico/sangue , Degeneração Neural/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Ácido Oxaloacético/farmacologia , Animais , Aspartato Aminotransferase Citoplasmática/farmacologia , Aspartato Aminotransferase Citoplasmática/uso terapêutico , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Lesões Encefálicas/sangue , Lesões Encefálicas/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Sinergismo Farmacológico , Injeções Intravenosas , Masculino , Degeneração Neural/sangue , Degeneração Neural/fisiopatologia , Fármacos Neuroprotetores/uso terapêutico , Neurotoxinas/antagonistas & inibidores , Neurotoxinas/metabolismo , Ácido Oxaloacético/uso terapêutico , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA