Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Dyn ; 253(4): 404-422, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37850839

RESUMO

BACKGROUND: Elongation of the spinal cord is dependent on neural development from neuromesodermal progenitors in the tail bud. We previously showed the involvement of the Oct4-type gene, pou5f3, in this process in zebrafish mainly by dominant-interference gene induction, but, to compensate for the limitation of this transgene approach, mutant analysis was indispensable. pou5f3 involvement in the signaling pathways was another unsolved question. RESULTS: We examined the phenotypes of pou5f3 mutants and the effects of Pou5f3 activation by the tamoxifen-ERT2 system in the posterior neural tube, together confirming the involvement of pou5f3. The reporter assays using P19 cells implicated tail bud-related transcription factors in pou5f3 expression. Regulation of tail bud development by retinoic acid (RA) signaling was confirmed by treatment of embryos with RA and the synthesis inhibitor, and in vitro reporter assays further showed that RA signaling regulated pou5f3 expression. Importantly, the expression of the RA degradation enzyme gene, cyp26a1, was down-regulated in embryos with disrupted pou5f3 activity. CONCLUSIONS: The involvement of pou5f3 in spinal cord extension was supported by using mutants and the gain-of-function approach. Our findings further suggest that pou5f3 regulates the RA level, contributing to neurogenesis in the posterior neural tube.


Assuntos
Fatores de Transcrição , Peixe-Zebra , Animais , Regulação da Expressão Gênica no Desenvolvimento , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Medula Espinal/metabolismo , Fatores de Transcrição/metabolismo , Tretinoína/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Neurosci Bull ; 40(3): 293-309, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37639183

RESUMO

The cytochrome P450 proteins (CYP450s) have been implicated in catalyzing numerous important biological reactions and contribute to a variety of diseases. CYP26A1, a member of the CYP450 family, carries out the oxidative metabolism of retinoic acid (RA), the active metabolite of vitamin A. Here we report that CYP26A1 was dramatically upregulated in the spinal cord after spinal nerve ligation (SNL). CYP26A1 was mainly expressed in spinal neurons and astrocytes. HPLC analysis displayed that the content of all-trans-RA (at-RA), the substrate of CYP26A1, was reduced in the spinal cord on day 7 after SNL. Inhibition of CYP26A1 by siRNA or inhibition of CYP26A1-mediated at-RA catabolism by talarozole relieved the SNL-induced mechanical allodynia during the maintenance phase of neuropathic pain. Talarozole also reduced SNL-induced glial activation and proinflammatory cytokine production but increased anti-inflammatory cytokine (IL-10) production. The RA receptors RARα, RXRß, and RXRγ were expressed in spinal neurons and glial cells. The promoter of Il-10 has several binding sites for RA receptors, and at-RA directly increased Il-10 mRNA expression in vitro. Finally, intrathecal IL-10 attenuated SNL-induced neuropathic pain and reduced the activation of astrocytes and microglia. Collectively, the inhibition of CYP26A1-mediated at-RA catabolism alleviates SNL-induced neuropathic pain by promoting the expression of IL-10 and suppressing glial activation. CYP26A1 may be a potential therapeutic target for the treatment of neuropathic pain.


Assuntos
Interleucina-10 , Neuralgia , Humanos , Interleucina-10/metabolismo , Ácido Retinoico 4 Hidroxilase/metabolismo , Medula Espinal/metabolismo , Neuralgia/metabolismo , Citocinas/metabolismo , Hiperalgesia/metabolismo
3.
Differentiation ; 135: 100743, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38147763

RESUMO

The fovea centralis (fovea) is a specialized region of the primate retina that plays crucial roles in high-resolution visual acuity and color perception. The fovea is characterized by a high density of cone photoreceptors and no rods, and unique anatomical properties that contribute to its remarkable visual capabilities. Early histological analyses identified some of the key events that contribute to foveal development, but the mechanisms that direct the specification of this area are not understood. Recently, the expression of the retinoic acid-metabolizing enzyme CYP26A1 has become a hallmark of some of the retinal specializations found in vertebrates, including the primate fovea and the high-acuity area in avian species. In chickens, the retinoic acid pathway regulates the expression of FGF8 to then direct the development of a rod-free area. Similarly, high levels of CYP26A1, CDKN1A, and NPVF expression have been observed in the primate macula using transcriptomic approaches. However, which retinal cells express these genes and their expression dynamics in the developing primate eye remain unknown. Here, we systematically characterize the expression patterns of CYP26A1, FGF8, CDKN1A, and NPVF during the development of the rhesus monkey retina, from early stages of development in the first trimester until the third trimester (near term). Our data suggest that some of the markers previously proposed to be fovea-specific are not enriched in the progenitors of the rhesus monkey fovea. In contrast, CYP26A1 is expressed at high levels in the progenitors of the fovea, while it localizes in a subpopulation of macular Müller glia cells later in development. Together these data provide invaluable insights into the expression dynamics of several molecules in the nonhuman primate retina and highlight the developmental advancement of the foveal region.


Assuntos
Galinhas , Retina , Animais , Macaca mulatta/genética , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Células Fotorreceptoras Retinianas Cones , Tretinoína
4.
Dev Cell ; 58(23): 2684-2699.e6, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37944525

RESUMO

CAR-like membrane protein (CLMP) is a tight junction-associated protein whose mutation is associated with congenital short bowel syndrome (CSBS), but its functions in colorectal cancer (CRC) remain unknown. Here, we demonstrate that CLMP is rarely mutated but significantly decreased in CRC patients, and its deficiency accelerates CRC tumorigenesis, growth, and resistance to all-trans retinoic acid (ATRA). Mechanistically, CLMP recruits ß-catenin to cell membrane, independent of cadherin proteins. CLMP-mediated ß-catenin translocation inactivates Wnt(Wingless and INT-1)/ß-catenin signaling, thereby suppressing CRC tumorigenesis and growth in ApcMin/+, azoxymethane/dextran sodium sulfate (AOM/DSS), and orthotopic CRC mouse models. As a direct target of Wnt/ß-catenin, cytochrome P450 hydroxylase A1 (CYP26A1)-an enzyme that degrades ATRA to a less bioactive retinoid-is upregulated by CLMP deficiency, resulting in ATRA-resistant CRC that can be reversed by administering CYP26A1 inhibitor. Collectively, our data identify the anti-CRC role of CLMP and suggest that CYP26A1 inhibitor enable to boost ATRA's therapeutic efficiency.


Assuntos
Neoplasias Colorretais , beta Catenina , Camundongos , Animais , Humanos , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , beta Catenina/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo , Transformação Celular Neoplásica , Carcinogênese , Neoplasias Colorretais/metabolismo , Via de Sinalização Wnt , Linhagem Celular Tumoral
5.
Clin Transl Med ; 13(11): e1465, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37997519

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer with major challenges in both prevention and therapy. Metformin, adenosine monophosphate-activated protein kinase (AMPK) activator, has been suggested to reduce the incidence of HCC when used for patients with diabetes in preclinical and clinical studies. However, the possible effects of metformin and their mechanisms of action in non-diabetic HCC have not been adequately investigated. METHODS: Fah-/-  mice were used to construct a liver-injury-induced non-diabetic HCC model for exploring hepatocarcinogenesis and therapeutic potential of metformin. Changes in relevant tumour and biochemical indicators were measured. Bulk and single-cell RNA-sequencing analyses were performed to validate the crucial role of proinflammatory/pro-tumour CD8+ T cells. In vitro and in vivo experiments were performed to confirm Cyp26a1-related antitumour mechanisms of metformin. RESULTS: RNA-sequencing analysis showed that chronic liver injury led to significant changes in AMPK-, glucose- and retinol metabolism-related pathways in Fah-/- mice. Metformin prevented the formation of non-diabetic HCC in Fah-/- mice with chronic liver injury. Cyp26a1 ddexpression in hepatocytes was significantly suppressed after metformin treatment. Moreover, downregulation of Cyp26a1 occurred in conjunction with increased levels of all-trans-retinoic acid (atRA), which is involved in the activation of metformin-suppressed hepatocarcinogenesis in Fah-/- mice. In contrast, both CD8+  T-cell infiltration and proinflammatory/pro-tumour cytokines in the liver were significantly upregulated in Fah-/- mice during chronic liver injury, which was notably reversed by either metformin or atRA treatment. Regarding mechanisms, metformin regulated the decrease in Cyp26a1 enzyme expression and increased atRA expression via the AMPK/STAT3/Gadd45ß/JNK/c-Jun pathway. CONCLUSIONS: Metformin inhibits non-diabetic HCC by upregulating atRA levels and downregulating CD8+ T cells. This is the first reporting that the traditional drug metformin regulates the metabolite atRA via the Cyp26a1-involved pathway. The present study provides a potential application of metformin and atRA in non-diabetic HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Metformina , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Ácido Retinoico 4 Hidroxilase/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Regulação para Baixo , Proteínas Quinases Ativadas por AMP/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo , Tretinoína/uso terapêutico , Carcinogênese , RNA
6.
J Biol Chem ; 299(5): 104669, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37011860

RESUMO

Considerable evidence confirms the importance of Cyp26a1 to all-trans-retinoic acid (RA) homeostasis during embryogenesis. In contrast, despite its presence in postnatal liver as a potential major RA catabolizing enzyme and its acute sensitivity to induction by RA, some data suggested that Cyp26a1 contributes only marginally to endogenous RA homeostasis postnatally. We report reevaluation of a conditional Cyp26a1 knockdown in the postnatal mouse. The current results show that Cyp26a1 mRNA in WT mouse liver increases 16-fold upon refeeding after a fast, accompanied by an increased rate of RA elimination and a 41% decrease in the RA concentration. In contrast, Cyp26a1 mRNA in the refed homozygotic knockdown reached only 2% of its extent in WT during refeeding, accompanied by a slower rate of RA catabolism and no decrease in liver RA, relative to fasting. Refed homozygous knockdown mice also had decreased Akt1 and 2 phosphorylation and pyruvate dehydrogenase kinase 4 (Pdk4) mRNA and increased glucokinase (Gck) mRNA, glycogen phosphorylase (Pygl) phosphorylation, and serum glucose, relative to WT. Fasted homozygous knockdown mice had increased glucagon/insulin relative to WT. These data indicate that Cyp26a1 participates prominently in moderating the postnatal liver concentration of endogenous RA and contributes essentially to glucoregulatory control.


Assuntos
Glicemia , Homeostase , Ácido Retinoico 4 Hidroxilase , Tretinoína , Animais , Camundongos , Fígado/enzimologia , Fígado/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , RNA Mensageiro/genética , Tretinoína/metabolismo , Glucoquinase/metabolismo , Glicogênio Fosforilase/metabolismo , Insulina/metabolismo , Animais Recém-Nascidos , Fosforilação , Glicemia/metabolismo
7.
J Gastroenterol ; 58(1): 53-68, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36301364

RESUMO

BACKGROUND: To establish a treatment option for liver fibrosis, the possibility of the drug repurposing theory was investigated, with a focus on the off-target effects of active pharmaceutical ingredients. METHODS: First, several active pharmaceutical ingredients were screened for their effects on the gene expression in the hepatocytes using chimeric mice with humanized hepatocytes. As per the gene expression-based screening assay for 36 medications, we assessed the mechanism of the antifibrotic effect of letrozole, a third-generation aromatase inhibitor, in mouse models of liver fibrosis induced by carbon tetrachloride (CCl4) and a methionine choline-deficient (MCD) diet. We assessed liver histology, serum biochemical markers, and fibrosis-related gene and protein expressions in the hepatocytes. RESULTS: A gene expression-based screening assay revealed that letrozole had a modifying effect on fibrosis-related gene expression in the hepatocytes, including YAP, CTGF, TGF-ß, and CYP26A1. Letrozole was administered to mouse models of CCl4- and MCD-induced liver fibrosis and it ameliorated the liver fibrosis. The mechanisms involved the inhibition of the Yap-Ctgf profibrotic pathway following a decrease in retinoic acid levels in the hepatocytes caused by suppression of the hepatic retinol dehydrogenase, Hsd17b13 and activation of the retinoic acid hydrogenase, Cyp26a1. CONCLUSIONS: Letrozole slowed the progression of liver fibrosis by inhibiting the Yap-Ctgf pathway. The mechanisms involved the modification of the Hsd17b13 and Cyp26a1 expressions led to the suppression of retinoic acid in the hepatocytes, which contributed to the activation of Yap-Ctgf pathway. Because of its off-target effect, letrozole could be repurposed for the treatment of liver fibrosis. The third-generation aromatase inhibitor letrozole ameliorated liver fibrosis by suppressing the Yap-Ctgf pathway by partially modifying the Hsd17b13 and Cyp26a1 expressions, which reduced the retinoic acid level in the hepatocytes. The gene expression analysis using chimeric mice with humanized liver revealed that the mechanisms are letrozole specific and, therefore, may be repurposed for the treatment of liver fibrosis.


Assuntos
Inibidores da Aromatase , Cirrose Hepática , Camundongos , Animais , Letrozol/efeitos adversos , Inibidores da Aromatase/efeitos adversos , Ácido Retinoico 4 Hidroxilase/metabolismo , Cirrose Hepática/patologia , Fígado/patologia , Hepatócitos/patologia , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Fator de Crescimento do Tecido Conjuntivo/farmacologia , Fator de Crescimento do Tecido Conjuntivo/uso terapêutico , Preparações Farmacêuticas/metabolismo , Tretinoína/farmacologia
8.
Oxid Med Cell Longev ; 2022: 6595989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36199423

RESUMO

Objective: To offer new prognostic evaluations by exploring potentially distinctive genetic features of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC). Methods: There were 12 samples for gene expression profiling processes in this study. These included three HCC lesion samples and their matched adjacent nontumor liver tissues obtained from patients with HCC, as well as three ICC samples and their controls collected similarly. In addition to the expression matrix generated on our own, profiles of other cohorts from The Cancer Genome Atlas (TCGA) program and the Gene Expression Omnibus (GEO) were also employed in later bioinformatical analyses. Differential analyses, functional analyses, protein interaction network analyses, and gene set variation analyses were used to identify key genes. To establish the prognostic models, univariate/multivariate Cox analyses and subsequent stepwise regression were applied, with the Akaike information criterion evaluating the goodness of fitness. Results: The top three pathways enriched in HCC were all metabolism-related; they were fatty acid degradation, retinol metabolism, and arachidonic acid metabolism. In ICC, on the other hand, additional pathways related to fat digestion and absorption and cholesterol metabolism were identified. Consistent characteristics of such a metabolic landscape were observed across different cohorts. A prognostic risk score model for calculating HCC risk was constructed, consisting of ADH4, ADH6, CYP2C9, CYP4F2, and RDH16. This signature predicts the 3-year survival with an AUC area of 0.708 (95%CI = 0.644 to 0.772). For calculating the risk of ICC, a prognostic risk score model was built upon the expression levels of CYP26A1, NAT2, and UGT2B10. This signature predicts the 3-year survival with an AUC area of 0.806 (95% CI = 0.664 to 0.947). Conclusion: HCC and ICC share commonly abrupted pathways associated with the metabolism of fatty acids, retinol, arachidonic acids, and drugs, indicating similarities in their pathogenesis as primary liver cancers. On the flip side, these two types of cancer possess distinctive promising biomarkers for predicting overall survival or potential targeted therapies.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Ácido Araquidônico/metabolismo , Arilamina N-Acetiltransferase , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/química , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Colesterol/metabolismo , Citocromo P-450 CYP2C9/genética , Citocromo P-450 CYP2C9/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glucuronosiltransferase , Humanos , Neoplasias Hepáticas/patologia , Família Multigênica , Prognóstico , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Vitamina A
9.
Chem Res Toxicol ; 35(6): 1045-1058, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35608517

RESUMO

The population of yellow perch (Perca flavescens) in lake Saint-Pierre (QC, Canada) has been dramatically declining since 1995 without any sign of recovery. Previous studies have shown disrupted retinoid (vitamin A) metabolic pathways in these fish, possibly due to the influence of pesticides. Our study aimed to evaluate the impact of some herbicides and neonicotinoids on retinoic acid catabolism in the fish hepatic cell lines PLHC-1 and ZFL. We hypothesized that pesticides accelerate the catabolism of retinoic acid through oxidative stress that exacerbates the oxidation of retinoic acid. Results obtained with talarozole, a specific CYP26A1 inhibitor, and ketoconazole, a generalist inhibitor of cytochrome-P450 enzymes, revealed that CYP26A1 is mainly responsible for retinoic acid catabolism in ZFL but not PLHC-1 cells. The impacts of pesticides on retinoic acid catabolism were evaluated by incubating the cells with all-trans-retinoic acid and two herbicides, atrazine and glyphosate, or three neonicotinoids, clothianidin, imidacloprid, and thiamethoxam. Intracellular thiols and lipid peroxidation were measured following pesticide exposure. The possible causal relation between oxidative stress and the perturbation of retinoic acid catabolism was investigated using the antioxidant N-acetylcysteine. The data revealed that pesticides inhibit retinoic acid catabolism, with the involvement of oxidative stress in the case of atrazine, imidacloprid, and thiamethoxam but not with clothianidin and glyphosate. Pesticides also affected the isomerization of all-trans-retinoic acid over time, leading to an increased proportion of active isomers. These results hint at a possible perturbation of retinoic acid catabolism in fish living in pesticide-contaminated waters, as suggested by several in vivo studies. Such a disruption of retinoid metabolism is worrying, given the numerous physiological pathways driven by retinoids.


Assuntos
Atrazina , Herbicidas , Percas , Praguicidas , Animais , Hepatócitos/metabolismo , Herbicidas/metabolismo , Herbicidas/toxicidade , Neonicotinoides , Percas/metabolismo , Praguicidas/metabolismo , Praguicidas/toxicidade , Ácido Retinoico 4 Hidroxilase/metabolismo , Retinoides/metabolismo , Tiametoxam/metabolismo , Tretinoína/metabolismo
10.
Nutrients ; 14(9)2022 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-35565751

RESUMO

Cellular retinoic acid binding proteins (CRABP1 and CRABP2) bind all-trans-retinoic acid (atRA), the active metabolite of vitamin A, with high affinity. CRABP1 and CRABP2 have been shown to interact with the atRA-clearing cytochrome P450 enzymes CYP26B1 and CYP26C1 and with nuclear retinoic acid receptors (RARs). We hypothesized that CRABP1 and CRABP2 also alter atRA metabolism and clearance by CYP26A1, the third key atRA-metabolizing enzyme in the CYP26 family. Based on stopped-flow experiments, atRA bound CRABP1 and CRABP2 with Kd values of 4.7 nM and 7.6 nM, respectively. The unbound atRA Km values for 4-OH-atRA formation by CYP26A1 were 4.7 ± 0.8 nM with atRA, 6.8 ± 1.7 nM with holo-CRABP1 and 6.1 ± 2.7 nM with holo-CRABP2 as a substrate. In comparison, the apparent kcat value was about 30% lower (0.71 ± 0.07 min-1 for holo-CRABP1 and 0.75 ± 0.09 min-1 for holo-CRABP2) in the presence of CRABPs than with free atRA (1.07 ± 0.08 min-1). In addition, increasing concentrations in apo-CRABPs decreased the 4-OH-atRA formation rates by CYP26A1. Kinetic analyses suggest that apo-CRABP1 and apo-CRABP2 inhibit CYP26A1 (Ki = 0.39 nM and 0.53 nM, respectively) and holo-CRABPs channel atRA for metabolism by CYP26A1. These data suggest that CRABPs play a critical role in modulating atRA metabolism and cellular atRA concentrations.


Assuntos
Proteínas de Ligação ao Retinol , Tretinoína , Sistema Enzimático do Citocromo P-450/metabolismo , Ácido Retinoico 4 Hidroxilase/metabolismo , Tretinoína/farmacologia , Vitamina A/metabolismo
11.
Dev Biol ; 486: 81-95, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35364055

RESUMO

Endothelial cells (ECs) are critical to proper heart valve development, directly contributing to the mesenchyme of the cardiac cushions, which progressively transform into mature valves. To date, investigators have lacked sufficient markers of valve ECs to evaluate their contributions during valve morphogenesis fully. As a result, it has been unclear whether the well-characterized regional differentiation of valves correlates with any endothelial domains in the heart. Furthermore, it has been difficult to ascertain whether endothelial heterogeneity in the heart influences underlying mesenchymal zones in an angiocrine manner. To identify regionally expressed EC genes in the heart valves, we screened publicly available databases and assembled a toolkit of endothelial-enriched genes. We identified Cyp26b1 as one of many endothelial enriched genes found to be expressed in the endocardium of the developing cushions and valves. Here, we show that Cyp26b1 is required for normal heart valve development. Genetic ablation of Cyp26b1 in mouse embryos leads to abnormally thickened aortic valve leaflets, which is due in part to increased endothelial and mesenchymal cell proliferation in the remodeling valves. In addition, Cyp26b1 mutant hearts display ventricular septal defects (VSDs) in a portion of null embryos. We show that loss of Cyp26b1 results in upregulation of retinoic acid (RA) target genes, supporting the observation that Cyp26b1 has RA-dependent roles. Together, this work identifies a novel role for Cyp26b1 in heart valve morphogenesis and points to a role of RA in this process. Understanding the spatiotemporal expression dynamics of cardiac EC genes will pave the way for investigation of both normal and dysfunctional heart valve development.


Assuntos
Células Endoteliais , Valvas Cardíacas , Animais , Valva Aórtica , Valvas Cardíacas/metabolismo , Camundongos , Morfogênese , Organogênese , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Tretinoína/metabolismo
12.
Cell Tissue Res ; 388(3): 583-594, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35316373

RESUMO

The adenohypophysis consists of the anterior and intermediate lobes (AL and IL). The marginal cell layer (MCL), including the ventral region of the IL and the dorsal region of the AL lining the Rathke's cleft, acts as the primary stem/progenitor cell niches in adult adenohypophysis. The cells of the MCL on the IL side consisted of cluster of differentiation 9 (CD9)-positive stem/progenitor cells with or without motile cilia. However, any additional cellular properties of multiciliated CD9-positive cells are not known. The present study aimed to identify the character of the multiciliated cells in stem cell niche of the pituitary gland. We observed the fine structure of the multiciliated cells in the MCL of male Wistar rats at an early stage after birth and in adulthood (P60) using scanning electron microscopy. Since the previous study showed that the MCL cells of adult rats synthesize retinoic acid (RA), the present study determined whether the multiciliated cells are involved in RA regulation by the expression of retinal aldehyde dehydrogenase 1 (RALDH1) and CYP26A1, an enzyme synthesizing and degrading RA, respectively. Results showed that 96% of multiciliated cells in adult male rats expressed CYP26A1, while 60% expressed RALDH1. Furthermore, the isolated CD9-positive cells from the IL side MCL responded to RA and activated the degradation system of RA by increasing Cyp26a1 expression. These findings indicated that multiciliated cells are involved in RA metabolism in the MCL. Our observations provide novel insights regarding the stem cell niche of the adult pituitary.


Assuntos
Adeno-Hipófise , Tretinoína , Animais , Masculino , Hipófise/metabolismo , Adeno-Hipófise/metabolismo , Ratos , Ratos Wistar , Ácido Retinoico 4 Hidroxilase/metabolismo , Tretinoína/metabolismo , Tretinoína/farmacologia
13.
J Cell Mol Med ; 26(8): 2438-2450, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35297206

RESUMO

Cytochrome P450 26A1 (CYP26A1) plays a vital role in early pregnancy in mice. Our previous studies have found that CYP26A1 affects embryo implantation by modulating natural killer (NK) cells, and that there is a novel population of CYP26A1+ NK cells in the uteri of pregnant mice. The aim of this study was to investigate the effects of CYP26A1 on the subsets and killing activity of NK cells. Through single-cell RNA sequencing (scRNA-seq), we identified four NK cell subsets in the uterus, namely, conventional NK (cNK), tissue-resident NK (trNK) 1 and 2, and proliferating trNK (trNKp). The two most variable subpopulations after uterine knockdown of CYP26A1 were trNKp and trNK2 cells. CYP26A1 knockdown significantly downregulated the expression of the NK cell function-related genes Cd44, Cd160, Vegfc, and Slamf6 in trNK2 cells, and Klra17 and Ogn in trNKp cells. Both RNA-seq and cytotoxicity assays confirmed that CYP26A1+ NK cells had low cytotoxicity. These results indicate that CYP26A1 may affect the immune microenvironment at the maternal-foetal interface by regulating the activity of NK cells.


Assuntos
Implantação do Embrião , Células Matadoras Naturais , Animais , Implantação do Embrião/fisiologia , Feminino , Camundongos , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Gravidez , Ácido Retinoico 4 Hidroxilase/metabolismo , Útero/metabolismo
14.
Stem Cell Reports ; 17(2): 231-244, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35063128

RESUMO

The formation of the primitive streak (PS) and the subsequent induction of neuroectoderm are hallmarks of gastrulation. Combining an in vitro reconstitution of this process based on mouse embryonic stem cells (mESCs) with a collection of knockouts in reporter mESC lines, we identified retinoic acid (RA) as a critical mediator of early neural induction triggered by TGFß or Wnt signaling inhibition. Single-cell RNA sequencing analysis captured the temporal unfolding of cell type diversification, up to the emergence of somite and neural fates. In the absence of the RA-synthesizing enzyme Aldh1a2, a sensitive RA reporter revealed a hitherto unidentified residual RA signaling that specified neural fate. Genetic evidence showed that the RA-degrading enzyme Cyp26a1 protected PS-like cells from neural induction, even in the absence of TGFß and Wnt antagonists. Overall, we characterized a multi-layered control of RA levels that regulates early neural differentiation in an in vitro PS-like system.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Neurônios/metabolismo , Tretinoína/farmacologia , Família Aldeído Desidrogenase 1/deficiência , Família Aldeído Desidrogenase 1/genética , Animais , Benzamidas/farmacologia , Dioxóis/farmacologia , Ectoderma/citologia , Ectoderma/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células-Tronco Embrionárias Murinas/metabolismo , Neurônios/citologia , Linha Primitiva/citologia , Linha Primitiva/metabolismo , Retinal Desidrogenase/deficiência , Retinal Desidrogenase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tretinoína/metabolismo
15.
Toxicol Appl Pharmacol ; 433: 115781, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34737147

RESUMO

The cardiac embryonic stem cell test (ESTc) is an in vitro embryotoxicity screen which uses cardiomyocyte formation as the main differentiation route. Studies are ongoing into whether an improved specification of the biological domain can broaden the applicability of the test, e.g. to discriminate between structurally similar chemicals by measuring expression of dedicated gene transcript biomarkers. We explored this with two chemical classes: morpholines (tridemorph; fenpropimorph) and piperidines (fenpropidin; spiroxamine). These compounds cause embryotoxicity in rat such as cleft palate. This malformation can be linked to interference with retinoic acid balance, neural crest (NC) cell migration, or cholesterol biosynthesis. Also neural differentiation within the ESTc was explored in relation to these compounds. Gene transcript expression of related biomarkers were measured at low and high concentrations on differentiation day 4 (DD4) and DD10. All compounds showed stimulating effects on the cholesterol biosynthesis related marker Msmo1 after 24 h exposure and tridemorph showed inhibition of Cyp26a1 which codes for one of the enzymes that metabolises retinoic acid. A longer exposure duration enhanced expression levels for differentiation markers for cardiomyocytes (Nkx2-5; Myh6) and neural cells (Tubb3) on DD10. This readout gave additional mechanistic insight which enabled previously unavailable in vitro discrimination between the compounds, showing the practical utility of specifying the biological domain of the ESTc.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Morfolinas/toxicidade , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Piperidinas/toxicidade , Testes de Toxicidade , Animais , Células Cultivadas , Redes Reguladoras de Genes , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Camundongos , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Medição de Risco , Compostos de Espiro/toxicidade , Fatores de Tempo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
16.
Sci Rep ; 11(1): 1110, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441739

RESUMO

In mammalian testes, undifferentiated spermatogonia (Aundiff) undergo differentiation in response to retinoic acid (RA), while their progenitor states are partially maintained by fibroblast growth factors (FGFs). Sertoli valve (SV) is a region located at the terminal end of seminiferous tubule (ST) adjacent to the rete testis (RT), where the high density of Aundiff is constitutively maintained with the absence of active spermatogenesis. However, the molecular and cellular characteristics of SV epithelia still remain unclear. In this study, we first identified the region-specific AKT phosphorylation in the SV Sertoli cells and demonstrated non-cell autonomous specialization of Sertoli cells in the SV region by performing a Sertoli cell ablation/replacement experiment. The expression of Fgf9 was detected in the RT epithelia, while the exogenous administration of FGF9 caused ectopic AKT phosphorylation in the Sertoli cells of convoluted ST. Furthermore, we revealed the SV region-specific expression of Cyp26a1, which encodes an RA-degrading enzyme, and demonstrated that the increased RA levels in the SV region disrupt its pool of Aundiff by inducing their differentiation. Taken together, RT-derived FGFs and low levels of RA signaling contribute to the non-cell-autonomous regionalization of the SV epithelia and its local maintenance of Aundiff in the SV region.


Assuntos
Túbulos Seminíferos/metabolismo , Células de Sertoli/metabolismo , Tretinoína/metabolismo , Animais , Diferenciação Celular , Epitélio/fisiologia , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-kit/análise , Regeneração , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Túbulos Seminíferos/efeitos dos fármacos , Túbulos Seminíferos/crescimento & desenvolvimento , Células de Sertoli/fisiologia , Células de Sertoli/transplante , Transdução de Sinais , Espermatogênese , Tretinoína/farmacologia , Regulação para Cima
17.
J Cell Mol Med ; 25(3): 1771-1782, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33438367

RESUMO

Cyp26a1 had important roles in mouse embryo implantation and was highly expressed in some of NK cells at the human maternal-foetal interface in early pregnancy. However, the regulatory effect of Cyp26a1 on NK cells remains poorly understood. Through qPCR and flow cytometric assays, we found that Cyp26a1 was expressed by mouse uterine NK cells but not spleen NK cells during the peri-implantation period and there was a group of NK cells that highly expressed Cyp26a1, that is Cyp26a1+ NK cell subset. single cell-population transcriptome sequencing on Cyp26a1+ NK and Cyp26a1- NK cell subsets was performed. We found that there were 3957 differentially expressed genes in the Cyp26a1+ NK cell subset with a cut-off of fold change ≥2 and FDR < 0.01, 2509 genes were up-regulated and 1448 genes were down-regulated in Cyp26a1+ NK cell subset. Moreover, cytokine-cytokine receptor interaction signalling pathway and natural killer cell-mediated cytotoxicity signalling pathway were enriched according to KEGG pathway enrichment analysis. We further found that the expression of Gzma and Klrg1 was significantly increased and Fcgr4 was significantly decreased when inhibiting Cyp26a1. Our experimental results show that there is a novel NK cell subset of Cyp26a1+ NK cells in mouse uterus and Cyp26a1 can regulate the gene expression of Gzma, Klrg1 and Fcgr4 in the Cyp26a1+ NK cells.


Assuntos
Expressão Gênica , Células Matadoras Naturais/metabolismo , Subpopulações de Linfócitos/metabolismo , Placenta/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Animais , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Imuno-Histoquímica , Células Matadoras Naturais/imunologia , Subpopulações de Linfócitos/imunologia , Camundongos , Placenta/imunologia , Gravidez , Ácido Retinoico 4 Hidroxilase/metabolismo , Transcriptoma
18.
J Invest Dermatol ; 141(1): 72-83.e6, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32505549

RESUMO

Inhibition of CYP450-mediated retinoic acid (RA) metabolism by RA metabolism blocking agents increases endogenous retinoids and is an alternative to retinoid therapy. Currently available RA metabolism blocking agents (i.e., liarozole and talarozole) tend to have fewer adverse effects than traditional retinoids but lack target specificity. Substrate-based inhibitor DX314 has enhanced selectivity for RA-metabolizing enzyme CYP26B1 and may offer an improved treatment option for keratinization disorders such as congenital ichthyosis and Darier disease. In this study, we used RT-qPCR, RNA sequencing, pathway, upstream regulator, and histological analyses to demonstrate that DX314 can potentiate the effects of all-trans-RA in healthy and diseased reconstructed human epidermis. We unexpectedly discovered that DX314, but not all-trans-RA or previous RA metabolism blocking agents, appears to protect epidermal barrier integrity. In addition, DX314-induced keratinization and epidermal proliferation effects are observed in a rhino mice model. Altogether, the results indicate that DX314 inhibits all-trans-RA metabolism with minimal off-target activity and shows therapeutic similarity to topical retinoids in vitro and in vivo. Findings of a barrier-protecting effect require further mechanistic study but may lead to a unique strategy in barrier-reinforcing therapies. DX314 is a promising candidate compound for further study and development in the context of keratinization disorders.


Assuntos
Benzotiazóis/farmacologia , Epiderme/patologia , Queratinócitos/patologia , Ácido Retinoico 4 Hidroxilase/antagonistas & inibidores , Dermatopatias/tratamento farmacológico , Triazóis/farmacologia , Diferenciação Celular , Inibidores das Enzimas do Citocromo P-450/farmacologia , Epiderme/metabolismo , Humanos , Queratinócitos/metabolismo , Ácido Retinoico 4 Hidroxilase/metabolismo , Dermatopatias/metabolismo , Dermatopatias/patologia
19.
Sci Rep ; 10(1): 20386, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230291

RESUMO

Fatty acid translocase (CD36) is a scavenger receptor with multiple ligands and diverse physiological actions. We recently reported that alcohol-induced hepatic retinoid mobilization is impaired in Cd36-/- mice, leading us to hypothesize that CD36 has a novel role in hepatic vitamin A mobilization. Given the central role of the liver in systemic vitamin A homeostasis we also postulated that absence of CD36 would affect whole-body vitamin A homeostasis. We tested this hypothesis in aging wild type and Cd36-/- mice, as well as mice fed a vitamin A-deficient diet. In agreement with our hypothesis, Cd36-/- mice accumulated hepatic retinyl ester stores with age to a greater extent than wild type mice. However, contrary to expectations, Cd36-/- mice consuming a vitamin A-deficient diet mobilized hepatic retinoid similar to wild type mice. Interestingly, we observed that Cd36-/- mice had significantly reduced white adipose tissue retinoid levels compared to wild type mice. In conclusion, we demonstrate that the absence of CD36 alters whole-body vitamin A homeostasis and suggest that this phenotype is secondary to the impaired chylomicron metabolism previously reported in these mice.


Assuntos
Envelhecimento/metabolismo , Antígenos CD36/deficiência , Homeostase/genética , Fígado/metabolismo , Deficiência de Vitamina A/metabolismo , Vitamina A/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Envelhecimento/genética , Animais , Peso Corporal , Antígenos CD36/genética , Quilomícrons/metabolismo , Regulação da Expressão Gênica , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Proteínas Celulares de Ligação ao Retinol/genética , Proteínas Celulares de Ligação ao Retinol/metabolismo , Ésteres de Retinil/metabolismo , Deficiência de Vitamina A/genética , Deficiência de Vitamina A/patologia
20.
Sci Rep ; 10(1): 16972, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046809

RESUMO

Airborne pollutants have detrimental effect on the human body and the environment. Diesel exhaust particles (DEPs) are known to be major component of particulate matter (PM) and cause respiratory diseases and neurotoxicity. However, the effects of air pollutants on the sensory nervous system, especially on the olfactory sense, have not been well studied. Herein, we aimed to explore DEP-induced changes in the olfactory perception process. Olfactory sensitivity test was performed after DEP inhalation in mice. Microarray was conducted to determine the differentially expressed genes, which were then utilized to build a network focused on neurotoxicity. Exposure to DEPs significantly reduced sniffing in mice, indicating a disturbance in the olfactory perception process. Through network analysis, we proposed five genes (Cfap69, Cyp26b1, Il1b, Il6, and Synpr) as biomarker candidates for DEP-mediated olfactory dysfunction. Changes in their expression might provoke malfunction of sensory transduction by inhibiting olfactory receptors, neurite outgrowth, and axonal guidance as well as lead to failure of recovery from neuroinflammatory damage through inhibition of nerve regeneration. Thus, we suggest the potential mechanism underlying DEPs-mediated olfactory disorders using genomic approach. Our study will be helpful to future researchers to assess an individual's olfactory vulnerability following exposure to inhalational environmental hazards.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Exposição Ambiental/efeitos adversos , Expressão Gênica/efeitos dos fármacos , Transtornos do Olfato/induzido quimicamente , Transtornos do Olfato/genética , Material Particulado/toxicidade , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Olfato/efeitos dos fármacos , Olfato/genética , Emissões de Veículos/toxicidade , Animais , Feminino , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos Endogâmicos BALB C , Análise em Microsséries/métodos , Olfato/fisiologia , Sinaptofisina/genética , Sinaptofisina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA