Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 382
Filtrar
1.
Mol Oral Microbiol ; 39(2): 80-90, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37715517

RESUMO

Type 2 diabetes (T2D) is a chronic metabolic disorder in which insulin resistance and impaired insulin secretion result in altered metabolite balance, specifically elevated levels of circulating glucose and succinate, which increases the risk of many pathologies, including periodontitis. Succinate, a tricarboxylic acid (TCA) cycle intermediate, can be produced and metabolized by both host cells and host microbiota, where elevated levels serve as an inflammation and pathogen threat signal through activating the succinate G protein-coupled receptor, SUCNR1. Modulating succinate-induced SUCNR1 signaling remains a promising therapeutic approach for pathologies resulting in elevated levels of succinate, such as T2D and periodontitis. Here, we demonstrate hyperglycemia and elevated intracellular succinate in a T2D mouse model and determine gut microbiome composition. Drawing on previous work demonstrating the ability of a novel SUCNR1 antagonist, compound 7a, to block inflammation and alleviate dysbiosis in a mouse model, we examined if compound 7a has an impact on the growth and virulence gene expression of bacterial and fungal human microbiota in vitro, and if 7a could reduce bone loss in a periodontitis-induced mouse model. T2D mice harbored a significantly different gut microbiome, suggesting the altered metabolite profile of T2D causes shifts in host-microbial community structure, with enrichment in succinate producers and consumers and mucin-degrading bacteria. Bacterial and fungal cultures showed that 7a did not influence growth or virulence gene expression, suggesting the therapeutic effects of 7a are a direct result of 7a interacting with host cells and that alterations in microbial community structure are driven by reduced host SUCNR1 signaling. This work further suggests that targeting SUCNR1 signaling is a promising therapeutic approach in metabolic, inflammatory, or immune disorders with elevated succinate levels.


Assuntos
Diabetes Mellitus Tipo 2 , Microbiota , Periodontite , Camundongos , Humanos , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Disbiose/tratamento farmacológico , Inflamação , Ácido Succínico/farmacologia , Ácido Succínico/metabolismo , Succinatos , Periodontite/tratamento farmacológico
2.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37903743

RESUMO

AIMS: Microbial biocontrol agents have become an effective option to mitigate the harmfulness of chemical pesticides in recent years. This study demonstrates the control efficacy of Bacillus velezensis CE 100 on the anthracnose causal agent, Colletotrichum gloeosporioides. METHODS AND RESULTS: In vitro antifungal assays revealed that the culture filtrate and volatile organic compounds of B. velezensis CE 100 strongly restricted the mycelial development of C. gloeosporioides. Moreover, a bioactive compound, butyl succinate, was isolated from the n-butanol crude extract of B. velezensis CE 100 (bce), and identified by liquid chromatography-electrospray ionization hybrid ion-trap and time-of-flight mass spectrometry (LC-ESI-QTOF-MS) and one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR). Treatment with purified butyl succinate at a concentration of 300 µg mL-1 strongly controlled conidial germination of C. gloeosporioides with an inhibition rate of 98.66%, whereas butyl succinate at a concentration of 400 µg mL-1 showed weak antifungal action on the mycelial growth of C. gloeosporioides with an inhibition rate of 31.25%. Scanning electron microscopy revealed that the morphologies of butyl succinate-treated hyphae and conidia of C. gloeosporioides were severely deformed with shriveled and wrinkled surfaces. Furthermore, butyl succinate was able to control carbendazim-resistant C. gloeosporioides, demonstrating that it could be a promising agent for the suppression of other carbendazim-resistant fungal pathogens. An in vivo biocontrol assay demonstrated that the strain ce 100 broth culture and butyl succinate showed higher control efficacy on apple anthracnose than bce. CONCLUSIONS: Our findings provide insight into the antifungal potential of B. velezensis  ce 100 and its butyl succinate for efficient control of phytopathogenic fungi, such as C. gloeosporiodes, in plant disease protection. This is the first study to demonstrate the antifungal potential of bacteria-derived butyl succinate for control of C. gloeosporioides.


Assuntos
Colletotrichum , Malus , Antifúngicos/farmacologia , Antifúngicos/química , Ácido Succínico/farmacologia , Succinatos , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
3.
Endocrinol Metab (Seoul) ; 38(4): 395-405, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37533177

RESUMO

BACKGRUOUND: Hepatic stellate cells (HSCs) are the major cells which play a pivotal role in liver fibrosis. During injury, extracellular stimulators can induce HSCs transdifferentiated into active form. Phloretin showed its ability to protect the liver from injury, so in this research we would like to investigate the effect of phloretin on succinate-induced HSCs activation in vitro and liver fibrosis in vivo study. METHODS: In in vitro, succinate was used to induce HSCs activation, and then the effect of phloretin on activated HSCs was examined. In in vivo, succinate was used to generated liver fibrosis in mouse and phloretin co-treated to check its protection on the liver. RESULTS: Phloretin can reduce the increase of fibrogenic markers and inhibits the proliferation, migration, and contraction caused by succinate in in vitro experiments. Moreover, an upregulation of proteins associated with aerobic glycolysis occurred during the activation of HSCs, which was attenuated by phloretin treatment. In in vivo experiments, intraperitoneal injection of phloretin decreased expression of fibrotic and glycolytic markers in the livers of mice with sodium succinate diet-induced liver fibrosis. These results suggest that aerobic glycolysis plays critical role in activation of HSCs and succinate can induce liver fibrosis in mice, whereas phloretin has therapeutic potential for treating hepatic fibrosis. CONCLUSION: Intraperitoneal injection of phloretin attenuated succinate-induced hepatic fibrosis and alleviates the succinate-induced HSCs activation.


Assuntos
Floretina , Ácido Succínico , Camundongos , Animais , Ácido Succínico/metabolismo , Ácido Succínico/farmacologia , Ácido Succínico/uso terapêutico , Floretina/farmacologia , Floretina/metabolismo , Floretina/uso terapêutico , Células Estreladas do Fígado , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/prevenção & controle
4.
Kidney Int ; 104(4): 724-739, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37399974

RESUMO

Ischemia-reperfusion (IR) injury, a leading cause of acute kidney injury (AKI), is still without effective therapies. Succinate accumulation during ischemia followed by its oxidation during reperfusion leads to excessive reactive oxygen species (ROS) and severe kidney damage. Consequently, the targeting of succinate accumulation may represent a rational approach to the prevention of IR-induced kidney injury. Since ROS are generated primarily in mitochondria, which are abundant in the proximal tubule of the kidney, we explored the role of pyruvate dehydrogenase kinase 4 (PDK4), a mitochondrial enzyme, in IR-induced kidney injury using proximal tubule cell-specific Pdk4 knockout (Pdk4ptKO) mice. Knockout or pharmacological inhibition of PDK4 ameliorated IR-induced kidney damage. Succinate accumulation during ischemia, which is responsible for mitochondrial ROS production during reperfusion, was reduced by PDK4 inhibition. PDK4 deficiency established conditions prior to ischemia resulting in less succinate accumulation, possibly because of a reduction in electron flow reversal in complex II, which provides electrons for the reduction of fumarate to succinate by succinate dehydrogenase during ischemia. The administration of dimethyl succinate, a cell-permeable form of succinate, attenuated the beneficial effects of PDK4 deficiency, suggesting that the kidney-protective effect is succinate-dependent. Finally, genetic or pharmacological inhibition of PDK4 prevented IR-induced mitochondrial damage in mice and normalized mitochondrial function in an in vitro model of IR injury. Thus, inhibition of PDK4 represents a novel means of preventing IR-induced kidney injury, and involves the inhibition of ROS-induced kidney toxicity through reduction in succinate accumulation and mitochondrial dysfunction.


Assuntos
Traumatismo por Reperfusão , Ácido Succínico , Camundongos , Animais , Ácido Succínico/farmacologia , Espécies Reativas de Oxigênio , Camundongos Knockout , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Isquemia/tratamento farmacológico , Rim , Mitocôndrias , Reperfusão
5.
Am J Physiol Endocrinol Metab ; 324(3): E226-E240, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724126

RESUMO

Obesity is one of the leading noncommunicable diseases in the world. Despite intense efforts to develop strategies to prevent and treat obesity, its prevalence continues to rise worldwide. A recent study has shown that the tricarboxylic acid intermediate succinate increases body energy expenditure by promoting brown adipose tissue thermogenesis through the activation of uncoupling protein-1; this has generated interest surrounding its potential usefulness as an approach to treat obesity. It is currently unknown how succinate impacts brown adipose tissue protein expression, and how exogenous succinate impacts body mass reduction promoted by a drug approved to treat human obesity, the glucagon-like-1 receptor agonist, liraglutide. In the first part of this study, we used bottom-up shotgun proteomics to determine the acute impact of exogenous succinate on the brown adipose tissue. We show that succinate rapidly affects the expression of 177 brown adipose tissue proteins, which are mostly associated with mitochondrial structure and function. In the second part of this study, we performed a short-term preclinical pharmacological intervention, treating diet-induced obese mice with a combination of exogenous succinate and liraglutide. We show that the combination was more efficient than liraglutide alone in promoting body mass reduction, food energy efficiency reduction, food intake reduction, and an increase in body temperature. Using serum metabolomics analysis, we showed that succinate, but not liraglutide, promoted a significant increase in the blood levels of several medium and long-chain fatty acids. In conclusion, exogenous succinate promotes rapid changes in brown adipose tissue mitochondrial proteins, and when used in association with liraglutide, increases body mass reduction.NEW & NOTEWORTHY Exogenous succinate induces major changes in brown adipose tissue protein expression affecting particularly mitochondrial respiration and structural proteins. When given exogenously in drinking water, succinate mitigates body mass gain in a rodent model of diet-induced obesity; in addition, when given in association with the glucagon-like peptide-1 receptor agonist, liraglutide, succinate increases body mass reduction promoted by liraglutide alone.


Assuntos
Tecido Adiposo Marrom , Liraglutida , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Obesidade/metabolismo , Proteoma/metabolismo , Ácido Succínico/farmacologia , Ácido Succínico/metabolismo , Ácido Succínico/uso terapêutico , Termogênese , Proteína Desacopladora 1/metabolismo
6.
Eur J Pharmacol ; 940: 175472, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36549501

RESUMO

This study aimed to investigate the alterations of myocardial succinate and fumarate levels with or without succinate dehydrogenase (SDH) inhibitor dimethyl malonate during 24 h of lipopolysaccharides (LPS) challenge, as well as the effects of dimethyl malonate on the impaired cardiac tissue. Myocardial succinate and fumarate levels were increased in the initial 9 h of LPS challenge. During this time, dimethyl malonate increased the succinate level, decreased the fumarate level, aggravated the cardiac dysfunction, reduced the oxidative stress, had little effect on interleukin-1ß production, promoted interleukin-10 production and bothered the ATP production. Co-treatment with exogenous succinate significantly increased interleukin-1ß production in this period. After 12 h of LPS challenge, myocardial the succinate level increased sharply, while the fumarate level gradually decreased. During 12-24 h of LPS challenge, dimethyl malonate effectively reduced the succinate level, increased the fumarate level, improved cardiac dysfunction, inhibited interleukin-1ß production, and had little effect on oxidative stress, interleukin-10 production, and ATP production. LPS challenge also significantly increased the myocardial succinate receptor 1 expression and circulating succinate level. Inhibition of succinate receptor 1 significantly reduced the mRNA expression of interleukin-1ß. In conclusion, the current study suggests that myocardial succinate accumulates during LPS challenge, and that SDH activity may be transformed (from forward to reversed) and involved in a line of stress response. Dimethyl malonate inhibits SDH and, depending on the time of treatment, reduces LPS-induced cardiac impairment. Furthermore, accumulated succinate exerts pro-inflammatory effects partly via succinate receptor 1 signaling.


Assuntos
Cardiopatias , Succinato Desidrogenase , Humanos , Succinato Desidrogenase/metabolismo , Lipopolissacarídeos/farmacologia , Ácido Succínico/farmacologia , Ácido Succínico/metabolismo , Interleucina-1beta/metabolismo , Interleucina-10/metabolismo , Fumaratos , Trifosfato de Adenosina
7.
J Ethnopharmacol ; 303: 116007, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36473618

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Xianglian pill (XLP), a traditional Chinese formula, is widely used as treatment for ulcerative colitis (UC) in China. However, the mechanism of its therapeutic effect is still unclear. AIM OF THE STUDY: Our previous studies showed a low oral bioavailability and a predominant distribution of major XLP ingredients in the gut. In the present study, we aimed to explore the mechanism of action of XLP on UC with respect to the regulation of gut microecology. MATERIALS AND METHODS: UC model rats established using 5% dextran sulfate sodium were treated with XLP. After the treatment period, bodyweight, colon length, histopathology, and inflammatory changes were evaluated. Further, changes in gut microbiota structure were detected via 16S rRNA sequencing, and microbial metabolites in feces were analyzed via a metabolomic assay. Antibiotic intervention and fecal microbiota transplantation were also employed to explore the involvement of gut microbiota, while the level of regulatory T cells (Tregs) in mesenteric lymph nodes was determined via flow cytometry. Transcriptome sequencing was also performed to determine colonic gene changes. RESULTS: XLP alleviated colonic injury, inflammation, and gut microbial dysbiosis in UC model rats and also changed microbial metabolite levels. Particularly, it significantly decreased succinate level in the tyrosine pathway. We also observed that fecal microbiota derived from XLP-treated rats conferred resilience to UC model rats. However, this therapeutic effect of XLP on UC was inhibited by succinate. Moreover, XLP increased the level of anti-inflammatory cellular Tregs via gut microbiota. However, this beneficial effect was counteracted by succinate supplementation. Further, XLP induced the differentiation of Treg possibly by the regulation of the PHD2/HIF-1α pathway via decreasing microbial succinate production. CONCLUSIONS: Our findings indicated that XLP exerts its therapeutic effects on UC mainly via the gut microbiota-succinate-Treg differentiation axis.


Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Linfócitos T Reguladores , Ácido Succínico/metabolismo , Ácido Succínico/farmacologia , Ácido Succínico/uso terapêutico , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Colo , Succinatos/farmacologia , Sulfato de Dextrana/toxicidade , Colite/tratamento farmacológico , Modelos Animais de Doenças
8.
Int J Biol Macromol ; 223(Pt A): 1432-1442, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36400206

RESUMO

A novel wound dressing that possesses antibacterial properties and accelerates skin wound repair was developed by physically blending hyaluronic acid-grafted pullulan succinate (HA-st-Pu) with chitosan (CS). The HA-st-Pu polymer was synthesized and characterized, and then CS/HA-st-Pu film dressings were prepared by a freeze-drying method. The novel film wound dressings exhibited a three-dimensional cavity structure under scanning electron microscopy (SEM) and a better swelling ratio than CS, HA and Pu alone, absorbing a large amount of liquid and effectively maintaining the moist environment of the wound. CS/HA-st-Pu materials had no cytotoxicity and increased cell proliferation when coincubated with L929 cells. Moreover, CS/HA-st-Pu wound dressings exhibited a certain antibacterial capability against E. coli and S. aureus. In rat skin wound healing, CS/HA-st-Pu film dressings outperformed both the control and market band-aid groups with respect to the reduction of inflammation and acceleration of wound closure.


Assuntos
Quitosana , Ácido Hialurônico , Ratos , Animais , Ácido Hialurônico/farmacologia , Ácido Hialurônico/química , Quitosana/farmacologia , Quitosana/química , Ácido Succínico/farmacologia , Staphylococcus aureus , Escherichia coli , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/química
9.
Int J Mol Sci ; 23(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36233276

RESUMO

Hepatocellular carcinoma (HCC) is the second prominent cause of cancer-associated death worldwide. Usually, HCC is diagnosed in advanced stages, wherein sorafenib, a multiple target tyrosine kinase inhibitor, is used as the first line of treatment. Unfortunately, resistance to sorafenib is usually encountered within six months of treatment. Therefore, there is a critical need to identify the underlying reasons for drug resistance. In the present study, we investigated the proteomic and metabolomics alterations accompanying sorafenib resistance in hepatocellular carcinoma Hep3B cells by employing ultra-high-performance liquid chromatography quadrupole time of flight mass spectrometry (UHPLC-QTOF-MS). The Bruker Human Metabolome Database (HMDB) library was used to identify the differentially abundant metabolites through MetaboScape 4.0 software (Bruker). For protein annotation and identification, the Uniprot proteome for Homo sapiens (Human) database was utilized through MaxQuant. The results revealed that 27 metabolites and 18 proteins were significantly dysregulated due to sorafenib resistance in Hep3B cells compared to the parental phenotype. D-alanine, L-proline, o-tyrosine, succinic acid and phosphatidylcholine (PC, 16:0/16:0) were among the significantly altered metabolites. Ubiquitin carboxyl-terminal hydrolase isozyme L1, mitochondrial superoxide dismutase, UDP-glucose-6-dehydrogenase, sorbitol dehydrogenase and calpain small subunit 1 were among the significantly altered proteins. The findings revealed that resistant Hep3B cells demonstrated significant alterations in amino acid and nucleotide metabolic pathways, energy production pathways and other pathways related to cancer aggressiveness, such as migration, proliferation and drug-resistance. Joint pathway enrichment analysis unveiled unique pathways, including the antifolate resistance pathway and other important pathways that maintain cancer cells' survival, growth, and proliferation. Collectively, the results identified potential biomarkers for sorafenib-resistant HCC and gave insights into their role in chemotherapeutic drug resistance, cancer initiation, progression and aggressiveness, which may contribute to better prognosis and chemotherapeutic outcomes.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Antagonistas do Ácido Fólico , Neoplasias Hepáticas , Alanina/farmacologia , Aminoácidos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores/metabolismo , Calpaína/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Antagonistas do Ácido Fólico/farmacologia , Glucose/farmacologia , Humanos , L-Iditol 2-Desidrogenase/metabolismo , Neoplasias Hepáticas/metabolismo , Redes e Vias Metabólicas , Nucleotídeos/metabolismo , Fosfatidilcolinas/farmacologia , Prolina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteoma/metabolismo , Proteômica , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Ácido Succínico/farmacologia , Superóxido Dismutase/metabolismo , Tirosina/metabolismo , Ubiquitina Tiolesterase/metabolismo , Difosfato de Uridina/metabolismo
10.
Artigo em Russo | MEDLINE | ID: mdl-36168689

RESUMO

Reperfusion damage to the cellular structures of tissues in the early post-ischemic period is a consequence of the restoration of blood flow and reoxygenation. Currently, there is no effective treatment for reperfusion metabolic disorders in clinical practice. Over the past decades, biological studies of hypoxia and the role of hypoxia-inducible factor-1α (HIF-1), potentiating succinatoxidase oxidation by signal from the succinate-dependent receptor (GPR91), have significantly improved the understanding of oxygen homeostasis during the period of recovery of blood flow. HIF-1 plays a key role in postischemic damage and is an oxygen-sensitive transcription factor that mediates adaptive metabolic responses to hypoxia and hyperoxia during reperfusion and reoxygenation. Activation of HIF-1 by succinate improves cell survival in hypoxic and posthypoxic (hyperoxygenated) environment, altering energy metabolism, proliferation, angiogenesis and vascular remodeling. The role of succinate oxidation in the period of ischemia / reperfusion and reoxygenation suggests the widespread use of infusion succinate as a protector that reduces the degree of tissue damage by reactive oxygen species (ROS) and restores the usual oxygen homeostasis.


Assuntos
Oxigênio , Ácido Succínico , Humanos , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reperfusão , Sais , Ácido Succínico/farmacologia
11.
J Am Heart Assoc ; 11(13): e026135, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35766275

RESUMO

Background The metabolite succinate accumulates during cardiac ischemia. Within 5 minutes of reperfusion, succinate returns to baseline levels via both its release from cells and oxidation by mitochondrial complex II. The latter drives reactive oxygen species (ROS) generation and subsequent opening of the mitochondrial permeability transition (PT) pore, leading to cell death. Targeting succinate dynamics (accumulation/oxidation/release) may be therapeutically beneficial in cardiac ischemia-reperfusion (IR) injury. It has been proposed that blocking MCT1 (monocarboxylate transporter 1) may be beneficial in IR injury, by preventing succinate release and subsequent engagement of downstream inflammatory signaling pathways. In contrast, herein we hypothesized that blocking MCT1 would retain succinate in cells, exacerbating ROS generation and IR injury. Methods and Results Using the mitochondrial ROS probe mitoSOX and a custom-built murine heart perfusion rig built into a spectrofluorometer, we measured ROS generation in situ during the first moments of reperfusion. We found that acute MCT1 inhibition enhanced mitochondrial ROS generation at reperfusion and worsened IR injury (recovery of function and infarct size). Both of these effects were abrogated by tandem inhibition of mitochondrial complex II, suggesting that succinate retention worsens IR because it drives more mitochondrial ROS generation. Furthermore, using the PT pore inhibitor cyclosporin A, along with monitoring of PT pore opening via the mitochondrial membrane potential indicator tetramethylrhodamine ethyl ester, we herein provide evidence that ROS generation during early reperfusion is upstream of the PT pore, not downstream as proposed by others. In addition, pore opening was exacerbated by MCT1 inhibition. Conclusions Together, these findings highlight the importance of succinate dynamics and mitochondrial ROS generation as key determinants of PT pore opening and IR injury outcomes.


Assuntos
Traumatismo por Reperfusão , Ácido Succínico , Animais , Isquemia/metabolismo , Camundongos , Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Espécies Reativas de Oxigênio/metabolismo , Reperfusão , Traumatismo por Reperfusão/metabolismo , Ácido Succínico/metabolismo , Ácido Succínico/farmacologia
12.
Int J Mol Sci ; 23(10)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35628470

RESUMO

The tricarboxylic acid (TCA) metabolite, succinate, is a competitive inhibitor of dioxygenase enzymes that require alpha ketoglutarate as a cofactor. One family of dioxygenases are the ten-eleven translocation (TET) proteins, which oxidize 5-methylcytosine to promote DNA demethylation. Inhibition of DNA demethylation is expected to lead to DNA hypermethylation, at least at genomic regions at which TET proteins are engaged. We treated human bronchial epithelial cells with succinate for five days and confirmed its effect on TET protein function by observing diminished formation of 5-hydroxymethylcytosine, the first oxidation product of the TET enzymatic reaction. We then analyzed global DNA methylation patterns by performing whole-genome bisulfite sequencing. Unexpectedly, we did not observe differentially methylated regions (DMRs) that reached genome-wide statistical significance. We observed a few regions of clustered DNA hypomethylation, which was also not expected based on the proposed mechanisms. We discuss potential explanations for our observations and the implications of these findings for tumorigenesis.


Assuntos
Metilação de DNA , Dioxigenases , DNA/metabolismo , Dioxigenases/genética , Células Epiteliais/metabolismo , Humanos , Succinatos , Ácido Succínico/farmacologia
13.
Eur J Pharmacol ; 925: 174996, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35513018

RESUMO

In this work, we examined whether baicalin (BC), a bioactive flavonoid in Scutellaria baicalensis Georgi, can reduce high-fat diet (HFD)-induced metabolic syndrome (MetS) in mice. The UPLC-QTOF/MS was used for metabolome profiles analysis, and an analysis of bacterial 16S rDNA in feces was used to examine the effects of BC on gut microbiota composition. Our results showed that BC (400 mg/kg) could reduce the body weight gain, decrease hepatic fat accumulation and abnormal blood lipids, and increase insulin sensitivity after 8 weeks of treatment. BC could reverse the alteration of 7 metabolites induced by HFD and the metabolic pathways responsive to BC intervention including citrate cycle, alanine, aspartate and glutamate metabolism, glycerophospholipid metabolism, and aminoacyl-tRNA biosynthesis. 16S rDNA analysis demonstrated that BC altered the composition and function of gut microbiota in MetS mice. Notably, we found that the change in succinic acid was negatively associated with the changes in Bacteroides and Sutterella, and positively associated with the change in Mucispirillum. Moreover, we confirmed that succinic acid displayed a metabolic protective effect on MetS mice. The antibiotic treatment verified that BC exerts metabolic protection through gut microbiota. Our findings suggested BC may be a potential therapeutic drug to ameliorate diet induced MetS and gut microbiome may be a novel mechanistic target of BC for treatment of MetS.


Assuntos
Microbioma Gastrointestinal , Síndrome Metabólica , Animais , DNA Ribossômico/farmacologia , Dieta Hiperlipídica/efeitos adversos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Ácido Succínico/farmacologia
14.
EMBO J ; 41(12): e108306, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35506364

RESUMO

Influenza virus infection causes considerable morbidity and mortality, but current therapies have limited efficacy. We hypothesized that investigating the metabolic signaling during infection may help to design innovative antiviral approaches. Using bronchoalveolar lavages of infected mice, we here demonstrate that influenza virus induces a major reprogramming of lung metabolism. We focused on mitochondria-derived succinate that accumulated both in the respiratory fluids of virus-challenged mice and of patients with influenza pneumonia. Notably, succinate displays a potent antiviral activity in vitro as it inhibits the multiplication of influenza A/H1N1 and A/H3N2 strains and strongly decreases virus-triggered metabolic perturbations and inflammatory responses. Moreover, mice receiving succinate intranasally showed reduced viral loads in lungs and increased survival compared to control animals. The antiviral mechanism involves a succinate-dependent posttranslational modification, that is, succinylation, of the viral nucleoprotein at the highly conserved K87 residue. Succinylation of viral nucleoprotein altered its electrostatic interactions with viral RNA and further impaired the trafficking of viral ribonucleoprotein complexes. The finding that succinate efficiently disrupts the influenza replication cycle opens up new avenues for improved treatment of influenza pneumonia.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Infecções por Orthomyxoviridae , Pneumonia , Animais , Antivirais/farmacologia , Humanos , Vírus da Influenza A Subtipo H3N2/metabolismo , Camundongos , Proteínas do Nucleocapsídeo , Nucleoproteínas/metabolismo , Ácido Succínico/metabolismo , Ácido Succínico/farmacologia , Ácido Succínico/uso terapêutico , Replicação Viral
15.
Pestic Biochem Physiol ; 183: 105056, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35430060

RESUMO

Pesticides can seriously affect the respiratory chain of the mitochondria of many crops, reducing the intensity of plant growth and its yield. Studying the effect of pesticides on the bioenergetic parameters of intact plant mitochondria is a promising approach for assessing their toxicity. In this study, we investigated the effect of some pesticides on isolated potato mitochondria, which used exogenous NADH as a substrate for respiration. We showed that succinate is the most preferred substrate for phosphorylating respiration of intact potato tubers mitochondria. Potato mitochondria poorly oxidize exogenous NADH, despite of the presence of external NADH dehydrogenases. Permeabilization of the mitochondrial membrane with alamethicin increased the availability of exogenous NADH to complex I. However, the pathway of electrons through complex I to complex IV makes intact potato mitochondria susceptible to a number of pesticides such as difenoconazole, fenazaquin, pyridaben and tolfenpyrad, which strongly inhibit the rate of mitochondrial respiration. However, these pesticides only slightly inhibited the rate of oxygen consumption during succinate-supported respiration. Dithianon, the inhibitor of Complex II, is the only pesticide which significantly increased the respiratory rate of NADH-supported respiration of permeabilized mitochondria of potato. Thus, it can be assumed that the alternative NADH dehydrogenases for electron flow represent a factor responsible for plant resistance to xenobiotics, such as mitochondria-targeted pesticides.


Assuntos
Praguicidas , Solanum tuberosum , Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias , NAD/metabolismo , NAD/farmacologia , Praguicidas/metabolismo , Praguicidas/toxicidade , Respiração , Solanum tuberosum/metabolismo , Ácido Succínico/metabolismo , Ácido Succínico/farmacologia
16.
BMC Microbiol ; 22(1): 95, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410114

RESUMO

BACKGROUND: Klebsiella pneumoniae is widely distributed in water and plays a major role in both human and poultry infections. Many K. pneumoniae strains form biofilms on various surfaces, enhancing their pathogenicity and resistance to antibiotics. The water supply pipeline of chicken farms has become a hotbed for the growth of K pneumoniae biofilm because of its humid environment, and because the chicken drinking water pipeline is thin, it is easily blocked by the biofilm, and the diffused cells can cause repeated and persistent infections. Iron is vital to the growth of microorganisms and the formation of biofilms. Therefore, the aim of this study was to examine the effects of iron on K. pneumoniae biofilm formation and any associated metabolic changes to provide a rationale for reducing the formation of biofilms. RESULTS: Biofilm formation was enhanced to the greatest extent by the presence of 0.16 mM FeCl2, producing a denser structure under electron microscopy. The number of biofilm-forming and planktonic bacteria did not change, but protein and polysaccharide concentrations in the bacterial extracellular polymeric substances (EPS) were significantly increased by iron supplementation. To clarify this mechanism, intracellular metabolomic analysis was carried out, showing that the differential, down-regulated metabolites included succinic acid. The addition of 1.7 mM succinic acid counteracted the biofilm-forming effect of iron, with no bactericidal side effects. CONCLUSION: This study demonstrates the importance of succinic acid and iron in K. pneumoniae biofilms, and provides insight into the formation of K. pneumoniae biofilms and direction for the development of new antibacterial agents.


Assuntos
Klebsiella pneumoniae , Ácido Succínico , Antibacterianos/farmacologia , Biofilmes , Ferro/farmacologia , Ácido Succínico/farmacologia
17.
Front Immunol ; 13: 748375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265064

RESUMO

A Krebs cycle intermediate metabolite, itaconate, has gained attention as a potential antimicrobial and autoimmune disease treatment due to its anti-inflammatory effects. While itaconate and its derivatives pose an attractive therapeutic option for the treatment of inflammatory diseases, the effects outside the immune system still remain limited, particularly in the muscle. Therefore, we endeavored to determine if itaconate signaling impacts muscle differentiation. Utilizing the well-established C2C12 model of in vitro myogenesis, we evaluated the effects of itaconate and its derivatives on transcriptional and protein markers of muscle differentiation as well as mitochondrial function. We found itaconate and the derivatives dimethyl itaconate and 4-octyl itaconate disrupt differentiation media-induced myogenesis. A primary biological effect of itaconate is a succinate dehydrogenase (SDH) inhibitor. We find the SDH inhibitors dimethyl malonate and harzianopyridone phenocopie the anti-myogenic effects of itaconate. Furthermore, we find treatment with exogenous succinate results in blunted myogenesis. Together our data indicate itaconate and its derivatives interfere with in vitro myogenesis, potentially through inhibition of SDH and subsequent succinate accumulation. We also show 4-octyl itaconate suppresses injury-induced MYOG expression in vivo. More importantly, our findings suggest the therapeutic potential of itaconate, and its derivatives could be limited due to deleterious effects on myogenesis.


Assuntos
Succinatos , Ácido Succínico , Desenvolvimento Muscular , Transdução de Sinais , Succinatos/metabolismo , Succinatos/farmacologia , Succinatos/uso terapêutico , Ácido Succínico/metabolismo , Ácido Succínico/farmacologia
18.
Anaesthesiol Intensive Ther ; 54(5): 357-364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36734445

RESUMO

INTRODUCTION: Sepsis is a syndrome of physiological, pathological, and biochemical disorders with several processes co-occurring; reactive oxygen species (ROS) production and apoptosis are 2 of them. Succinate is a Krebs cycle intermediate that is oxydized in complex II of the mitochondria. This study aims to investigate the influence of succinate infusion on these processes. MATERIAL AND METHODS: Sepsis was induced with caecal ligation and puncture in 200 gr Sprague Dawley rats. Four groups were formed with 10 animals (1 - control, 2 - succinate, 3 - sepsis, and 4 - sepsis + succinate). 5 mmol kg-1 of intraperitoneal succinate were administered twice in groups 2 and 4. ROS and caspase-3 levels were measured. RESULTS: Overall, ROS levels (P = 0.017), but not caspase-3 levels (P = 0.89) differed significantly between the groups. The succinate administration reduced serum ROS levels (group 4 vs. 3) in a statistically significant way [0.0623 units (95% CI: 0.0547-0.0699) vs. 0.0835 (0.06-0.106), P = 0.017)], but it did not reduce serum caspase-3 levels (P = 0.39). There was no correlation between serum ROS levels and serum caspase-3 levels. CONCLUSIONS: In this model, ROS levels were reduced with succinate infusion, but caspase-3 levels were not. In addition, ROS levels and apoptosis levels are not correlated, which suggests that those processes occur at different times.


Assuntos
Sepse , Ácido Succínico , Animais , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Succinatos , Ácido Succínico/farmacologia
19.
Environ Technol ; 43(20): 3121-3130, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33843481

RESUMO

The cell membrane permeability, morphology, metabolomics, and gene expression of Microcystis aeruginosa under various concentrations of succinic acid (SA) were evaluated to clarify the mechanism of SA inhibition of M. aeruginosa. The results showed that SA caused intracellular protein and nucleic acid extravasation by increasing the cell membrane permeability. Scanning electron microscopy suggested that a high dose of SA (60 mg L-1) could damage the cell membrane and even cause lysis in some cells. Metabolomics result demonstrated that change in intracellular lipids content was the main reason for the increase of cell membrane permeability. In addition, SA could negatively affect amino acids metabolism, inhibit the biosynthesis of nucleotides, and interfere with the tricarboxylic acid (TCA) cycle of algal cells. Furthermore, SA also affected N assimilation and caused oxidative damage to Microcystis. In conclusion, SA inhibits the growth of M. aeruginosa through multisite action.


Assuntos
Microcystis , Expressão Gênica , Microcystis/fisiologia , Estresse Oxidativo , Ácido Succínico/farmacologia
20.
Phytopathology ; 112(3): 567-578, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34615378

RESUMO

Thifluzamide, a succinate dehydrogenase (SDH) inhibitor, possesses high activity against Rhizoctonia. In this study, 144 Rhizoctonia solani AG-4 (4HGI, 4HGII, and 4HGIII) isolates, the predominate pathogen associated with sugar beet seedling damping-off, were demonstrated to be sensitive to thifluzamide with a calculated mean median effective concentration of 0.0682 ± 0.0025 µg/ml. Thifluzamide-resistant isolates were generated using fungicide-amended media, resulting in four AG-4HGI isolates and eight AG-4HGII isolates with stable resistance and almost no loss in fitness. Evaluation of cross-resistance of the 12 thifluzamide-resistant isolates and their corresponding parental-sensitive isolates revealed a moderately positive correlation between thifluzamide resistance and the level of resistance to eight other fungicides from three groups, the exception being fludioxonil. An active efflux of fungicide through ATP-binding cassette and major facilitator superfamily transporters was found to be correlated to the resistance of R. solani AG-4HGII isolates to thifluzamide based on RNA-sequencing and quantitative reverse transcription-PCR analyses. Sequence analysis of sdhA, sdhB, sdhC, and sdhD revealed replacement of isoleucine by phenylalanine at position 61 in SDHC in 9 of the 12 generated thifluzamide-resistant isolates. No other mutations were found in any of the other genes. Collectively, the data indicate that the active efflux of fungicide and a point mutation in sdhC may contribute to the resistance of R. solani AG-4HGI and AG-4HGII isolates to thifluzamide in vitro. This is the first characterization of the potential molecular mechanism associated with the resistance of R. solani AG-4 isolates to thifluzamide and provides practical guidance for the use of this fungicide.


Assuntos
Rhizoctonia , Succinato Desidrogenase , Anilidas , Doenças das Plantas , Rhizoctonia/genética , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Ácido Succínico/farmacologia , Tiazóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA