RESUMO
Glycine receptors (GlyR) are regulated by small-molecule binding at several allosteric sites. Cannabinoids like tetrahydrocannabinol (THC) and N-arachidonyl-ethanol-amide (AEA) potentiate the GlyR response but their mechanism of action is not fully established. By combining millisecond coarse-grained (CG) MD simulations powered by Martini 3 with backmapping to all-atom representations, we have characterized the cannabinoid-binding site(s) at the zebrafish GlyR-α1 active state with atomic resolution. Based on hundreds of thousand ligand-binding events, we find that cannabinoids bind to the transmembrane domain of the receptor at both intrasubunit and intersubunit sites. For THC, the intrasubunit binding mode predicted in simulation is in excellent agreement with recent cryo-EM structures, while intersubunit binding recapitulates in full previous mutagenesis experiments. Intriguingly, AEA is predicted to bind at the same intersubunit site despite the strikingly different chemistry. Statistical analyses of the ligand-receptor interactions highlight potentially relevant residues for GlyR potentiation, offering experimentally testable predictions. The predictions for AEA have been validated by electrophysiology recordings of rationally designed mutants. The results highlight the existence of multiple cannabinoid-binding sites for the allosteric regulation of GlyR and put forward an effective strategy for the identification and structural characterization of allosteric binding sites.
Assuntos
Sítio Alostérico , Ácidos Araquidônicos , Dronabinol , Simulação de Dinâmica Molecular , Receptores de Glicina , Peixe-Zebra , Animais , Receptores de Glicina/metabolismo , Receptores de Glicina/química , Receptores de Glicina/genética , Sítios de Ligação , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/química , Dronabinol/metabolismo , Dronabinol/química , Regulação Alostérica , Canabinoides/metabolismo , Canabinoides/química , Ligação Proteica , Alcamidas Poli-Insaturadas/metabolismo , Alcamidas Poli-Insaturadas/química , Endocanabinoides/metabolismo , Endocanabinoides/química , Ligantes , Microscopia CrioeletrônicaRESUMO
Cannabinoids are involved in physiological and neuromodulatory processes through their interactions with the human cannabinoid receptor-based endocannabinoid system. Their association with neurodegenerative diseases and brain reward pathways underscores the importance of evaluating and modulating cannabinoid activity for both understanding physiological mechanisms and developing therapeutic drugs. The use of agonists and antagonists could be strategic approaches for modulation. In this study, we introduce a bioelectronic sensor designed to monitor cannabinoid binding to receptors and assess their agonistic and antagonistic properties. We produced human cannabinoid receptor 1 (hCB1R) via an Escherichia coli expression system and incorporated it into nanodiscs (NDs). These hCB1R-NDs were then immobilized on a single-walled carbon nanotube field-effect transistor (swCNT-FET) to construct a bioelectronic sensing platform. This novel system can sensitively detect the cannabinoid ligand anandamide (AEA) at concentrations as low as 1 fM, demonstrating high selectivity and real-time response. It also successfully identified the hCB1R agonist Δ9-tetrahydrocannabinol and observed that the hCB1R antagonist rimonabant diminished the sensor signal upon AEA binding, indicating the antagonism-based modulation of ligand interaction. Consequently, our bioelectronic sensing platform holds potential for ligand detection and analysis of agonism and antagonism.
Assuntos
Técnicas Biossensoriais , Endocanabinoides , Nanotubos de Carbono , Receptor CB1 de Canabinoide , Humanos , Endocanabinoides/metabolismo , Nanotubos de Carbono/química , Receptor CB1 de Canabinoide/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Transistores Eletrônicos , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia , Ácidos Araquidônicos/química , Ácidos Araquidônicos/farmacologia , Canabinoides/metabolismo , Canabinoides/farmacologia , Canabinoides/química , Agonistas de Receptores de Canabinoides/farmacologia , Agonistas de Receptores de Canabinoides/química , Dronabinol/farmacologia , Dronabinol/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismoRESUMO
The proteasome is a multisubunit protease system responsible for the majority of the protein turnover in eukaryotic organisms. Dysregulation of this enzymatic complex leads to protein accumulation, subsequent aggregation, and ultimately diseased states; for that reason, positive modulation of its activity has been recently investigated as a therapeutic strategy for neurodegenerative and age-related diseases. The small molecule AM404 was recently identified as an activator of the 20S isoform of the proteasome and further exploration of the scaffold revealed the importance of the polyunsaturated fatty acid chain to elicit activity. Herein, we report the investigation of the aromatic region of the scaffold and the evaluation of the small molecules in a variety of proteasome activity and protein degradation assays. We found that derivatives A22 and A23, compared to AM404, exhibit enhanced proteasome activity in biochemical and cellular proteasome assays and more favorable cellular viability profiles. Additionally, these compounds demonstrate the ability to degrade intrinsically disordered proteins, regardless of their molecular weight, and the ability to restore the proteasome activity in the presence of toxic oligomeric α-Syn species in a biochemical setting.
Assuntos
Ácidos Araquidônicos , Ativadores de Enzimas , Complexo de Endopeptidases do Proteassoma , Ácidos Araquidônicos/química , Ácidos Araquidônicos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ativadores de Enzimas/metabolismo , Ativadores de Enzimas/farmacologia , Ativação Enzimática/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas Intrinsicamente Desordenadas/metabolismo , Aminoácidos Aromáticos/metabolismoRESUMO
2-Arachidonoylglycerol (2-AG) is the most potent and abundant endocannabinoid that acts as a full agonist at the cannabinoid 1 (CB1) and 2 (CB2) receptors. It serves as a substrate for several serine hydrolases, including monoacylglycerol lipase (MGL), α/ß hydrolase domain 6 (ABHD6) and fatty acid amide hydrolase (FAAH). However, 2-AG's rapid conversion to 1-AG (the S stereoisomer) and 3-AG (the R stereoisomer) complicates in vivo signaling. Here, we present the interaction profiles of 2-AG and its isomerization products, 1- and 3-AG, with the endocannabinoid MGL, ABHD6 and FAAH enzymes as well as the CB1 receptor. The 1- and 3-AG enantiomers are less prone to isomerization, and their affinities to endocannabinoid enzymes and potencies at CB1 receptor are quite different compared to 2-AG. Although MGL is the principal hydrolytic enzyme of 2-AG, 3-AG (the R isomer) appears to be the best substrate for hMGL. Contrarily, 1-AG (the S isomer) demonstrates the worst substrate profile, indicating that the stereochemistry of 1(3)-monoacylglycerols is very important for MGL enzyme. On the other hand, both 1- and 3-AG (the sn1 monoacylglycerols) are efficiently hydrolyzed by hABHD6 without preference, while 2-AG (the sn2 monoacylglycerol) has the lowest rate of hydrolysis. FAAH, the principal hydrolytic enzyme for arachidonoylethanolamide (anandamide, AEA), catalyzes the hydrolysis of all three isomers with similar efficiencies. In a functional cAMP assay at CB1 receptor, all three isomers behaved as agonists, with 2-AG being the most potent, followed by 3-AG then 1-AG. The presented data provides stereochemical insights to design chemically stable AG analogs with preferential stability against enzymes of interest.
Assuntos
Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Amidoidrolases/metabolismo , Ácidos Araquidônicos/química , Soluções Tampão , Cromatografia Líquida de Alta Pressão , AMP Cíclico/metabolismo , Endocanabinoides/química , Glicerídeos/química , Células HEK293 , Humanos , Hidrólise , Isomerismo , Cinética , Ligantes , Monoacilglicerol Lipases/metabolismo , Especificidade por SubstratoRESUMO
Metabolism of polyunsaturated fatty acids results in the formation of hydroxylated fatty acids that can be further oxidized by dehydrogenases, often resulting in the formation of electrophilic, α,ß-unsaturated ketone containing fatty acids. As electrophiles are associated with redox signaling, we sought to investigate the metabolism of the oxo-fatty acid products in relation to their double bond architecture. Using an untargeted liquid chromatography mass spectrometry approach, we identified mono- and di-saturated products of the arachidonic acid-derived 11-oxoeicosatetraenoic acid (11-oxoETE) and mono-saturated metabolites of 15-oxoETE and docosahexaenoic acid-derived 17-oxodocosahexaenoinc acid (17-oxoDHA) in both human A549 lung carcinoma and umbilical vein endothelial cells. Notably, mono-saturated oxo-fatty acids maintained their electrophilicity as determined by nucleophilic conjugation to glutathione while a second saturation of 11-oxoETE resulted in a loss of electrophilicity. These results would suggest that prostaglandin reductase 1 (PTGR1), known only for its reduction of the α,ß-unsaturated double bond, was not responsible for the saturation of oxo-fatty acids at alternative double bonds. Surprisingly, knockdown of PTGR1 expression by shRNA confirmed its participation in the formation of 15-oxoETE and 17-oxoDHA mono-saturated metabolites. Furthermore, overexpression of PTGR1 in A549 cells increased the rate and total amount of oxo-fatty acid saturation. These findings will further facilitate the study of electrophilic fatty acid metabolism and signaling in the context of inflammatory diseases and cancer where they have been shown to have anti-inflammatory and anti-proliferative signaling properties.
Assuntos
Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Células A549 , Oxirredutases do Álcool/antagonistas & inibidores , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Ácidos Araquidônicos/química , Ácidos Araquidônicos/metabolismo , Cromatografia Líquida , Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/metabolismo , Eletroquímica , Ácidos Graxos Monoinsaturados/química , Ácidos Graxos Monoinsaturados/metabolismo , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Oxirredução , Transdução de Sinais , Espectrometria de Massas em Tandem , Regulação para CimaRESUMO
The activation of the human cannabinoid receptor type II (CB2R) is known to mediate analgesic and anti-inflammatory processes without the central adverse effects related to cannabinoid receptor type I (CB1R). In this work we describe the synthesis and evaluation of a novel series of N-aryl-2-pyridone-3-carboxamide derivatives tested as human cannabinoid receptor type II (CB2R) agonists. Different cycloalkanes linked to the N-aryl pyridone by an amide group displayed CB2R agonist activity as determined by intracellular [cAMP] levels. The most promising compound 8d exhibited a non-toxic profile and similar potency (EC50 = 112 nM) to endogenous agonists Anandamide (AEA) and 2-Arachidonoylglycerol (2-AG) providing new information for the development of small molecules activating CB2R. Molecular docking studies showed a binding pose consistent with two structurally different agonists WIN-55212-2 and AM12033 and suggested structural requirements on the pyridone substituents that can satisfy the orthosteric pocket and induce an agonist response. Our results provide additional evidence to support the 2-pyridone ring as a suitable scaffold for the design of CB2R agonists and represent a starting point for further optimization and development of novel compounds for the treatment of pain and inflammation.
Assuntos
Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/farmacologia , Piridonas/química , Receptor CB2 de Canabinoide/agonistas , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/farmacologia , Benzoxazinas/química , Benzoxazinas/farmacologia , Sítios de Ligação , Células CHO , Agonistas de Receptores de Canabinoides/síntese química , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , AMP Cíclico/metabolismo , Avaliação Pré-Clínica de Medicamentos , Endocanabinoides/química , Endocanabinoides/farmacologia , Glicerídeos/química , Glicerídeos/farmacologia , Células HL-60 , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Morfolinas/química , Morfolinas/farmacologia , Naftalenos/química , Naftalenos/farmacologia , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia , Piridonas/farmacologia , Receptor CB2 de Canabinoide/química , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-AtividadeRESUMO
Monoacylglycerol lipase (MAGL) is a key enzyme in the human endocannabinoid system. It is also the main enzyme responsible for the conversion of 2-arachidonoyl glycerol (2-AG) to arachidonic acid (AA), a precursor of prostaglandin synthesis. The inhibition of MAGL activity would be beneficial for the treatment of a wide range of diseases, such as inflammation, neurodegeneration, metabolic disorders and cancer. Here, the author reports the pharmacological evaluation of new disulfiram derivatives as potent inhibitors of MAGL. These analogues displayed high inhibition selectivity over fatty acid amide hydrolase (FAAH), another endocannabinoid-hydrolyzing enzyme. In particular, compound 2i inhibited MAGL in the low micromolar range. However, it did not show any inhibitory activity against FAAH.
Assuntos
Dissulfiram/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Monoacilglicerol Lipases/química , Amidoidrolases/química , Ácidos Araquidônicos/química , Carbamatos/farmacologia , Dissulfiram/análogos & derivados , Endocanabinoides/química , Endocanabinoides/metabolismo , Inibidores Enzimáticos/farmacologia , Glicerídeos/química , Humanos , Hidrólise , Monoglicerídeos/química , Relação Estrutura-AtividadeRESUMO
2-Arachidonyl-lysophosphatidylethanolamine, shortly 2-ARA-LPE, is a polyunsaturated lysophosphatidylethanolamine. 2-ARA-LPE has a very long chain arachidonic acid, formed by an ester bond at the sn-2 position. It has been reported that 2-ARA-LPE has anti-inflammatory effects in a zymosan-induced peritonitis model. However, it's action mechanisms are poorly investigated. Recently, resolution of inflammation is considered to be an active process driven by M2 polarized macrophages. Therefore, we have investigated whether 2-ARA-LPE acts on macrophages for anti-inflammation, whether 2-ARA-LPE modulates macrophage phenotypes to reduce inflammation, and whether 2-ARA-LPE is anti-inflammatory in a carrageenan-induced paw edema model. In mouse peritoneal macrophages, 2-ARA-LPE was found to inhibit lipopolysaccharide (LPS)-induced M1 macrophage polarization, but not induce M2 polarization. 2-ARA-LPE inhibited the inductions of inducible nitric oxide synthase and cyclooxygenase-2 in mouse peritoneal macrophages at the mRNA and protein levels. Furthermore, products of the two genes, nitric oxide and prostaglandin E2, were also inhibited by 2-ARA-LPE. However, 1-oleoyl-LPE did not show any activity on the macrophage polarization and inflammatory responses. The anti-inflammatory activity of 2-ARA-LPE was also verified in vivo in a carrageenan-induced paw edema model. 2-ARA-LPE inhibits LPS-induced M1 polarization, which contributes to anti-inflammation and suppresses the carrageenan-induced paw edema in vivo.
Assuntos
Anti-Inflamatórios/farmacologia , Ácidos Araquidônicos/farmacologia , Edema/tratamento farmacológico , Lisofosfolipídeos/farmacologia , Macrófagos Peritoneais/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Ácidos Araquidônicos/química , Carragenina/administração & dosagem , Ciclo-Oxigenase 2/imunologia , Dinoprostona/antagonistas & inibidores , Dinoprostona/biossíntese , Edema/induzido quimicamente , Edema/imunologia , Edema/patologia , Membro Posterior/efeitos dos fármacos , Membro Posterior/imunologia , Membro Posterior/metabolismo , Subunidade p35 da Interleucina-12/antagonistas & inibidores , Subunidade p35 da Interleucina-12/imunologia , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/imunologia , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Lisofosfolipídeos/química , Macrófagos Peritoneais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/imunologia , Cultura Primária de Células , Resultado do TratamentoRESUMO
Δ9-tetrahydrocannabinol (Δ9-THC), the main active ingredient of Cannabis sativa (marijuana), interacts with the human brain cannabinoid (CB1) receptor and mimics pharmacological effects of endocannabinoids (eCBs) like N-arachidonylethanolamide (AEA). Due to its flexible nature of AEA structure with more than 15 rotatable bonds, establishing its binding mode to the CB1 receptor is elusive. The aim of the present study was to explore possible binding conformations of AEA within the binding pocket of the CB1 receptor confirmed in the recently available X-ray crystal structures of the CB1 receptor and predict essential AEA binding domains. We performed long time molecular dynamics (MD) simulations of plausible AEA docking poses until its receptor binding interactions became optimally established. Our simulation results revealed that AEA favors to bind to the hydrophobic channel (HC) of the CB1 receptor, suggesting that HC holds essential significance in AEA binding to the CB1 receptor. Our results also suggest that the Helix 2 (H2)/H3 region of the CB1 receptor is an AEA binding subsite privileged over the H7 region.
Assuntos
Ácidos Araquidônicos/química , Endocanabinoides/química , Alcamidas Poli-Insaturadas/química , Receptor CB1 de Canabinoide/ultraestrutura , Animais , Ácidos Araquidônicos/metabolismo , Encéfalo/metabolismo , Moduladores de Receptores de Canabinoides/química , Canabinoides/farmacologia , Endocanabinoides/metabolismo , Endocanabinoides/farmacologia , Humanos , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Alcamidas Poli-Insaturadas/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas/fisiologia , Receptor CB1 de Canabinoide/química , Receptor CB1 de Canabinoide/metabolismoRESUMO
PURPOSE: Hypertensive lesions induce alterations at hemodynamic, peripheral, and central levels. Anandamide (N-arachidonoylethanolamine; AEA) protects neurons from inflammatory damage, but its free administration may cause central adverse effects. AEA controlled release by nanoformulations could reduce/eliminate its side effects. The present study aimed to evaluate the effects of nanoformulated AEA (nf-AEA) on systolic blood pressure (SBP), behavior, and central/peripheral inflammatory, oxidative, and apoptotic state in spontaneously hypertensive rats (SHR). MATERIALS/METHODS: Male rats were used, both Wistar Kyoto (WKY) and SHR (n â= â10 per group), with/without treatment with nf-AEA (obtained by electrospraying) at a weekly dose of 5 âmg/kg IP for 4 weeks. SBP was measured and behavioral tests were performed. Inflammatory/oxidative markers were quantified at the central (brain cortex) and peripheral (serum) level. RESULTS: SHR showed hyperactivity, low anxiety, and high concentrations of central/peripheral inflammatory/oxidative markers, also higher apoptosis of brain cortical cells compared to WKY. As opposed to this group, treatment with nf-AEA in SHR significantly reduced SBP, peripheral/central inflammatory/oxidative makers, and central apoptosis. Nf-AEA also increased neuroprotective mechanisms mediated by intracellular heat shock protein 70 (Hsp70), which were attenuated in untreated SHR. Additionally, nf-AEA reversed the abnormal behaviors observed in SHR without producing central adverse effects. CONCLUSIONS: Our results suggest protective properties of nf-AEA, both peripherally and centrally, through a signaling pathway that would involve the type I angiotensin II receptor, Wilms tumor transcription factor 1, Hsp70, and iNOS. Considering non-nf-AEA limitations, this nanoformulation could contribute to the development of new antihypertensive and behavioral disorder treatments associated with neuroinflammation.
Assuntos
Anti-Hipertensivos/farmacologia , Ácidos Araquidônicos/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Endocanabinoides/farmacologia , Hemodinâmica , Hipertensão/tratamento farmacológico , Nanopartículas/química , Sistema Nervoso Periférico/efeitos dos fármacos , Alcamidas Poli-Insaturadas/farmacologia , Animais , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/química , Ácidos Araquidônicos/administração & dosagem , Ácidos Araquidônicos/química , Pressão Sanguínea , Endocanabinoides/administração & dosagem , Endocanabinoides/química , Hipertensão/metabolismo , Hipertensão/patologia , Masculino , Nanopartículas/administração & dosagem , Estresse Oxidativo , Alcamidas Poli-Insaturadas/administração & dosagem , Alcamidas Poli-Insaturadas/química , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transdução de SinaisRESUMO
Paracetamol, one of the most widely used pain-relieving drugs, is deacetylated to 4-aminophenol (4-AP) that undergoes fatty acid amide hydrolase (FAAH)-dependent biotransformation into N-arachidonoylphenolamine (AM404), which mediates TRPV1-dependent antinociception in the brain of rodents. However, paracetamol is also converted to the liver-toxic metabolite N-acetyl-p-benzoquinone imine already at therapeutic doses, urging for safer paracetamol analogues. Primary amine analogues with chemical structures similar to paracetamol were evaluated for their propensity to undergo FAAH-dependent N-arachidonoyl conjugation into TRPV1 activators both in vitro and in vivo in rodents. The antinociceptive and antipyretic activity of paracetamol and primary amine analogues was examined with regard to FAAH and TRPV1 as well as if these analogues produced acute liver toxicity. 5-Amino-2-methoxyphenol (2) and 5-aminoindazole (3) displayed efficient target protein interactions with a dose-dependent antinociceptive effect in the mice formalin test, which in the second phase was dependent on FAAH and TRPV1. No hepatotoxicity of the FAAH substrates transformed into TRPV1 activators was observed. While paracetamol attenuates pyrexia via inhibition of brain cyclooxygenase, its antinociceptive FAAH substrate 4-AP was not antipyretic, suggesting separate mechanisms for the antipyretic and antinociceptive effect of paracetamol. Furthermore, compound 3 reduced fever without a brain cyclooxygenase inhibitory action. The data support our view that analgesics and antipyretics without liver toxicity can be derived from paracetamol. Thus, research into the molecular actions of paracetamol could pave the way for the discovery of analgesics and antipyretics with a better benefit-to-risk ratio.
Assuntos
Acetaminofen/química , Amidoidrolases/metabolismo , Analgésicos/química , Antipiréticos/química , Canais de Cátion TRPV/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Acetaminofen/farmacologia , Aminofenóis/química , Analgésicos/farmacologia , Animais , Antipiréticos/farmacologia , Ácidos Araquidônicos/química , Encéfalo , Feminino , Humanos , Indazóis/química , Fígado , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Dor/tratamento farmacológico , Medição da Dor , Prostaglandina-Endoperóxido Sintases/metabolismo , Ratos Wistar , Relação Estrutura-AtividadeRESUMO
Oxidative stress is one of the main pathogenic factors of neurodegenerative diseases. As the ligand of cannabinoid type 1 (CB1) and 2 (CB2) receptors, anandamide (AEA) exerts benign antioxidant activities. However, the instability of AEA results in low levels in vivo, which limit its further application. Based on the structure of AEA, Nlinoleyltyrosine (NITyr) was synthesized in our laboratory and was hypothesized to possess a similar function to that of AEA. To the best of our knowledge, the present study demonstrates for the first time, the activities and mechanisms of NITyr. NITyr treatment attenuated hydrogen peroxide (H2O2)induced cytotoxicity, with the most promiment effect observed at 1 µmol/l. Treatment with NITyr also suppressed the H2O2induced elevation of reactive oxygen species (ROS) and enhanced the expression of the autophagyrelated proteins, LC3II, beclin1, ATG 5 and ATG13. The autophagic inhibitor, 3methyladenine, reversed the effects of NITyr on ROS levels and cellular viability. Furthermore, AM251, a CB1 receptor antagonist, but not AM630 (a CB2 receptor antagonist), diminished the effects of NITyr on cell viability, ROS generation and autophagyrelated protein expression. However, NITyr increased the protein expression of both the CB1 and CB2 receptors. Therefore, NITyr was concluded to protect PC12 cells against H2O2induced oxidative injury by inducing autophagy, a process which may involve the CB1 receptor.
Assuntos
Autofagia/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Tirosina/análogos & derivados , Tirosina/farmacologia , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Endocanabinoides/química , Endocanabinoides/farmacologia , Peróxido de Hidrogênio/toxicidade , Indóis/farmacologia , Células PC12 , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/química , Alcamidas Poli-Insaturadas/farmacologia , Pirazóis/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo , Tirosina/químicaRESUMO
Endocannabinoids are host-derived lipid hormones that fundamentally impact gastrointestinal (GI) biology. The use of cannabis and other exocannabinoids as anecdotal treatments for various GI disorders inspired the search for mechanisms by which these compounds mediate their effects, which led to the discovery of the mammalian endocannabinoid system. Dysregulated endocannabinoid signaling was linked to inflammation and the gut microbiota. However, the effects of endocannabinoids on host susceptibility to infection has not been explored. Here, we show that mice with elevated levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG) are protected from enteric infection by Enterobacteriaceae pathogens. 2-AG directly modulates pathogen function by inhibiting virulence programs essential for successful infection. Furthermore, 2-AG antagonizes the bacterial receptor QseC, a histidine kinase encoded within the core Enterobacteriaceae genome that promotes the activation of pathogen-associated type three secretion systems. Taken together, our findings establish that endocannabinoids are directly sensed by bacteria and can modulate bacterial function.
Assuntos
Endocanabinoides/metabolismo , Enterobacteriaceae/patogenicidade , Animais , Ácidos Araquidônicos/química , Ácidos Araquidônicos/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/metabolismo , Citrobacter rodentium/patogenicidade , Colo/microbiologia , Colo/patologia , Endocanabinoides/química , Infecções por Enterobacteriaceae/microbiologia , Feminino , Microbioma Gastrointestinal , Glicerídeos/química , Glicerídeos/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monoacilglicerol Lipases/metabolismo , Salmonella/patogenicidade , VirulênciaRESUMO
OBJECTIVE: To produce high concentrations of 13-hydroxy-14,15-epoxy-eicosatrienoic acid (14,15-hepoxilin B3, 14,15-HXB3) and 13,14,15-trihydroxy-eicosatrienoic acid (13,14,15-trioxilin B3, 13,14,15-TrXB3) from arachidonic acid (ARA) using microbial 15-lipoxygenase (15-LOX) without and with epoxide hydrolase (EH), respectively. RESULTS: The products obtained from the bioconversion of ARA by recombinant Escherichia coli cells containing Archangium violaceum 15-LOX without and with Myxococcus xanthus EH were identified as 14,15-HXB3 and 13,14,15-TrXB3, respectively. Under the optimal conditions of 30 g cells L-1, 200 mM ARA, 25 °C, and initial pH 7.5, the cells converted 200 mM ARA into 192 mM 14,15-HXB3 and 100 mM 13,14,15-TrXB3 for 150 min, with conversion yields of 96 and 51% and productivities of 77 and 40 mM h-1, respectively. CONCLUSION: These are the highest concentrations, productivities, and yields of hepoxilin and trioxilin from ARA reported thus far.
Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Araquidonato 15-Lipoxigenase/metabolismo , Ácidos Araquidônicos , Proteínas de Bactérias/metabolismo , Epóxido Hidrolases/metabolismo , Ácido 8,11,14-Eicosatrienoico/química , Ácido 8,11,14-Eicosatrienoico/metabolismo , Araquidonato 15-Lipoxigenase/genética , Ácidos Araquidônicos/química , Ácidos Araquidônicos/metabolismo , Proteínas de Bactérias/genética , Epóxido Hidrolases/genética , Myxococcales/enzimologia , Myxococcales/genética , Myxococcus xanthus/enzimologia , Myxococcus xanthus/genéticaRESUMO
The antioxidant activity and protective effect in the toxicity model of H2O2 were studied for arachidonic (AA-CHOL), docosahexaenoic (DHA-CHOL), linoleic (Ln-CHOL), and oleic (Ol-CHOL) fatty acids, as well as arachidonoyl dicholine (AA-diCHOL) and O-arachidonoyl bistetramethylaminoisopropanol (ABTAP). AA-CHOL, DHA-CHOL and Ln-CHOL provided a 20% increase in cell survival. AA-CHOL, AA-diCHOL, Ol-CHOL, and ABTAP had a radical-scavenging effect in the ABTS test, approximately equal to the activity of a standard radical scavenger Trolox.
Assuntos
Antioxidantes/química , Ácidos Araquidônicos/química , Colina/química , 2-Propanol/química , Ácido Araquidônico/química , Linhagem Celular Tumoral , Cromanos/química , Ácidos Docosa-Hexaenoicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Ácidos Graxos , Radicais Livres/química , Humanos , Peróxido de Hidrogênio/química , Ácido Linoleico/química , Ácido Oleico/químicaRESUMO
N-acyl amino acids are a family of cold-inducible circulating lipids that stimulate thermogenesis. Their biosynthesis is mediated by a secreted enzyme called PM20D1. The extracellular mechanisms that regulate PM20D1 or N-acyl amino acid activity in the complex environment of blood plasma remains unknown. Using quantitative proteomics, here we show that PM20D1 circulates in tight association with both low- and high-density lipoproteins. Lipoprotein particles are powerful co-activators of PM20D1 activity in vitro and N-acyl amino acid biosynthesis in vivo. We also identify serum albumin as a physiologic N-acyl amino acid carrier, which spatially segregates N-acyl amino acids away from their sites of production, confers resistance to hydrolytic degradation, and establishes an equilibrium between thermogenic "free" versus inactive "bound" fractions. These data establish lipoprotein particles as principal extracellular sites of N-acyl amino acid biosynthesis and identify a lipoprotein-albumin network that regulates the activity of a circulating thermogenic lipid family.
Assuntos
Amidoidrolases/metabolismo , Aminoácidos/metabolismo , Proteínas Sanguíneas/metabolismo , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/citologia , Tecido Adiposo Branco/metabolismo , Amidoidrolases/genética , Aminoácidos/sangue , Aminoácidos/química , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Ácidos Araquidônicos/sangue , Ácidos Araquidônicos/química , Ácidos Araquidônicos/metabolismo , Proteínas Sanguíneas/química , Linhagem Celular , Glicina/análogos & derivados , Glicina/sangue , Glicina/química , Glicina/metabolismo , Humanos , Lipoproteínas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Proteômica , Albumina Sérica/química , Albumina Sérica/metabolismoRESUMO
INTRODUCTION: Prostaglandins are critical for the onset and progression of labor in mammals, and are formed by the metabolism of arachidonic acid. The products of arachidonic acid, 2-arachidonoylglycerol (2-AG), and anandamide (AEA) have a similar lipid back bone but differing polar head groups, meaning that identification of these products by immunoassay can be difficult. MATERIALS AND METHODS: In the current study, we present the use of mass spectrometry as multiplex method of identifying the specific end products of arachidonic and anandamide metabolism by human derived amnion explants treated with either an infectious agent (LPS) or inflammatory mediator (IL-1ß or TNF-α). RESULTS: Human amnion tissue explants treated with LPS, IL-1ß, or TNF-α increased production of prostaglandin E2 (PGE2; p < 0.05) but decreased PGFM. Overall, PGE2 production was greater compared to the other prostaglandins and prostamides irrespective of treatment. CONCLUSIONS: The findings of the current study are in keeping with the literature which describes amnion tissues as predominantly producing PGE2. The use of mass spectrometry for the differential identification of prostaglandins, prostamides, and other eicosanoids may help better elucidate mechanisms of preterm labor, and lead to new targets for the prediction of risk for preterm labor and/or birth.
Assuntos
Âmnio/efeitos dos fármacos , Citocinas/efeitos adversos , Dinoprosta/análogos & derivados , Dinoprostona/análise , Lipopolissacarídeos/efeitos adversos , Âmnio/química , Ácido Araquidônico/química , Ácidos Araquidônicos/química , Dinoprosta/análise , Endocanabinoides/química , Feminino , Humanos , Interleucina-1beta/efeitos adversos , Espectrometria de Massas , Alcamidas Poli-Insaturadas/química , Gravidez , Fator de Necrose Tumoral alfa/efeitos adversosRESUMO
Drug encapsulation in nanocarriers such as polymeric nanoparticles (Nps) may help to overcome the limitations associated with cannabinoids. In this study, the authors' work aimed to highlight the use of electrospraying techniques for the development of carrier Nps of anandamide (AEA), an endocannabinoid with attractive pharmacological effects but underestimated due to its unfavourable physicochemical and pharmacokinetic properties added to its undesirable effects at the level of the central nervous system. The authors characterised physicochemically and evaluated in vitro biological activity of anandamide/É-polycaprolactone nanoparticles (Nps-AEA/PCL) obtained by electrospraying in epithelial cells of the human proximal tubule (HK2), to prove the utility of this method and to validate the biological effect of Nps-AEA/PCL. They obtained particles from 100 to 900â nm of diameter with a predominance of 200-400â nm. Their zeta potential was -20 ± 1.86â mV. They demonstrated the stable encapsulation of AEA in Nps-AEA/PCL, as well as its dose-dependent capacity to induce the expression of iNOS and NO levels and to decrease the Na+/K+ ATPase activity in HK2 cells. Obtaining Nps-AEA/PCL by electrospraying would represent a promising methodology for a novel AEA pharmaceutical formulation development with optimal physicochemical properties, physical stability and biological activity on HK2 cells.
Assuntos
Ácidos Araquidônicos/química , Endocanabinoides/química , Nanopartículas/química , Poliésteres/química , Alcamidas Poli-Insaturadas/química , Ácidos Araquidônicos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Estabilidade de Medicamentos , Técnicas Eletroquímicas , Endocanabinoides/farmacologia , Humanos , Nanopartículas/toxicidade , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Alcamidas Poli-Insaturadas/farmacologia , ATPase Trocadora de Sódio-Potássio/metabolismoRESUMO
Earlier studies suggested that specific Echinacea preparations might decrease anxiety. To further study the issue, we performed a double blind, placebo controlled trial with a standardized Echinacea angustifolia root extract. Participants were volunteers scoring above 45 points on the state or on the trait subscale of the State Trait Anxiety Inventory (STAI). They were treated with 40 mg Echinacea or with placebo tablets twice daily for 7 days followed by a 3 week-long washout period. Participants were also administered the Beck Depression Inventory (BDI) and the Perceived Stress Scale (PSS). In the Echinacea group, state anxiety scores decreased by approximately 11 points by the end of the treatment period, whereas the decrease was around 3-points in the placebo group (p< 0.01). The effect maintained over the washout period. The difference from placebo was significant from the 7th day of treatment throughout. Changes were less robust with trait anxiety scores, but the preparation performed better than placebo in patients with high baseline anxiety. Neither BDI nor PSS scores were affected by the treatments. Adverse effects were rare and mild, and all were observed in the placebo group. These findings suggest that particular Echinacea preparations have significant beneficial effects on anxiety in humans.
Assuntos
Ansiolíticos/farmacologia , Ansiedade/tratamento farmacológico , Ácidos Araquidônicos/farmacologia , Echinacea/química , Endocanabinoides/farmacologia , Extratos Vegetais/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Adulto , Ácidos Araquidônicos/efeitos adversos , Ácidos Araquidônicos/química , Método Duplo-Cego , Endocanabinoides/efeitos adversos , Endocanabinoides/química , Feminino , Humanos , Masculino , Placebos , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Raízes de Plantas/química , Alcamidas Poli-Insaturadas/efeitos adversos , Alcamidas Poli-Insaturadas/química , Escalas de Graduação Psiquiátrica , PsicometriaRESUMO
17(R),18(S)-Epoxyeicosatetraenoic acid (EEQ) is a cytochrome P450 metabolite of eicosapentaenoic acid (EPA) and a powerful negative chronotrope with low nanomolar activity in a neonatal rat cardiomyocyte (NRCM) arrhythmia model. Prior studies identified oxamide 2b as a soluble epoxide hydrolase (sEH) stable replacement but unsuitable for in vivo applications due to limited oral bioavailability and metabolic stability. These ADME limitations have been addressed in an improved generation of negative chronotropes, e.g., 4 and 16, which were evaluated as potential clinical candidates.