Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 59(3): 230-239, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31603665

RESUMO

The α-ketoglutarate-dependent (AlkB) superfamily of FeII/2-oxoglutarate (2-OG)-dependent dioxygenases consists of a unique class of nucleic acid repair enzymes that reversibly remove alkyl substituents from nucleobases through oxidative dealkylation. Recent studies have verified the involvement of AlkB dioxygenases in a variety of human diseases. However, the development of small organic molecules that can function as enzyme inhibitors to block the action of oxidative dealkylation is still in its infancy. These purposeful chemical motifs, if capable of influencing the dealkylation activity, would have a potential clinical value by controlling genetic information expression. In this Perspective, we will summarize some of the most updated inhibitors of AlkB family demethylases and hope to provide a thought for the follow-up screening optimization.


Assuntos
Enzimas AlkB/genética , Inibidores Enzimáticos/farmacologia , Complexo Cetoglutarato Desidrogenase/genética , Enzimas AlkB/antagonistas & inibidores , Enzimas AlkB/química , Dano ao DNA/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Ácidos Cetoglutáricos/antagonistas & inibidores
2.
Circ Res ; 122(1): 31-46, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29158345

RESUMO

RATIONALE: Human cardiac mesenchymal cells (CMSCs) are a therapeutically relevant primary cell population. Diabetes mellitus compromises CMSC function as consequence of metabolic alterations and incorporation of stable epigenetic changes. OBJECTIVE: To investigate the role of α-ketoglutarate (αKG) in the epimetabolic control of DNA demethylation in CMSCs. METHODS AND RESULTS: Quantitative global analysis, methylated and hydroxymethylated DNA sequencing, and gene-specific GC methylation detection revealed an accumulation of 5-methylcytosine, 5-hydroxymethylcytosine, and 5-formylcytosine in the genomic DNA of human CMSCs isolated from diabetic donors. Whole heart genomic DNA analysis revealed iterative oxidative cytosine modification accumulation in mice exposed to high-fat diet (HFD), injected with streptozotocin, or both in combination (streptozotocin/HFD). In this context, untargeted and targeted metabolomics indicated an intracellular reduction of αKG synthesis in diabetic CMSCs and in the whole heart of HFD mice. This observation was paralleled by a compromised TDG (thymine DNA glycosylase) and TET1 (ten-eleven translocation protein 1) association and function with TET1 relocating out of the nucleus. Molecular dynamics and mutational analyses showed that αKG binds TDG on Arg275 providing an enzymatic allosteric activation. As a consequence, the enzyme significantly increased its capacity to remove G/T nucleotide mismatches or 5-formylcytosine. Accordingly, an exogenous source of αKG restored the DNA demethylation cycle by promoting TDG function, TET1 nuclear localization, and TET/TDG association. TDG inactivation by CRISPR/Cas9 knockout or TET/TDG siRNA knockdown induced 5-formylcytosine accumulation, thus partially mimicking the diabetic epigenetic landscape in cells of nondiabetic origin. The novel compound (S)-2-[(2,6-dichlorobenzoyl)amino]succinic acid (AA6), identified as an inhibitor of αKG dehydrogenase, increased the αKG level in diabetic CMSCs and in the heart of HFD and streptozotocin mice eliciting, in HFD, DNA demethylation, glucose uptake, and insulin response. CONCLUSIONS: Restoring the epimetabolic control of DNA demethylation cycle promises beneficial effects on cells compromised by environmental metabolic changes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Ácidos Cetoglutáricos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Oxigenases de Função Mista/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Timina DNA Glicosilase/metabolismo , Animais , Células Cultivadas , Citosina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Inibidores Enzimáticos/farmacologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Ácidos Cetoglutáricos/antagonistas & inibidores , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Oxirredução/efeitos dos fármacos
3.
Nat Commun ; 7: 11971, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27321283

RESUMO

Cancer cells often require glutamine for growth, thereby distinguishing them from most normal cells. Here we show that PIK3CA mutations reprogram glutamine metabolism by upregulating glutamate pyruvate transaminase 2 (GPT2) in colorectal cancer (CRC) cells, making them more dependent on glutamine. Compared with isogenic wild-type (WT) cells, PIK3CA mutant CRCs convert substantially more glutamine to α-ketoglutarate to replenish the tricarboxylic acid cycle and generate ATP. Mutant p110α upregulates GPT2 gene expression through an AKT-independent, PDK1-RSK2-ATF4 signalling axis. Moreover, aminooxyacetate, which inhibits the enzymatic activity of aminotransferases including GPT2, suppresses xenograft tumour growth of CRCs with PIK3CA mutations, but not with WT PIK3CA. Together, these data establish oncogenic PIK3CA mutations as a cause of glutamine dependency in CRCs and suggest that targeting glutamine metabolism may be an effective approach to treat CRC patients harbouring PIK3CA mutations.


Assuntos
Adenocarcinoma/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Glutamina/metabolismo , Mutação , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/enzimologia , Adenocarcinoma/patologia , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/biossíntese , Ácido Amino-Oxiacético/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Inibidores Enzimáticos/farmacologia , Feminino , Glutamina/antagonistas & inibidores , Células HCT116 , Células HT29 , Humanos , Ácidos Cetoglutáricos/antagonistas & inibidores , Ácidos Cetoglutáricos/metabolismo , Camundongos , Camundongos Nus , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil , Transdução de Sinais , Transaminases/genética , Transaminases/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Anticancer Res ; 36(5): 2233-41, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27127128

RESUMO

BACKGROUND/AIM: 3-bromopyruvate (3BrPA) is an antitumor agent able to inhibit aerobic glycolysis and oxidative phosphorylation, therefore inducing cell death. However, cancer cells are also highly dependent of glutaminolysis and tricarboxylic acid cycle (TCA) regarding survival and 3BrPA action in these metabolic routes is poorly understood. MATERIALS AND METHODS: The effect of 3BrPA was characterized in mice liver and kidney mitochondria, as well as in human HepG2 cells. RESULTS: Low concentration of 3-BrPA significantly affected both glutaminolysis and TCA cycle functions, through inhibition of isocitrate dehydrogenase, α-ketoglutarate dehydrogenase and succinate dehydrogenase. Additionally, 3-BrPA treatment significantly decreased the reduced status of thiol groups in HepG2 cells without proportional increase of oxidizing groups, suggesting that these chemical groups are the target of alkylation reactions induced by 3-BrPA. CONCLUSION: This work demonstrates, for the first time, the effect of 3-BrPA in glutaminolysis and TCA cycle. Our results suggest that the combined action of 3-BrPA in glutaminolysis, TCA and glycolysis, inhibiting steps downstream of the glucose and glutamine metabolism, has an antitumor effect.


Assuntos
Ciclo do Ácido Cítrico/efeitos dos fármacos , Glutamina/metabolismo , Piruvatos/farmacologia , Animais , Células Hep G2 , Humanos , Isocitrato Desidrogenase/antagonistas & inibidores , Ácidos Cetoglutáricos/antagonistas & inibidores , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Succinato Desidrogenase/antagonistas & inibidores , Compostos de Sulfidrila/metabolismo
5.
Oncotarget ; 6(11): 8606-20, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25825982

RESUMO

Cancer-associated isocitrate dehydrogenase (IDH) 1 and 2 mutations gain a new activity of reducing α-KG to produce D-2-hydroxyglutarate (D-2-HG), which is proposed to function as an oncometabolite by inhibiting α-KG dependent dioxygenases. We investigated the function of D-2-HG in tumorigenesis using IDH1 and IDH2 mutant cancer cell lines. Inhibition of D-2-HG production either by specific deletion of the mutant IDH1-R132C allele or overexpression of D-2-hydroxyglutarate dehydrogenase (D2HGDH) increases α-KG and related metabolites, restores the activity of some α-KG-dependent dioxygenases, and selectively alters gene expression. Ablation of D-2-HG production has no significant effect on cell proliferation and migration, but strongly inhibits anchorage independent growth in vitro and tumor growth in xenografted mouse models. Our study identifies a new activity of oncometabolite D-2-HG in promoting tumorigenesis.


Assuntos
Glutaratos/metabolismo , Isocitrato Desidrogenase/fisiologia , Proteínas de Neoplasias/fisiologia , Sarcoma/patologia , Animais , Adesão Celular , Divisão Celular , Linhagem Celular Tumoral , Movimento Celular , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Xenoenxertos , Humanos , Isocitrato Desidrogenase/deficiência , Isocitrato Desidrogenase/genética , Ácidos Cetoglutáricos/antagonistas & inibidores , Masculino , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Oxigenases de Função Mista/metabolismo , Mutação de Sentido Incorreto , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Proteínas Recombinantes de Fusão/metabolismo , Sarcoma/genética , Sarcoma/metabolismo , Transfecção
6.
Sci Rep ; 4: 5952, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25092173

RESUMO

Tributyltin (TBT) is known to cause developmental defects as endocrine disruptive chemicals (EDCs). At nanomoler concentrations, TBT actions were mediated by genomic pathways via PPAR/RXR. However, non-genomic target of TBT has not been elucidated. To investigate non-genomic TBT targets, we performed comprehensive metabolomic analyses using human embryonic carcinoma NT2/D1 cells. We found that 100 nM TBT reduced the amounts of α-ketoglutarate, succinate and malate. We further found that TBT decreased the activity of NAD-dependent isocitrate dehydrogenase (NAD-IDH), which catalyzes the conversion of isocitrate to α-ketoglutarate in the TCA cycle. In addition, TBT inhibited cell growth and enhanced neuronal differentiation through NAD-IDH inhibition. Furthermore, studies using bacterially expressed human NAD-IDH and in silico simulations suggest that TBT inhibits NAD-IDH due to a possible interaction. These results suggest that NAD-IDH is a novel non-genomic target of TBT at nanomolar levels. Thus, a metabolomic approach may provide new insights into the mechanism of EDC action.


Assuntos
Ciclo do Ácido Cítrico/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Poluentes Ambientais/toxicidade , Isocitrato Desidrogenase/antagonistas & inibidores , Compostos de Trialquitina/toxicidade , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Embrião de Mamíferos , Disruptores Endócrinos/química , Poluentes Ambientais/química , Humanos , Isocitrato Desidrogenase/metabolismo , Isocitratos/antagonistas & inibidores , Isocitratos/metabolismo , Ácidos Cetoglutáricos/antagonistas & inibidores , Ácidos Cetoglutáricos/metabolismo , Malatos/antagonistas & inibidores , Malatos/metabolismo , Masculino , Simulação de Acoplamento Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Ácido Succínico/antagonistas & inibidores , Ácido Succínico/metabolismo , Testículo/efeitos dos fármacos , Testículo/metabolismo , Testículo/patologia , Compostos de Trialquitina/química
7.
Metallomics ; 2(6): 397-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21072385

RESUMO

2-Oxoglutarate oxygenases are inhibited by a range of transition metals, as exemplified by studies on human histone demethylases and prolyl hydroxylase domain 2 (PHD2 or EGLN1). The biological effects associated with 2-oxoglutarate oxygenase inhibition may result from inhibition of more than one enzyme and by mechanisms in addition to simple competition with the Fe(ii) cofactor.


Assuntos
Coenzimas/farmacologia , Ativação Enzimática/efeitos dos fármacos , Ácidos Cetoglutáricos , Oxigenases/antagonistas & inibidores , Elementos de Transição/farmacologia , Ligação Competitiva , Histona Desmetilases/antagonistas & inibidores , Humanos , Concentração Inibidora 50 , Ácidos Cetoglutáricos/antagonistas & inibidores , Pró-Colágeno-Prolina Dioxigenase/antagonistas & inibidores
9.
J Biol Chem ; 260(25): 13690-3, 1985 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-3902822

RESUMO

The alpha-ketoglutarate dehydrogenase complex of Escherichia coli utilizes pyruvate as a poor substrate, with an activity of 0.082 units/mg of protein compared with 22 units/mg of protein for alpha-ketoglutarate. Pyruvate fully reduces the FAD in the complex and both alpha-keto[5-14C]glutarate and [2-14C]pyruvate fully [14C] acylate the lipoyl groups with approximately 10 nmol of 14C/mg of protein, corresponding to 24 lipoyl groups. NADH-dependent succinylation by [4-14C]succinyl-CoA also labels the enzyme with approximately 10 nmol of 14C/mg of protein. Therefore, pyruvate is a true substrate. However, the pyruvate and alpha-ketoglutarate activities exhibit different thiamin pyrophosphate dependencies. Moreover, 3-fluoropyruvate inhibits the pyruvate activity of the complex without affecting the alpha-ketoglutarate activity, and 2-oxo-3-fluoroglutarate inhibits the alpha-ketoglutarate activity without affecting the pyruvate activity. 3-Fluoro[1,2-14C]pyruvate labels about 10% of the E1 components (alpha-ketoacid dehydrogenases). The dihydrolipoyl transsuccinylase-dihydrolipoyl dehydrogenase subcomplex (E2E3) is activated as a pyruvate dehydrogenase complex by addition of E. coli pyruvate dehydrogenase, the E1 component of the pyruvate dehydrogenase complex. All evidence indicates that the alpha-ketoglutarate dehydrogenase complex purified from E. coli is a hybrid complex containing pyruvate dehydrogenase (approximately 10%) and alpha-ketoglutarate dehydrogenase (approximately 90%) as its E1 components.


Assuntos
Escherichia coli/enzimologia , Complexo Cetoglutarato Desidrogenase/análise , Cetona Oxirredutases/análise , Complexo Piruvato Desidrogenase/análise , Acetilação , Ácidos Cetoglutáricos/antagonistas & inibidores , Oxirredução , Piruvatos/antagonistas & inibidores , Piruvatos/metabolismo , Ácido Pirúvico , Tiamina Pirofosfato/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA