Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
New Phytol ; 242(5): 2163-2179, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38532564

RESUMO

The S-domain-type receptor-like kinase (SD-RLK) LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION (LORE) from Arabidopsis thaliana is a pattern recognition receptor that senses medium-chain 3-hydroxy fatty acids, such as 3-hydroxydecanoic acid (3-OH-C10:0), to activate pattern-triggered immunity. Here, we show that LORE homomerization is required to activate 3-OH-C10:0-induced immune signaling. Fluorescence lifetime imaging in Nicotiana benthamiana demonstrates that AtLORE homomerizes via the extracellular and transmembrane domains. Co-expression of AtLORE truncations lacking the intracellular domain exerts a dominant negative effect on AtLORE signaling in both N. benthamiana and A. thaliana, highlighting that homomerization is essential for signaling. Screening for 3-OH-C10:0-induced reactive oxygen species production revealed natural variation within the Arabidopsis genus. Arabidopsis lyrata and Arabidopsis halleri do not respond to 3-OH-C10:0, although both possess a putative LORE ortholog. Both LORE orthologs have defective extracellular domains that bind 3-OH-C10:0 to a similar level as AtLORE, but lack the ability to homomerize. Thus, ligand binding is independent of LORE homomerization. Analysis of AtLORE and AlyrLORE chimera suggests that the loss of AlyrLORE homomerization is caused by several amino acid polymorphisms across the extracellular domain. Our findings shed light on the activation mechanism of LORE and the loss of 3-OH-C10:0 perception within the Arabidopsis genus.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Multimerização Proteica , Transdução de Sinais , Arabidopsis/imunologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Ácidos Decanoicos/metabolismo , Ácidos Decanoicos/farmacologia , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/metabolismo , Imunidade Vegetal/efeitos dos fármacos , Domínios Proteicos , Espécies Reativas de Oxigênio/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo
2.
Int J Biol Macromol ; 257(Pt 2): 128641, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061520

RESUMO

The present work reports an optimization of the synthesis of MLM-type (medium, long, medium) structured lipids (SL) through an acidolysis reaction of grape seed oil with capric acid catalyzed by Rhizopus oryzae lipase immobilized. At first, tests were carried out by preparing the biocatalysts using enzyme loadings (0.15 to 1 g of enzymatic powder) for each gram of support. Enzyme loading was used 0.3 g of enzymatic powder, and hydrolytic activity of 1860 ± 23.4 IU/g was reached. Optimized conditions determined by the Central Composite Rotatable Design (CCRD) revealed that the acidolysis reaction reached approximately 59 % incorporation degree (%ID) after 24 h, in addition to the fact that the biocatalyst could maintain the incorporation degree in five consecutive cycles. From this high incorporation degree, cell viability assays were performed with murine fibroblast cell lines and human cervical adenocarcinoma cell lines. Concerning the cytotoxicity assays, the concentration of MLM-SL to 1.75 and 2 % v/v were able to induce cell death in 56 % and 64 % of adenocarcinoma cells, respectively. Human cervical adenocarcinoma cells showed greater sensitivity to the induction of cell death when using emulsions with MLM-SL > 1.75 % v/v compared to emulsions with lower content indicating a potential for combating carcinogenic cells.


Assuntos
Adenocarcinoma , Ácidos Decanoicos , Humanos , Animais , Camundongos , Pós , Ácidos Decanoicos/metabolismo , Lipase/metabolismo , Enzimas Imobilizadas/metabolismo
3.
Neurochem Res ; 48(3): 697-712, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36342577

RESUMO

To solve the restrictions of a classical ketogenic diet, a modified medium-chain triglyceride diet was introduced which required only around 60% of dietary energy. Capric acid (CA), a small molecule, is one of the main components because its metabolic profile offers itself as an alternate source of energy to the brain in the form of ketone bodies. This is possible with the combined capability of CA to cross the blood-brain barrier and achieve a concentration of 50% concentration in the brain more than any other fatty acid in plasma. Natural sources of CA include vegetable oils such as palm oil and coconut oil, mammalian milk and some seeds. Several studies have shown that CA has varied action on targets that include AMPA receptors, PPAR-γ, inflammatory/oxidative stress pathways and gut dysbiosis. Based on these lines of evidence, CA has proved to be effective in the amelioration of neurological diseases such as epilepsy, affective disorders and Alzheimer's disease. But these studies still warrant more pre-clinical and clinical studies that would further prove its efficacy. Hence, to understand the potential of CA in brain disease and associated comorbid conditions, an advance and rigorous molecular mechanistic study, apart from the reported in-vitro/in-vivo studies, is urgently required for the development of this compound through clinical setups.


Assuntos
Dieta Cetogênica , Epilepsia , Animais , Humanos , Ácidos Decanoicos/metabolismo , Ácidos Graxos/metabolismo , Mamíferos/metabolismo
4.
Mol Brain ; 14(1): 132, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479615

RESUMO

The medium-chain fatty acids octanoic acid (C8) and decanoic acid (C10) are gaining attention as beneficial brain fuels in several neurological disorders. The protective effects of C8 and C10 have been proposed to be driven by hepatic production of ketone bodies. However, plasma ketone levels correlates poorly with the cerebral effects of C8 and C10, suggesting that additional mechanism are in place. Here we investigated cellular C8 and C10 metabolism in the brain and explored how the protective effects of C8 and C10 may be linked to cellular metabolism. Using dynamic isotope labeling, with [U-13C]C8 and [U-13C]C10 as metabolic substrates, we show that both C8 and C10 are oxidatively metabolized in mouse brain slices. The 13C enrichment from metabolism of [U-13C]C8 and [U-13C]C10 was particularly prominent in glutamine, suggesting that C8 and C10 metabolism primarily occurs in astrocytes. This finding was corroborated in cultured astrocytes in which C8 increased the respiration linked to ATP production, whereas C10 elevated the mitochondrial proton leak. When C8 and C10 were provided together as metabolic substrates in brain slices, metabolism of C10 was predominant over that of C8. Furthermore, metabolism of both [U-13C]C8 and [U-13C]C10 was unaffected by etomoxir indicating that it is independent of carnitine palmitoyltransferase I (CPT-1). Finally, we show that inhibition of glutamine synthesis selectively reduced 13C accumulation in GABA from [U-13C]C8 and [U-13C]C10 metabolism in brain slices, demonstrating that the glutamine generated from astrocyte C8 and C10 metabolism is utilized for neuronal GABA synthesis. Collectively, the results show that cerebral C8 and C10 metabolism is linked to the metabolic coupling of neurons and astrocytes, which may serve as a protective metabolic mechanism of C8 and C10 supplementation in neurological disorders.


Assuntos
Astrócitos/metabolismo , Caprilatos/metabolismo , Córtex Cerebral/metabolismo , Ácidos Decanoicos/metabolismo , Glutamina/metabolismo , Neurônios/metabolismo , Ácido gama-Aminobutírico/biossíntese , Animais , Animais não Endogâmicos , Carnitina O-Palmitoiltransferase/fisiologia , Células Cultivadas , Córtex Cerebral/citologia , Compostos de Epóxi/farmacologia , Glucose/metabolismo , Masculino , Camundongos , Mitocôndrias/metabolismo , Consumo de Oxigênio , Organismos Livres de Patógenos Específicos
5.
Nutrients ; 13(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34444916

RESUMO

The study was conducted to explore actions of decanoic acid on regulating intestinal barrier and antioxidant functions in intestinal epithelium cells isolated from porcine jejunum (IPEC-J2) and C57/BL6 mice models. In vitro and vivo assays, mice and IPEC-J2 cells treated by H2O2 were disposed of sodium decanoate and sodium butyrate to determine intestinal barrier and antioxidant functions of the host. Results showed that sodium decanoate upregulated expression of tight junction proteins and improved antioxidant capacity in both IPEC-J2 cells treated by H2O2 and mice models (p < 0.05). Sodium decanoate increased weight gain and ileal villus height of mice compared with control and sodium butyrate treatments (p < 0.05). Sodium decanoate increased α-diversity of ileal microbiota, volatile fatty acids concentration, and G protein-coupled receptor-43 (GPR-43) expression in the ileum and colon of mice (p < 0.05). In conclusion, sodium decanoate improved antioxidant capacity, intestinal morphology, and gut physical barrier of intestinal epithelial cells, resulting in an increase growth performance of mice, which is mediated through activating GPR-43 signaling.


Assuntos
Antioxidantes/metabolismo , Ácidos Decanoicos/metabolismo , Mucosa Intestinal/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Ácido Butírico/metabolismo , Colo/metabolismo , Células Epiteliais/metabolismo , Microbioma Gastrointestinal , Íleo/metabolismo , Jejuno/metabolismo , Camundongos , Modelos Animais , Transdução de Sinais , Suínos , Junções Íntimas/metabolismo , Regulação para Cima
6.
Angew Chem Int Ed Engl ; 60(10): 5561-5568, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325627

RESUMO

Cellular life requires a high degree of molecular complexity and self-organization, some of which must have originated in a prebiotic context. Here, we demonstrate how both of these features can emerge in a plausibly prebiotic system. We found that chemical gradients in simple mixtures of activated amino acids and fatty acids can lead to the formation of amyloid-like peptide fibrils that are localized inside of a proto-cellular compartment. In this process, the fatty acid or lipid vesicles act both as a filter, allowing the selective passage of activated amino acids, and as a barrier, blocking the diffusion of the amyloidogenic peptides that form spontaneously inside the vesicles. This synergy between two distinct building blocks of life induces a significant increase in molecular complexity and spatial order thereby providing a route for the early molecular evolution that could give rise to a living cell.


Assuntos
Aminoácidos/química , Proteínas Amiloidogênicas/química , Lipossomos/química , Origem da Vida , Peptídeos/química , Aminoácidos/metabolismo , Proteínas Amiloidogênicas/metabolismo , Ácidos Decanoicos/química , Ácidos Decanoicos/metabolismo , Lipossomos/metabolismo , Ácido Oleico/química , Ácido Oleico/metabolismo , Peptídeos/metabolismo , Permeabilidade , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Multimerização Proteica
7.
Nutrients ; 12(12)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352829

RESUMO

BACKGROUND: The mechanism of action of the ketogenic diet (KD), an effective treatment for pharmacotherapy refractory epilepsy, is not fully elucidated. The present study examined the effects of two metabolites accumulating under KD-beta-hydroxybutyrate (ßHB) and decanoic acid (C10) in hippocampal murine (HT22) neurons. METHODS: A mouse HT22 hippocampal neuronal cell line was used in the present study. Cellular lipids were analyzed in cell cultures incubated with high (standard) versus low glucose supplemented with ßHB or C10. Cellular cholesterol was analyzed using HPLC, while phospholipids and sphingomyelin (SM) were analyzed using HPTLC. RESULTS: HT22 cells showed higher cholesterol, but lower SM levels in the low glucose group without supplements as compared to the high glucose groups. While cellular cholesterol was reduced in both ßHB- and C10-incubated cells, phospholipids were significantly higher in C10-incubated neurons. Ratios of individual phospholipids to cholesterol were significantly higher in ßHB- and C10-incubated neurons as compared to controls. CONCLUSION: Changes in the ratios of individual phospholipids to cholesterol in HT22 neurons suggest a possible alteration in the composition of the plasma membrane and organelle membranes, which may provide insight into the working mechanism of KD metabolites ßHB and C10.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Colesterol/metabolismo , Ácidos Decanoicos/metabolismo , Dieta Cetogênica , Hipocampo/metabolismo , Neurônios/metabolismo , Fosfolipídeos/metabolismo , Ácido 3-Hidroxibutírico/análise , Animais , Restrição Calórica , Linhagem Celular , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/análise , Ácidos Decanoicos/análise , Glucose/metabolismo , Hipocampo/química , Hipocampo/citologia , Camundongos , Neurônios/química , Fosfatidilserinas/análise , Fosfatidilserinas/metabolismo , Fosfolipídeos/análise , Esfingomielinas/análise , Esfingomielinas/metabolismo
8.
Int J Biol Macromol ; 164: 1600-1607, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768477

RESUMO

The acyl-CoA dehydrogenase (FadE) and (R)-specific enoyl-CoA hydratase (PhaJ) are functionally related to the degradation of fatty acids and the synthesis of polyhydroxyalkanoates (PHAs). To verify this, a recombinant Cupriavidus necator H16 harboring the plasmid -pMPJAS03- with fadE from Escherichia coli strain K12 and phaJ1 from Pseudomonas putida strain KT2440 under the arabinose promoter (araC-PBAD) was constructed. The impact of co-expressing fadE and phaJ genes on C. necator H16/pMPJAS03 maintaining the wild-type synthase on short-chain-length/medium-chain-length PHA formation from canola or avocado oil at different arabinose concentrations was investigated. The functional activity of fadEE.c led to obtaining higher biomass and PHA concentrations compared to the cultures without expressing the gene. While high transcriptional levels of phaJ1P.p, at 0.1% of arabinose, aid the wild-type synthase to polymerize larger-side chain monomers, such as 3-Hydroxyoctanoate (3HO) and 3-Hydroxydecanoate (3HD). The presence of even small amounts of 3HO and 3HD in the co-polymers significantly depresses the melting temperature of the polymers, compared to those composed of pure 3-hydroxybutyrate (3HB). Our data presents supporting evidence that the synthesis of larger-side chain monomers by the recombinant strain relies not only upon the affinity of the wild-type synthase but also on the functionality of the intermediate supplying enzymes.


Assuntos
Acil-CoA Desidrogenase/genética , Cupriavidus necator/genética , Enoil-CoA Hidratase/genética , Óleos de Plantas/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/genética , Acil-CoA Desidrogenase/metabolismo , Arabinose/genética , Arabinose/metabolismo , Caprilatos/metabolismo , Cupriavidus necator/metabolismo , Ácidos Decanoicos/metabolismo , Enoil-CoA Hidratase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Hidroxibutiratos/metabolismo , Plasmídeos/genética , Poli-Hidroxialcanoatos/metabolismo , Regiões Promotoras Genéticas/genética , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Transcrição Gênica/genética
9.
Int J Mol Sci ; 21(13)2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32635401

RESUMO

Women with polycystic ovary syndrome (PCOS) are more likely to develop endometrial cancer (EC). The molecular mechanisms which increase the risk of EC in PCOS are unclear. Derangements in lipid metabolism are associated with EC, but there have been no studies, investigating if this might increase the risk of EC in PCOS. This was a cross-sectional study of 102 women in three groups of 34 (PCOS, EC and controls) at Nottingham University Hospital, UK. All participants had clinical assessments, followed by obtaining plasma and endometrial tissue samples. Lipidomic analyses were performed using liquid chromatography (LC) coupled with high resolution mass spectrometry (HRMS) and the obtained lipid datasets were screened using standard software and databases. Using multivariate data analysis, there were no common markers found for EC and PCOS. However, on univariate analyses, both PCOS and EC endometrial tissue samples showed a significant decrease in monoacylglycerol 24:0 and capric acid compared to controls. Further studies are required to validate these findings and investigate the potential role of monoacylglycerol 24:0 and capric acid in the link between PCOS with EC.


Assuntos
Neoplasias do Endométrio/metabolismo , Metabolismo dos Lipídeos , Síndrome do Ovário Policístico/metabolismo , Adulto , Idoso , Biomarcadores/metabolismo , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Estudos Transversais , Ácidos Decanoicos/metabolismo , Neoplasias do Endométrio/etiologia , Feminino , Humanos , Lipidômica , Pessoa de Meia-Idade , Monoglicerídeos/metabolismo , Análise Multivariada , Síndrome do Ovário Policístico/complicações
10.
Curr Microbiol ; 77(6): 897-909, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31960091

RESUMO

Screening of high-efficient polycyclic aromatic hydrocarbon (PAH)-degrading bacteria is important due to environmental contamination by PAHs. In this study, sediment contaminated with phenanthrene (Phe), pyrene (Pyr), and fluoranthene (Fluo) was used as a source of bacteria. The ability of these isolated bacteria to convert PAHs into valuable products was determined. Based on a primary screening, 20 bacterial isolates were obtained; however, only three strains showed a good PAH-degrading ability, and were identified as Pseudomonas aeruginosa, Pseudomonas sp., and Ralstonia sp. PAH-degrading genes were detected in all isolates. Notably, all selected strains could degrade PAHs using the ortho or meta cleavage pathways due to the presence of catechol dioxygenase genes. The ability of isolated strains to convert PAHs into polyhydroxyalkanoate (PHA) was also evaluated in both single and mixed cultures. Single cultures of P. aeruginosa PAH-P02 showed 100% degradation of PAHs, with the highest biomass (1.27 ± 0.02 g l-1) and PHA content (38.20 ± 1.92% dry cell weight). However, degradative ability and PHA production were decreased when mixtures of PAHs were used. This study showed that P. aeruginosa, Pseudomonas sp., and Ralstonia sp. were able to degrade PAHs and convert them into medium-chain-length (mcl)-PHA. A high content of 3-hydroxydecanoate (3HD, C10) was observed in this study. The formation of mcl-PHA with high 3HD content from Pyr and Fluo, and the assessment of mixed cultures converting PAHs to mcl-PHA, were novel contributions.


Assuntos
Bactérias/metabolismo , Poluentes Ambientais/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Técnicas de Cultura Celular por Lotes , Biodegradação Ambiental , Técnicas de Cocultura , Ácidos Decanoicos/metabolismo , Fermentação , Fluorenos/análise , Fluorenos/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Fenantrenos/análise , Fenantrenos/metabolismo , Filogenia , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Pirenos/análise , Pirenos/metabolismo
11.
Curr Protein Pept Sci ; 21(8): 777-784, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31889482

RESUMO

Medium-chain fatty acids (MCFAs) are the main form of Medium Chain Triglycerides (MCTs) utilized by monogastric animals. MCFAs can be directly absorbed and supply rapid energy to promote the renewal and repair of intestinal epithelial cells, maintain the integrity of intestinal mucosal barrier function, and reduce inflammation and stress. In our review, we pay more attention to the role of MCFAs on intestinal microbiota and mucosa immunity to explore MCFA's positive effect. It was found that MCFAs and their esterified forms can decrease pathogens while increasing probiotics. In addition, being recognized via specific receptors, MCFAs are capable of alleviating inflammation to a certain extent by regulating inflammation and immune-related pathways. MCFAs may also have a certain value to relieve intestinal allergy and inflammatory bowel disease (IBD). Unknown mechanism of various MCFA characteristics still causes dilemmas in the application, thus MCFAs are used generally in limited dosages and combined with short-chain organic acids (SOAs) to attain ideal results. We hope that further studies will provide guidance for the practical use of MCFAs in animal feed.


Assuntos
Caprilatos/imunologia , Colite Ulcerativa/dietoterapia , Doença de Crohn/dietoterapia , Ácidos Decanoicos/imunologia , Síndrome do Intestino Irritável/dietoterapia , Ácidos Láuricos/imunologia , Ração Animal/análise , Animais , Caprilatos/administração & dosagem , Caprilatos/metabolismo , Colite Ulcerativa/imunologia , Colite Ulcerativa/microbiologia , Colite Ulcerativa/patologia , Doença de Crohn/imunologia , Doença de Crohn/microbiologia , Doença de Crohn/patologia , Citocinas/genética , Citocinas/imunologia , Ácidos Decanoicos/administração & dosagem , Ácidos Decanoicos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade nas Mucosas/efeitos dos fármacos , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/imunologia , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Intestinos/microbiologia , Síndrome do Intestino Irritável/imunologia , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/patologia , Ácidos Láuricos/administração & dosagem , Ácidos Láuricos/metabolismo , NF-kappa B/genética , NF-kappa B/imunologia , Estômago/efeitos dos fármacos , Estômago/imunologia , Estômago/microbiologia , Triglicerídeos/imunologia , Triglicerídeos/metabolismo
12.
Xenobiotica ; 50(6): 722-732, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31680603

RESUMO

Poly- and perfluorinated alkyl substances (PFAS) are environmentally persistent chemicals associated with many adverse health outcomes. The National Toxicology Program evaluated the toxicokinetics (TK) of several PFAS to provide context for toxicologic findings.Plasma TK parameters and tissue (liver, kidney, brain) concentrations are reported for perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA) or perfluorodecanoic acid (PFDA) after single-dose administration in male and female Hsd:Sprague-Dawley® (SD) rats.Generally, longer Tmax and elimination half-lives, and slower clearance f, were correlated with longer chain length. Male rats administered PFOA had a prolonged half-life compared to females (215 h vs. 2.75), while females had faster clearance and smaller plasma area under the curve (AUC). Females administered PFHxA had a shorter half-life (2 h vs. 9) than males and faster clearance with a smaller plasma AUC, although this was less pronounced than PFOA. There was no sex difference in PFDA half-life. Female rats administered PFDA had a higher plasma AUC/dose than males, and a slower clearance. PFDA had the highest levels in the liver of the PFAS evaluated.Profiling the toxicokinetics of these PFAS allows for comparison among subclasses, and more direct translation of rodent toxicity to human populations.


Assuntos
Caproatos/toxicidade , Caprilatos/toxicidade , Ácidos Decanoicos/toxicidade , Poluentes Ambientais/toxicidade , Fluorocarbonos/toxicidade , Animais , Caproatos/metabolismo , Caprilatos/metabolismo , Ácidos Decanoicos/metabolismo , Poluentes Ambientais/metabolismo , Feminino , Fluorocarbonos/metabolismo , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Toxicocinética
13.
Molecules ; 24(22)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717454

RESUMO

Endophytes have been recognized as a source for structurally novel and biologically active secondary metabolites. Among the host plants for endophytes, some medicinal plants that produce pharmaceuticals have been reported to carry endophytes, which could also produce bioactive secondary metabolites. In this study, the medicinal plant Aconitum carmichaeli was selected as a potential source for endophytes. An endophytic microorganism, Aureobasidium pullulans AJF1, harbored in the flower of Aconitum carmichaeli, was cultured on a large scale and extracted with an organic solvent. Extensive chemical investigation of the extracts resulted in isolation of three lipid type compounds (1-3), which were identified to be (3R,5R)-3,5-dihydroxydecanoic acid (1), (3R,5R)-3-(((3R,5R)-3,5-dihydroxydecanoyl)oxy)-5-hydroxydecanoic acid (2), and (3R,5R)-3-(((3R,5R)-5-(((3R,5R)-3,5-dihydroxydecanoyl)oxy)-3-hydroxydecanoyl)oxy)-5-hydroxydecanoic acid (3) by chemical methods in combination with spectral analysis. Compounds 2 and 3 had new structures. Absolute configurations of the isolated compounds (1-3) were established using modified Mosher's method together with analysis of NMR data for their acetonide derivatives. All the isolates (1-3) were evaluated for antibiotic activities against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and their cytotoxicities against MCF-7 cancer cells. Unfortunately, they showed low antibiotic activities and cytotoxic activities.


Assuntos
Ascomicetos/metabolismo , Ácidos Decanoicos/química , Ácidos Decanoicos/metabolismo , Hidroxiácidos/química , Hidroxiácidos/metabolismo , Aconitum/genética , Aconitum/metabolismo , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Ascomicetos/genética , Bactérias/efeitos dos fármacos , Ácidos Decanoicos/síntese química , Ácidos Decanoicos/farmacologia , Humanos , Hidroxiácidos/síntese química , Hidroxiácidos/farmacologia , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular
14.
Biotechnol Lett ; 41(10): 1163-1175, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31463715

RESUMO

OBJECTIVE: To investigate kinetics and thermodynamics of lipase-catalyzed esterification of capric acid with 1-propyl alcohol in a solvent-free system for synthesis of propyl caprate. RESULTS: The capric acid conversion of 83.82% is achieved at temperature 60 °C, speed of agitation 300 rpm, molar ratio acid:alcohol 1:3, enzyme loading 2% (w/w) and molecular sieves loading 5% (w/w). The activation energy (Ea) for the reaction was determined as 37.79 kJ mol-1. Furthermore, enthalpy (ΔH), entropy (ΔS) and Gibbs free energy (ΔG) values were found out to be + 90.45 kJ mol-1, + 278.99 J mol-1 K-1 and - 2.35 kJ mol-1 respectively. CONCLUSIONS: The results showed that the lipase-catalyzed esterification exhibits an ordered bi-bi mechanism with capric acid inhibiting the reaction and forming the dead-end complex with the lipase. Under the given set of reaction conditions, the lipase catalysed esterification reaction was anticipated to be spontaneous, referring to the value of the Gibbs free energy change (ΔG). Moreover, the esterification process was found to be endothermic, based on the values of enthalpy (ΔH) and entropy (ΔS).


Assuntos
1-Propanol/metabolismo , Ácidos Decanoicos/metabolismo , Lipase/metabolismo , Esterificação , Temperatura Alta , Cinética , Lipase/química
15.
Science ; 364(6436): 178-181, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30975887

RESUMO

In plants, cell-surface immune receptors sense molecular non-self-signatures. Lipid A of Gram-negative bacterial lipopolysaccharide is considered such a non-self-signature. The receptor kinase LIPOOLIGOSACCHARIDE-SPECIFIC REDUCED ELICITATION (LORE) mediates plant immune responses to Pseudomonas and Xanthomonas but not enterobacterial lipid A or lipopolysaccharide preparations. Here, we demonstrate that synthetic and bacterial lipopolysaccharide-copurified medium-chain 3-hydroxy fatty acid (mc-3-OH-FA) metabolites elicit LORE-dependent immunity. The mc-3-OH-FAs are sensed in a chain length- and hydroxylation-specific manner, with free (R)-3-hydroxydecanoic acid [(R)-3-OH-C10:0] representing the strongest immune elicitor. By contrast, bacterial compounds comprising mc-3-OH-acyl building blocks but devoid of free mc-3-OH-FAs-including lipid A or lipopolysaccharide, rhamnolipids, lipopeptides, and acyl-homoserine-lactones-do not trigger LORE-dependent responses. Hence, plants sense low-complexity bacterial metabolites to trigger immune responses.


Assuntos
Arabidopsis/imunologia , Arabidopsis/microbiologia , Ácidos Decanoicos/metabolismo , Pseudomonas aeruginosa/metabolismo , Acil-Butirolactonas/metabolismo , Ácidos Decanoicos/química , Glicolipídeos/metabolismo , Lipídeo A/metabolismo , Lipopeptídeos/metabolismo
16.
Biotechnol Bioeng ; 115(5): 1311-1320, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29315475

RESUMO

Decanoic acid is a valuable compound used as precursor for industrial chemicals, pharmaceuticals, and biofuels. Despite efforts to produce it from renewables, only limited achievements have been reported. Here, we report an engineered cell factory able to produce decanoic acid as a major product from glycerol, and abundant and renewable feedstock. We exploit the overlapping chain-length specificity of ß-oxidation reversal (r-BOX) and thioesterase enzymes to selectively generate decanoic acid. This was achieved by selecting r-BOX enzymes that support the synthesis of acyl-CoA of up to 10 carbons (thiolase BktB and enoyl-CoA reductase EgTER) and a thioesterase that exhibited high activity toward decanoyl-CoA and longer-chain acyl-CoAs (FadM). Combined chromosomal and episomal expression of r-BOX core enzymes such as enoyl-CoA reductase and thiolase (in the presence of E. coli thioesterase FadM) increased titer and yield of decanoic acid, respectively. The carbon flux toward decanoic acid was substantially increased by the use of an organic overlay, which decreased its intracellular accumulation and presumably increased its concentration gradient across cell membrane, suggesting that decanoic acid transport to the extracellular medium might be a major bottleneck. When cultivated in the presence of a n-dodecane overlay, the final engineered strain produced 2.1 g/L of decanoic acid with a yield of 0.1 g/g glycerol. Collectively, our data suggests that r-BOX can be used as a platform to selectively produce decanoic acid and its derivatives at high yield, titer and productivity.


Assuntos
Antifúngicos/metabolismo , Ácidos Decanoicos/metabolismo , Escherichia coli/metabolismo , Glicerol/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética , Biotransformação , Escherichia coli/genética , Expressão Gênica , Oxirredução , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
17.
Lancet Neurol ; 17(1): 84-93, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29263011

RESUMO

High-fat, low-carbohydrate diets, known as ketogenic diets, have been used as a non-pharmacological treatment for refractory epilepsy. A key mechanism of this treatment is thought to be the generation of ketones, which provide brain cells (neurons and astrocytes) with an energy source that is more efficient than glucose, resulting in beneficial downstream metabolic changes, such as increasing adenosine levels, which might have effects on seizure control. However, some studies have challenged the central role of ketones because medium-chain fatty acids, which are part of a commonly used variation of the diet (the medium-chain triglyceride ketogenic diet), have been shown to directly inhibit AMPA receptors (glutamate receptors), and to change cell energetics through mitochondrial biogenesis. Through these mechanisms, medium-chain fatty acids rather than ketones are likely to block seizure onset and raise seizure threshold. The mechanisms underlying the ketogenic diet might also have roles in other disorders, such as preventing neurodegeneration in Alzheimer's disease, the proliferation and spread of cancer, and insulin resistance in type 2 diabetes. Analysing medium-chain fatty acids in future ketogenic diet studies will provide further insights into their importance in modified forms of the diet. Moreover, the results of these studies could facilitate the development of new pharmacological and dietary therapies for epilepsy and other disorders.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Caprilatos/metabolismo , Ácidos Decanoicos/metabolismo , Diabetes Mellitus/dietoterapia , Dieta Cetogênica/métodos , Neoplasias/dietoterapia , Convulsões/dietoterapia , Humanos
18.
Biotechnol Bioeng ; 115(2): 390-400, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29030961

RESUMO

Methods of producing medium-chain-length poly-3-hydroxyalkanoate (mcl-PHA) with high content of the dominant subunit, 3-hydroxydecanoate (HD), were examined with an emphasis on a high yield of polymer from decanoic acid. High HD content was achieved by using a ß-oxidation knockout mutant of Pseudomonas putida KT2440 (designated as P. putida DBA-F1) or by inhibiting ß-oxidation with addition of acrylic acid (Aa) to wild type P. putida KT2440 in carbon-limited, fed-batch fermentations. At a substrate feed ratio of decanoic acid and acetic acid to glucose (DAA:G) of 6:4 g/g, P. putida DBA-F1 accumulated significantly higher HD (97 mol%), but much lower biomass (8.5 g/L) and PHA (42% of dry biomass) than the wild type. Both biomass and PHA concentrations were improved by decreasing the ratio of DAA:G to 4:6. Moreover, when the substrate feed ratio was further decreased to 2:8, 18 g/L biomass containing 59% mcl-PHA consisting of 100 mol% HD was achieved. The yield of PHA from decanoic acid was 1.24 (g/g) indicating that de novo synthesis had contributed to production. Yeast extract and tryptone (YET) addition allowed the mutant strain to accumulate 74% mcl-PHA by weight with 97 mol% HD at a production rate of 0.41 g/L/hr, at least twice that of published data for any ß-oxidation knock-out mutant. Higher biomass concentration was achieved with Aa inhibition of ß-oxidation in the wild type but the HD content (84 mol%) was less than that of the mutant. A carbon balance showed a marked increase in supernantant organic carbon for the mutant indicating overflow metabolism. Increasing the dominant monomer content (HD) greatly increased melting point, crystallinity, and rate of crystallization.


Assuntos
Ácidos Decanoicos/metabolismo , Poli-Hidroxialcanoatos/análise , Poli-Hidroxialcanoatos/metabolismo , Pseudomonas putida/metabolismo , Reatores Biológicos/microbiologia , Ácidos Decanoicos/química , Oxirredução , Poli-Hidroxialcanoatos/química , Pseudomonas putida/genética
19.
J Mol Microbiol Biotechnol ; 28(5): 225-235, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30783060

RESUMO

Three different polyhydroxyalkanoate (PHA) synthase genes (Ralstonia eutropha H16, Aeromonas sp. TSM81 or Aeromonas hydrophila ATCC7966 phaC) were introduced into the chromosome of two Pseudomonas strains: a native medium-chain-length 3-polyhydroxyalkanoate (PHAMCL) producer (Pseudomonas sp. LFM046) and a UV-induced mutant strain unable to produce PHA (Pseudomonas sp. LFM461). We reported for the first time the insertion of a chromosomal copy of phaC using the transposon system mini-Tn7. Stable antibiotic marker-free and plasmid-free recombinants were obtained. Subsequently, P(3HB-co-3HAMCL) was produced by these recombinants using glucose as the sole carbon source, without the need for co-substrates and under antibiotic-free conditions. A recombinant harboring A. hydrophila phaC produced a terpolyester composed of 84.2 mol% of 3-hydroxybutyrate, 6.3 mol% of 3-hydroxyhexanoate, and 9.5 mol% of 3-hydroxydecanoate from only glucose. Hence, we were successful in increasing the industrial potential of Pseudomonas sp. LFM461 strain by producing PHA copolymers containing 3HB and 3HAMCL using an unrelated carbon source, for the first time in a plasmid- and antibiotic-free bioprocess.


Assuntos
Plasmídeos/genética , Poli-Hidroxialcanoatos/biossíntese , Poli-Hidroxialcanoatos/genética , Pseudomonas/genética , Pseudomonas/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Aciltransferases/genética , Aeromonas/genética , Aeromonas hydrophila/genética , Antibacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caproatos/metabolismo , Cromossomos Bacterianos , Meios de Cultura/química , Cupriavidus necator/genética , Ácidos Decanoicos/metabolismo , Glucose/metabolismo , Mutação , Pseudomonas/enzimologia , Transformação Bacteriana
20.
Sci Rep ; 7(1): 17953, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263400

RESUMO

Medium chain fatty acids can activate the pro-inflammatory receptor GPR84 but so also can molecules related to 3,3'-diindolylmethane. 3,3'-Diindolylmethane and decanoic acid acted as strong positive allosteric modulators of the function of each other and analysis showed the affinity of 3,3'-diindolylmethane to be at least 100 fold higher. Methyl decanoate was not an agonist at GPR84. This implies a key role in binding for the carboxylic acid of the fatty acid. Via homology modelling we predicted and confirmed an integral role of arginine172, located in the 2nd extracellular loop, in the action of decanoic acid but not of 3,3'-diindolylmethane. Exemplars from a patented series of GPR84 antagonists were able to block agonist actions of both decanoic acid and 3,3'-diindolylmethane at GPR84. However, although a radiolabelled form of a related antagonist, [3H]G9543, was able to bind with high affinity to GPR84, this was not competed for by increasing concentrations of either decanoic acid or 3,3'-diindolylmethane and was not affected adversely by mutation of arginine172. These studies identify three separable ligand binding sites within GPR84 and suggest that if medium chain fatty acids are true endogenous regulators then co-binding with a positive allosteric modulator would greatly enhance their function in physiological settings.


Assuntos
Receptores de Superfície Celular/metabolismo , Sítios de Ligação , Ácidos Decanoicos/metabolismo , Humanos , Indóis/metabolismo , Ligantes , Receptores Acoplados a Proteínas G , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA