Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Biotechnol Lett ; 45(9): 1147-1157, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37341820

RESUMO

PURPOSE: Docosahexaenoic acid (DHA) is an important omega-3 unsaturated fatty acid and has been widely applied in medicine, food additives, and feed ingredients. The fermentative production of DHA using microorganisms, including Schizochytrium sp., attracted much attention due to its high production efficiency and environment friendly properties. An efficient laboratory evolution approach was used to improve the strain's performance in this study. METHODS: A multi-pronged laboratory evolution approach was applied to evolve high-yield DHA-producing Schizochytrium strain. We further employed comparative transcriptional analysis to identify transcriptional changes between the screened strain HS01 and its parent strain GS00. RESULTS: After multiple generations of ALE, a strain HS01 with higher DHA content and lower saturated fatty acids content was obtained. Low nitrogen conditions were important for enhancing DHA biosynthesis in HS01. The comparative transcriptional analysis results indicated that during the fermentation process of HS01, the expression of key enzymes in the glycolysis, the pentose phosphate pathway and the tricarboxylic acid cycle were up-regulated, while the expression of polyketide synthase genes and fatty acid synthesis genes were similar to those in GS00. CONCLUSION: The results suggest that the improved DHA production capacity of HS01 is not due to enhancement of the DHA biosynthesis pathway, but rather related to modulation of central metabolism pathways.


Assuntos
Ácidos Docosa-Hexaenoicos , Estramenópilas , Estramenópilas/classificação , Estramenópilas/genética , Estramenópilas/metabolismo , Ácidos Docosa-Hexaenoicos/biossíntese , Ácidos Graxos/biossíntese , Evolução Molecular Direcionada , Análise de Sequência de RNA , Perfilação da Expressão Gênica
2.
Artigo em Inglês | MEDLINE | ID: mdl-35580802

RESUMO

There is a growing interest to understand the capacity of farmed fish species to biosynthesise the physiologically important long-chain (≥C20) n-3 and n-6 polyunsaturated fatty acids (LC-PUFAs), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid (ARA), from their C18 PUFA precursors available in the diet. In fish, the LC-PUFA biosynthesis pathways involve sequential desaturation and elongation reactions from α-linolenic acid (ALA) and linoleic acid (LA), catalysed by fatty acyl desaturases (Fads) and elongation of very long-chain fatty acids (Elovl) proteins. Our current understanding of the grass carp (Ctenopharyngodon idella) LC-PUFA biosynthetic capacity is limited despite representing the most farmed finfish produced worldwide. To address this knowledge gap, this study first aimed at characterising molecularly and functionally three genes (fads2, elovl5 and elovl2) with putative roles in LC-PUFA biosynthesis. Using an in vitro yeast-based system, we found that grass carp Fads2 possesses ∆8 and ∆5 desaturase activities, with ∆6 ability to desaturase not only the C18 PUFA precursors (ALA and LA) but also 24:5n-3 to 24:6n-3, a key intermediate to obtain DHA through the "Sprecher pathway". Additionally, the Elovl5 showed capacity to elongate C18 and C20 PUFA substrates, whereas Elovl2 was more active over C20 and C22. Collectively, the molecular cloning and functional characterisation of fads2, elovl5 and elovl2 demonstrated that the grass carp has all the enzymatic activities required to obtain ARA, EPA and DHA from LA and ALA. Importantly, the hepatocytes incubated with radiolabelled fatty acids confirmed the yeast-based results and demonstrated that these enzymes are functionally active.


Assuntos
Carpas , Ácidos Graxos Dessaturases , Ácidos Graxos Insaturados , Animais , Carpas/genética , Carpas/metabolismo , Ácidos Docosa-Hexaenoicos/biossíntese , Ácido Eicosapentaenoico/biossíntese , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos , Ácidos Graxos Insaturados/biossíntese , Saccharomyces cerevisiae
3.
Molecules ; 27(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35268778

RESUMO

Marine organisms are an important source of natural products with unique and diverse chemical structures that may hold the key for the development of novel drugs. Docosahexaenoic acid (DHA) is an omega-3 fatty acid marine natural product playing a crucial regulatory role in the resolution of inflammation and acting as a precursor for the biosynthesis of the anti-inflammatory specialized pro-resolving mediators (SPMs) resolvins, protectins, and maresins. These metabolites exert many beneficial actions including neuroprotection, anti-hypertension, or anti-tumorigenesis. As dysregulation of SPMs is associated with diseases of prolonged inflammation, the disclosure of their bioactivities may be correlated with anti-inflammatory and pro-resolving capabilities, offering new targets for drug design. The availability of these SPMs from natural resources is very low, but the evaluation of their pharmacological properties requires their access in larger amounts, as achieved by synthetic routes. In this report, the first review of the total organic syntheses carried out for resolvins, protectins, and maresins is presented. Recently, it was proposed that DHA-derived pro-resolving mediators play a key role in the treatment of COVID-19. In this work we also review the current evidence on the structures, biosynthesis, and functional and new-found roles of these novel lipid mediators of disease resolution.


Assuntos
Anti-Inflamatórios/uso terapêutico , Ácidos Docosa-Hexaenoicos/metabolismo , Inflamação/prevenção & controle , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/metabolismo , COVID-19/virologia , Ácidos Docosa-Hexaenoicos/biossíntese , Ácidos Docosa-Hexaenoicos/síntese química , Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/uso terapêutico , Desenho de Fármacos , Humanos , Inflamação/patologia , SARS-CoV-2/isolamento & purificação , Tratamento Farmacológico da COVID-19
4.
N Biotechnol ; 66: 16-24, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34500104

RESUMO

Tisochrysis lutea is an important microalgal species for fucoxanthin and docosahexaenoic acid (DHA) production with an optimum cultivation temperature of approximately 30 °C. The aim of the present work was to develop a winter strain with high productivity at 15 °C. The response of the original strain to a decrease in temperature from 30 °C to 15 °C was investigated in continuous turbidostat experiments. This was followed by adaptation for >180 days at 15 °C and 2 rounds of sorting for cells with high chlorophyll fluorescence (top 5%) using fluorescence-activated cell sorting (FACS). For the original strain the productivity of biomass, fucoxanthin, and DHA decreased by 92 %, 98 % and 85 % respectively when decreasing the temperature from 30 °C to 15 °C. In the sorted cold-adapted 'winter strain', biomass, fucoxanthin, and DHA productivities were similar to those at 30 °C. In addition, the fucoxanthin concentration increased from 1.11 to 4.24 mg g-1 dry weight and the polar lipid fraction in total fatty acids increased from 21 % to 55 %. The winter strain showed a robust and stable phenotype after one year of cultivation, expanding the outdoor fucoxanthin and lipid production seasons for this species.


Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Haptófitas , Microalgas , Xantofilas/metabolismo , Temperatura Baixa , Haptófitas/metabolismo , Microbiologia Industrial , Microalgas/metabolismo
5.
Bioorg Chem ; 113: 105014, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34077840

RESUMO

The biocatalytic epoxidation of ethanolamides of ω-3 fatty acids EPA and DHA, regarded as biologically active ω-3 endocannabinoids, in the presence of a peroxygenase-containing preparation from oat flour was investigated. Good regio- and steroselectivity toward the formation of the epoxide on the terminal double bond in the chain was observed with both these fatty acid derivatives and chiral monoepoxides 1 or 2 in 74% optical purity and 51-53% yields were isolated and spectroscopically characterized. The use of acetone as cosolvent in the reaction medium allowed to increase the concentration of starting substrates up to 40 mM and to further improve the selectivity in the epoxidation of DHA-EA. Due to the easy availability of the enzymatic preparation, the method offers a valuable strategy for the access to oxyfunctionalized derivatives of fatty acids.


Assuntos
Avena/enzimologia , Endocanabinoides/química , Compostos de Epóxi/metabolismo , Oxigenases de Função Mista/metabolismo , Biocatálise , Ácidos Docosa-Hexaenoicos/biossíntese , Ácidos Docosa-Hexaenoicos/química , Ácido Eicosapentaenoico/biossíntese , Ácido Eicosapentaenoico/química , Endocanabinoides/biossíntese , Compostos de Epóxi/química , Farinha/análise , Cinética , Estereoisomerismo
6.
Open Biol ; 11(4): 200402, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33906414

RESUMO

The long-standing paradigm establishing that global production of Omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFA) derived almost exclusively from marine single-cell organisms, was recently challenged by the discovery that multiple invertebrates possess methyl-end (or ωx) desaturases, critical enzymes enabling the biosynthesis of n-3 LC-PUFA. However, the question of whether animals with ωx desaturases have complete n-3 LC-PUFA biosynthetic pathways and hence can contribute to the production of these compounds in marine ecosystems remained unanswered. In the present study, we investigated the complete enzymatic complement involved in the n-3 LC-PUFA biosynthesis in Tigriopus californicus, an intertidal harpacticoid copepod. A total of two ωx desaturases, five front-end desaturases and six fatty acyl elongases were successfully isolated and functionally characterized. The T. californicus ωx desaturases enable the de novo biosynthesis of C18 PUFA such as linoleic and α-linolenic acids, as well as several n-3 LC-PUFA from n-6 substrates. Functions demonstrated in front-end desaturases and fatty acyl elongases unveiled various routes through which T. californicus can biosynthesize the physiologically important arachidonic and eicosapentaenoic acids. Moreover, T. californicus possess a Δ4 desaturase, enabling the biosynthesis of docosahexaenoic acid via the 'Δ4 pathway'. In conclusion, harpacticoid copepods such as T. californicus have complete n-3 LC-PUFA biosynthetic pathways and such capacity illustrates major roles of these invertebrates in the provision of essential fatty acids to upper trophic levels.


Assuntos
Copépodes/fisiologia , Ácidos Docosa-Hexaenoicos/biossíntese , Regulação Enzimológica da Expressão Gênica , Metabolismo dos Lipídeos , Animais , Cromatografia Gasosa , Copépodes/classificação , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Redes e Vias Metabólicas , Filogenia
7.
Mar Drugs ; 19(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670628

RESUMO

N-3 polyunsaturated fatty acids (n-3 PUFAs), and especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential compounds for human health. They have been proven to act positively on a panel of diseases and have interesting anti-oxidative, anti-inflammatory or anti-cancer properties. For these reasons, they are receiving more and more attention in recent years, especially future food or feed development. EPA and DHA come mainly from marine sources like fish or seaweed. Unfortunately, due to global warming, these compounds are becoming scarce for humans because of overfishing and stock reduction. Although increasing in recent years, aquaculture appears insufficient to meet the increasing requirements of these healthy molecules for humans. One alternative resides in the cultivation of microalgae, the initial producers of EPA and DHA. They are also rich in biochemicals with interesting properties. After defining macro and microalgae, this review synthesizes the current knowledge on n-3 PUFAs regarding health benefits and the challenges surrounding their supply within the environmental context. Microalgae n-3 PUFA production is examined and its synthesis pathways are discussed. Finally, the use of EPA and DHA in food and feed is investigated. This work aims to define better the issues surrounding n-3 PUFA production and supply and the potential of microalgae as a sustainable source of compounds to enhance the food and feed of the future.


Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Ácido Eicosapentaenoico/biossíntese , Microalgas/metabolismo , Ração Animal , Animais , Aquicultura , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Indústria Alimentícia , Humanos
8.
Nutr Res ; 85: 119-134, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33482601

RESUMO

Docosahexaenoic acid (DHA) is one of the most important fatty acids that plays a critical role in maintaining proper brain function and cognitive development. Deficiency of DHA leads to several neurodegenerative disorders and, therefore, dietary supplementations of these fatty acids are essential to maintain cognitive health. However, the complete picture of how DHA is incorporated into the brain is yet to be explored. In general, the de novo synthesis of DHA is poor, and targeting the brain with specific phospholipid carriers provides novel insights into the process of reduction of disease progression. Recent studies have suggested that compared to triacylglycerol form of DHA, esterified form of DHA (i.e., lysophosphatidylcholine [lysoPC]) is better incorporated into the brain. Free DHA is transported across the outer membrane leaflet of the blood-brain barrier via APOE4 receptors, whereas DHA-lysoPC is transported across the inner membrane leaflet of the blood-brain barrier via a specific protein called Mfsd2a. Dietary supplementation of this lysoPC specific form of DHA is a novel therapy and is used to decrease the risk of various neurodegenerative disorders. Currently, structured glycerides of DHA - novel nutraceutical agents - are being widely used for the prevention and treatment of various neurological diseases. However, it is important to fully understand their metabolic regulation and mechanism of transportation to the brain. This article comprehensively reviews various studies that have evaluated the bioavailability of DHA, mechanisms of DHA transport, and role of DHA in preventing neurodegenerative disorders, which provides better insight into the pathophysiology of these disorders and use of structured DHA in improving neurological health.


Assuntos
Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/metabolismo , Lisofosfatidilcolinas/administração & dosagem , Lisofosfatidilcolinas/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Animais , Disponibilidade Biológica , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Gorduras Insaturadas na Dieta/administração & dosagem , Ácidos Docosa-Hexaenoicos/biossíntese , Ácidos Docosa-Hexaenoicos/química , Ácidos Graxos Insaturados/administração & dosagem , Humanos , Lisofosfatidilcolinas/química , Doenças Neurodegenerativas/fisiopatologia , Obesidade/metabolismo
9.
Appl Biochem Biotechnol ; 193(1): 52-64, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32808245

RESUMO

Aurantiochytrium limacinum produces both docosahexaenoic acid (DHA) and astaxanthin, respectively. Organisms that produce these industrially important materials more efficiently than microalgae are currently needed. In this study, we overexpressed a putative homolog of CarS, which is involved in synthesizing the astaxanthin precursor, ß-carotene, in A. limacinum to increase carotenoid synthesis with the goal of obtaining strains that produce large amounts of both DHA and carotenoids. AlCarS transformants #1 and #18 produced significantly increased amounts of astaxanthin as assessed according to culture (up to 5.8-fold) and optical density (up to 9.3-fold). The improved astaxanthin production of these strains did not affect their DHA productivity. Additionally, their CarS expression levels were higher than those of the wild-type strain, suggesting that CarS overexpression enhanced ß-carotene production, which in turn improved astaxanthin productivity. Although cell yields were slightly decreased, these features will be valuable in health food, medical care, and animal feed fields.


Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Estramenópilas , Estramenópilas/enzimologia , Estramenópilas/genética , Xantofilas/metabolismo
10.
Mar Drugs ; 18(12)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271856

RESUMO

The molecular mechanism that contributes to nitrogen source dependent omega-3 polyunsaturated fatty acid (n-3 PUFA) synthesis in marine oleaginous protists Thraustochytriidae sp., was explored in this study. The fatty acid (FA) synthesis was significantly influenced by the supplement of various levels of sodium nitrate (SN) (1-50 mM) or urea (1-50 mM). Compared with SN (50 mM) cultivation, cells from urea (50 mM) cultivation accumulated 1.16-fold more n-3 PUFAs (49.49% docosahexaenoic acid (DHA) (w/w, of total FAs) and 5.28% docosapentaenoic acid (DPA) (w/w, of total FAs)). Strikingly higher quantities of short chain FAs (<18 carbons) (52.22-fold of that in urea cultivation) were produced from SN cultivation. Ten candidate reference genes (RGs) were screened by using four statistical methods (geNorm, NormFinder, Bestkeeper and RefFinder). MFT (Mitochondrial folate transporter) and NUC (Nucleolin) were determined as the stable RGs to normalize the RT-qPCR (real-time quantitative polymerase chain reaction) data of essential genes related to n-3 PUFAs-synthesis. Our results elucidated that the gene transcripts of delta(3,5)-delta(2,4)-dienoyl-CoA isomerase, enoyl-CoA hydratase, fatty acid elongase 3, long-chain fatty acid acyl-CoA ligase, and acetyl-CoA carboxylase were up-regulated under urea cultivation, contributing to the extension and unsaturated bond formation. These findings indicated that regulation of the specific genes through nitrogen source could greatly stimulate n-3 PUFA production in Thraustochytriidae sp.


Assuntos
Organismos Aquáticos/metabolismo , Ácidos Graxos Ômega-3/biossíntese , Lipogênese , Nitrogênio/metabolismo , Nitrito de Sódio/metabolismo , Ureia/metabolismo , Organismos Aquáticos/genética , Ácidos Docosa-Hexaenoicos/biossíntese , Ácidos Graxos Insaturados/biossíntese , Regulação Enzimológica da Expressão Gênica , Lipogênese/genética
11.
Mar Biotechnol (NY) ; 22(5): 613-619, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32880080

RESUMO

Teleost fish can synthesize one of the major omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs), docosahexaenoic acid (DHA, 22:6n-3), from dietary α-linolenic acid (ALA; 18:3n-3), via elongase of very long-chain fatty acid (Elovl) and fatty acid desaturase (Fads). However, it remains unclear which elongase is primarily responsible for the endogenous synthesis of DHA. Here, in this study, the knockout models of the two major elongases, Elovl2 and Elovl5, were generated by CRISPR/Cas9 approach in zebrafish and comparatively analyzed. The homozygous mutants were validated by Sanger sequencing, mutation-mediated PCR, and whole-mount in situ hybridization analysis of the endogenous target genes. Compared with wild-type (WT) counterparts, the content of DHA was significantly reduced by 67.1% (P < 0.05) in the adult liver and by 91.7% (P < 0.01) in the embryo at 3-day post-fertilization (dpf) of the elovl2 mutant, but not of the elovl5 mutant. Further study revealed that elovl2 and fads2 was upregulated by 9.9-fold (P < 0.01) and 9.7-fold (P < 0.01) in the elovl5 mutant, and elovl5 and fads2 were upregulated by 15.1-fold (P < 0.01) and 21.5-fold (P < 0.01) in the elovl2 mutant. Our study indicates that although both Elovl2 and Elovl5 have the elongase activity toward C20, the upregulation of elovl2 could completely replace the genetic depletion of elovl5, but upregulation of elovl5 could not compensate the endogenous deficiency of elovl2 in mediating DHA synthesis. In conclusion, the endogenous synthesis of DHA in is mediated by Elovl2 but not Elovl5 in zebrafish and a DHA-deficient genetic model of zebrafish has been generated.


Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos/genética , Peixe-Zebra/metabolismo , Animais , Sistemas CRISPR-Cas , Ácidos Docosa-Hexaenoicos/genética , Embrião não Mamífero/metabolismo , Proteínas de Peixes/genética , Técnicas de Inativação de Genes , Fígado/metabolismo , Peixe-Zebra/genética
12.
Nutrients ; 12(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759853

RESUMO

Agricultural workers are at risk for the development of acute and chronic lung diseases due to their exposure to organic agricultural dusts. A diet intervention using the omega-3 fatty acid docosahexaenoic acid (DHA) has been shown to be an effective therapeutic approach for alleviating a dust-induced inflammatory response. We thus hypothesized a high-DHA diet would alter the dust-induced inflammatory response through the increased production of specialized pro-resolving mediators (SPMs). Mice were pre-treated with a DHA-rich diet 4 weeks before being intranasally challenged with a single dose of an extract made from dust collected from a concentrated swine feeding operation (HDE). This omega-3-fatty-acid-rich diet led to reduced arachidonic acid levels in the blood, enhanced macrophage recruitment, and increased the production of the DHA-derived SPM Resolvin D1 (RvD1) in the lung following HDE exposure. An assessment of transcript-level changes in the immune response demonstrated significant differences in immune pathway activation and alterations of numerous macrophage-associated genes among HDE-challenged mice fed a high DHA diet. Our data indicate that consuming a DHA-rich diet leads to the enhanced production of SPMs during an acute inflammatory challenge to dust, supporting a role for dietary DHA supplementation as a potential therapeutic strategy for reducing dust-induced lung inflammation.


Assuntos
Dieta Hiperlipídica/métodos , Ácidos Docosa-Hexaenoicos/administração & dosagem , Poeira , Exposição por Inalação/efeitos adversos , Pneumonia/dietoterapia , Ração Animal/efeitos adversos , Animais , Ácido Araquidônico/sangue , Suplementos Nutricionais , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/biossíntese , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/etiologia , Suínos
13.
Environ Microbiol ; 22(9): 3772-3783, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32618113

RESUMO

Thraustochytrium is a unicellular marine protist for the commercial production of very long-chain polyunsaturated fatty acids (VLCPUFAs). Biosynthesis of these VLCPUFAs in the protist is catalysed by a PUFA synthase comprising three subunits, each with multiple catalytic domains. Among these domains, two tandem FabA-like dehydratase domains (DH1 and DH2) in subunit-C together are responsible for introducing double bonds in VLCPUFAs. Domain swapping analysis in yeast showed that the defective phenotype of a Scfas1 mutant could be complemented by expressing an engineered ScFAS1 gene in which the DH domain was replaced by a single DH1 or mutated DH2 of the two. Heterologous expression of the PUFA synthase in E. coli showed that the mutation of DH1 of the two or deletion of DH1 or substitution of DH1 with DH2 resulted in the complete loss of activity in the biosynthesis of VLCPUFAs. Mutation of DH2 of the two or deletion of the DH2 domain produced a small amount of DPA, but not docosahexaenoic acid (DHA). These results indicate that each of the two FabA-like domains of the PUFA synthase possesses distinct function. DH1 domain is essential for the biosynthesis of VLCPUFAs, but DH2 domain is required for the biosynthesis of DHA.


Assuntos
Ácido Graxo Sintases/química , Ácido Graxo Sintases/metabolismo , Ácidos Graxos Insaturados/biossíntese , Domínio Catalítico , Ácidos Docosa-Hexaenoicos/biossíntese , Escherichia coli/genética , Ácido Graxo Sintases/genética , Hidroliases/química , Mutação , Subunidades Proteicas , Saccharomyces cerevisiae/genética , Estramenópilas/enzimologia , Estramenópilas/genética
14.
Essays Biochem ; 64(3): 401-421, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32618335

RESUMO

The chemistry, biochemistry, pharmacology and molecular biology of oxylipins (defined as a family of oxygenated natural products that are formed from unsaturated fatty acids by pathways involving at least one step of dioxygen-dependent oxidation) are complex and occasionally contradictory subjects that continue to develop at an extraordinarily rapid rate. The term includes docosanoids (e.g. protectins, resolvins and maresins, or specialized pro-resolving mediators), eicosanoids and octadecanoids and plant oxylipins, which are derived from either the omega-6 (n-6) or the omega-3 (n-3) families of polyunsaturated fatty acids. For example, the term eicosanoid is used to embrace those biologically active lipid mediators that are derived from C20 fatty acids, and include prostaglandins, thromboxanes, leukotrienes, hydroxyeicosatetraenoic acids and related oxygenated derivatives. The key enzymes for the production of prostanoids are prostaglandin endoperoxide H synthases (cyclo-oxygenases), while lipoxygenases and oxidases of the cytochrome P450 family produce numerous other metabolites. In plants, the lipoxygenase pathway from C18 polyunsaturated fatty acids yields a variety of important products, especially the jasmonates, which have some comparable structural features and functions. Related oxylipins are produced by non-enzymic means (isoprostanes), while fatty acid esters of hydroxy fatty acids (FAHFA) are now being considered together with the oxylipins from a functional perspective. In all kingdoms of life, oxylipins usually act as lipid mediators through specific receptors, have short half-lives and have functions in innumerable biological contexts.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Lipoxigenase/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Oxilipinas/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Animais , Ácidos Docosa-Hexaenoicos/biossíntese , Ácidos Docosa-Hexaenoicos/metabolismo , Humanos , Ácidos Hidroxieicosatetraenoicos , Leucotrienos/metabolismo , Oxirredução , Plantas/metabolismo , Prostaglandinas/metabolismo
15.
Appl Biochem Biotechnol ; 192(3): 881-894, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32607896

RESUMO

A stable culture environment is the key for optimal growth and metabolic activity of microorganisms, especially in marine species, and intermittent feeding during DHA production using Schizochytrium sp. generates an unstable culture environment. To investigate the effect of unstable culture environment on the cells' physiological status and DHA synthesis, fermentations with different feeding strategies were performed on the lab scale. The intermittent feeding strategy caused fluctuations of substrate concentration and osmotic pressure, which had a negative effect on cell division and product synthesis. The physiological status and metabolic level of Schizochytrium sp. were relatively stable under a continuous feeding strategy with a relatively stable substrate concentration of 20-25 g/L, which was beneficial for the efficient transformation of substrate, leading to an improvement of DHA productivity. This strategy was further applied to pilot scale, whereby the DHA content, DHA productivity, convert ratio of glucose to lipid and DHA reached 55.02%, 320.17 mg/(L·h), 24.35%, and 13.40%, respectively. This study therefore provides an efficient strategy for ensuring a stable culture environment for the production of DHA and similar metabolites. Graphical Abstract.


Assuntos
Técnicas de Cultura/métodos , Ácidos Docosa-Hexaenoicos/biossíntese , Fermentação , Estramenópilas/crescimento & desenvolvimento , Estramenópilas/metabolismo , Reatores Biológicos , Biotecnologia , Biotransformação
16.
Appl Biochem Biotechnol ; 192(4): 1163-1175, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32700201

RESUMO

Schizochytrium limacinum SR21 is an important strain for industrial production of docosahexaenoic acid (DHA), which is an important omega-3 fatty acid used in the nutraceutical and food industry. However, the high cost of carbon sources has limited its further application in the market with much larger volume, such as animal feed for aquaculture, poultry, and livestock. To seek low-cost carbon source, acetic acid is tested in the present study. The effect of different factors, including initial carbon source concentration, pH, aeration rate, and nitrogen sources, on biomass, lipid, and DHA production were tested. With optimized culture conditions, the biomass concentration of 146 g/L, total fatty acids (TFAs) of 82.3 g/L, and DHA content of 23.0 g/L were achieved with a pH-auxostat fed-batch cultivation. These results suggested that acetic acid is a promising feedstock for the low-cost production of DHA. Graphical Abstract.


Assuntos
Ácido Acético/farmacologia , Técnicas de Cultura Celular por Lotes , Eucariotos/efeitos dos fármacos , Eucariotos/crescimento & desenvolvimento , Biomassa , Ácidos Docosa-Hexaenoicos/biossíntese , Eucariotos/metabolismo , Concentração de Íons de Hidrogênio , Lipídeos/biossíntese , Nitrogênio/metabolismo
17.
Protist ; 171(3): 125738, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32544845

RESUMO

This paper represents a comprehensive study of two new thraustochytrids and a marine Rhodotorula red yeast isolated from Australian coastal waters for their abilities to be a potential renewable feedstock for the nutraceutical, food, fishery and bioenergy industries. Mixotrophic growth of these species was assessed in the presence of different carbon sources: glycerol, glucose, fructose, galactose, xylose, and sucrose, starch, cellulose, malt extract, and potato peels. Up to 14g DW/L (4.6gDW/L-day and 2.8gDW/L-day) of biomass were produced by Aurantiochytrium and Thraustochytrium species, respectively. Thraustochytrids biomass contained up to 33% DW of lipids, rich in omega-3 polyunsaturated docosahexaenoic acid (C22:6, 124mg/g DW); up to 10.2mg/gDW of squalene and up to 61µg/gDW of total carotenoids, composed of astaxanthin, canthaxanthin, echinenone, and ß-carotene. Along with the accumulation of these added-value chemicals in biomass, thraustochytrid representatives showed the ability to secrete extracellular polysaccharide matrixes containing lipids and proteins. Rhodotorula sp lipids (26% DW) were enriched in palmitic acid (C16:0, 18mg/gDW) and oleic acid (C18:1, 41mg/gDW). Carotenoids (87µg/gDW) were mainly represented by ß-carotene (up to 54µg/gDW). Efficient growth on organic and inorganic sources of carbon and nitrogen from natural and anthropogenic wastewater pollutants along with intracellular and extracellular production of valuable nutrients makes the production of valuable chemicals from isolated species economical and sustainable.


Assuntos
Biodegradação Ambiental , Quitridiomicetos , Lipídeos/biossíntese , Rhodotorula , Poluentes da Água/metabolismo , Aciltransferases/metabolismo , Biomassa , Carotenoides/metabolismo , Quitridiomicetos/crescimento & desenvolvimento , Quitridiomicetos/isolamento & purificação , Quitridiomicetos/metabolismo , Ácidos Docosa-Hexaenoicos/biossíntese , Ácidos Graxos Insaturados/biossíntese , Nutrientes/metabolismo , Polissacarídeos/biossíntese , Rhodotorula/crescimento & desenvolvimento , Rhodotorula/isolamento & purificação , Rhodotorula/metabolismo , Água do Mar/microbiologia , Águas Residuárias/microbiologia , Áreas Alagadas
18.
Biomolecules ; 10(5)2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32413958

RESUMO

In the present study, the impact of eight phytohormones from six different classes on the growth, lipid and docosahexaenoic acid (DHA) biosynthetic capacity of Aurantiochytrium sp. SW1 (SW1) was evaluated. Kinetin (KIN), jasmonic acid (JA) and gibberellic acid (GA) significantly enhanced the growth and DHA production of SW1 by 16%-28% and 66%-84% in comparison to the control, respectively. The synergistic effect of these three phytohormones, evaluated by the response surface methodology (RSM), showed that a combination of 3.6 mg/L GA, 2.0 mg/L KIN and 20.0 mg/L JA further increased the growth and DHA production of SW1 by 16% to 28% and 22% to 36%, respectively, in comparison to the individual supplementation. The synergistic effect of these phytohormones was also shown to be time-dependent, where feeding at 24 h of cultivation led to 15%, 26% and 35% further increments in the biomass, lipid and DHA production in comparison to that of 0 h, respectively. The determination of stress markers, antioxidant enzymes and key enzymes involved in fatty acid biosynthesis aided to elucidate the potential mechanism underlying the improvement of growth and DHA production by SW1 at various times of feeding. Supplementation with the phytohormones at 24 h exhibited the maximum impact on reducing the level of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as augmented the antioxidants (superoxide dismutase and catalase) and key metabolic enzymes involved in lipogenesis (malic, glucose-6-phosphate dehydrogenase and ATP-citrate lyase) in comparison to the control and other time points. This study signifies the potential application of phytohormones for improving the growth, lipid and DHA production in Aurantiochytrium spp.


Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Microalgas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Ciclopentanos/farmacologia , Sinergismo Farmacológico , Giberelinas/farmacologia , Microbiologia Industrial/métodos , Cinetina/farmacologia , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Oxilipinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
19.
J Lipid Res ; 61(7): 1087-1103, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32404334

RESUMO

The two oxylipins 7S,14S-dihydroxydocosahexaenoic acid (diHDHA) and 7S,17S-diHDHA [resolvin D5 (RvD5)] have been found in macrophages and infectious inflammatory exudates and are believed to function as specialized pro-resolving mediators (SPMs). Their biosynthesis is thought to proceed through sequential oxidations of DHA by lipoxygenase (LOX) enzymes, specifically, by human 5-LOX (h5-LOX) first to 7(S)-hydroxy-4Z,8E,10Z,13Z,16Z,19Z-DHA (7S-HDHA), followed by human platelet 12-LOX (h12-LOX) to form 7(S),14(S)-dihydroxy-4Z,8E,10Z,12E,16Z,19Z-DHA (7S,14S-diHDHA) or human reticulocyte 15-LOX-1 (h15-LOX-1) to form RvD5. In this work, we determined that oxidation of 7(S)-hydroperoxy-4Z,8E,10Z,13Z,16Z,19Z-DHA to 7S,14S-diHDHA is performed with similar kinetics by either h12-LOX or h15-LOX-1. The oxidation at C14 of DHA by h12-LOX was expected, but the noncanonical reaction of h15-LOX-1 to make over 80% 7S,14S-diHDHA was larger than expected. Results of computer modeling suggested that the alcohol on C7 of 7S-HDHA hydrogen bonds with the backbone carbonyl of Ile399, forcing the hydrogen abstraction from C12 to oxygenate on C14 but not C17. This result raised questions regarding the synthesis of RvD5. Strikingly, we found that h15-LOX-2 oxygenates 7S-HDHA almost exclusively at C17, forming RvD5 with faster kinetics than does h15-LOX-1. The presence of h15-LOX-2 in neutrophils and macrophages suggests that it may have a greater role in biosynthesizing SPMs than previously thought. We also determined that the reactions of h5-LOX with 14(S)-hydroperoxy-4Z,7Z,10Z,12E,16Z,19Z-DHA and 17(S)-hydroperoxy-4Z,7Z,10Z,13Z,15E,19Z-DHA are kinetically slow compared with DHA, suggesting that these reactions may be minor biosynthetic routes in vivo. Additionally, we show that 7S,14S-diHDHA and RvD5 have anti-aggregation properties with platelets at low micromolar potencies, which could directly regulate clot resolution.


Assuntos
Araquidonato 15-Lipoxigenase/metabolismo , Ácidos Docosa-Hexaenoicos/biossíntese , Plaquetas/metabolismo , Ácidos Docosa-Hexaenoicos/química , Humanos
20.
Bioprocess Biosyst Eng ; 43(10): 1801-1811, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32405771

RESUMO

This study aimed to express an inulinase gene from the yeast Kluyveromyces marxianus (KmINU) in Aurantiochytrium sp. and realized one-step utilization of inulin resource for DHA production without any chemical pretreatment. An expression cassette with a length of 6052 bp for expressing the inulinase gene was constructed by a fast two-step PCR method and then was transferred into the Aurantiochytrium sp. cells. The Aurantiochytrium sp. recombinant T39 was selected with an inulinase activity up to 50.1 U/mL in 72 h. In a 5-l fed-batch fermentation, as high as 148.9 g/L of inulin was directly used within 120 h, and only 1.2 g/L of total sugar was left in the medium at the end of fermentation. The biomass of 51.4 g/L with a lipid content of 69.2% DCW and a DHA yield of 14.9 g/L was obtained.


Assuntos
Ácidos Docosa-Hexaenoicos/biossíntese , Proteínas Fúngicas , Glicosídeo Hidrolases , Inulina/metabolismo , Kluyveromyces/genética , Microrganismos Geneticamente Modificados , Estramenópilas , Ácidos Docosa-Hexaenoicos/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Inulina/genética , Kluyveromyces/enzimologia , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/metabolismo , Estramenópilas/genética , Estramenópilas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA