Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(18): 9676-9687, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38663019

RESUMO

Prehydrolysis liquid (PHL) from dissolving pulp and biorefinery industries is rich in saccharides and lignin, being considered as a potential source of value-added materials and platform molecules. This study proposed an environmentally friendly and simple method to prepare morphologically controllable hollow lignin nanoparticles (LNPs) and levulinic acid (LA) from PHL. In the first step, after hydrothermal treatment of PHL with p-toluenesulfonic acid (p-TsOH), lignin with a uniform molecular weight was obtained to prepare LNPs. The prepared LNPs have an obvious hollow structure, with an average size of 490-660 nm, and exhibit good stability during 30 days of storage. When the as-obtained LNPs were used as a sustained-release agent for amikacin sulfate, the encapsulation efficiency reached over 70% and the release efficiency within 40 h reached 69.2% in a pH 5.5 buffer. Subsequently, the remaining PHL that contains saccharides was directly used for LA production under the catalysis of p-TsOH. At 150 °C for 1.5 h, the LA yield reached 58.4% and remained at 56% after 5 cycles of p-TsOH. It is worth noting that only p-TsOH was used as a reactive reagent throughout the entire preparation process. Overall, this study provided a novel pathway for the integrated utilization of PHL and showed the immense potential of the preparation and application of LNPs.


Assuntos
Portadores de Fármacos , Ácidos Levulínicos , Lignina , Nanopartículas , Populus , Ácidos Levulínicos/química , Lignina/química , Nanopartículas/química , Populus/química , Portadores de Fármacos/química , Madeira/química , Hidrólise , Tamanho da Partícula
2.
Int J Biol Macromol ; 240: 124451, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37062379

RESUMO

The hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) has attracted much attention, as GVL can be used as biofuel, green solvent, and platform chemical. Inspired by Stöber method, various lignin-metal coordinated colloidal nanospheres (LCS) from lignin and cetyltrimethylammonium bromide (CTAB) were synthesized in which the metal ions (Co2+) replace formaldehyde as the crosslinker. The characterization of the catalyst revealed that alkali lignin was first self-assembled with CTAB through electrostatic attraction to form a lignin polymer, the subsequent addition of metal ions (Co2+) promoted the aggregation of lignin polymers and generated the LCS. Increasing calcination temperature for LCS resulted in the Co2+ being reduced to metallic Co. The lignin-metal coordinated colloidal nanospheres calcined at 500 °C possess both CoO and metallic Co active sites, which effectively accelerated the hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) than simplex metallic Co active sites. A 99.8 % yield of GVL with 100 % LA conversion was obtained after 60 min reaction time at 200 °C and 2 MPa H2.


Assuntos
Lignina , Nanosferas , Hidrogenação , Lignina/química , Água , Cetrimônio , Ácidos Levulínicos/química , Metais
3.
Int J Biol Macromol ; 237: 124149, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36965554

RESUMO

The circular economy considers waste to be a new raw material for the development of value-added products. In this context, agroindustrial lignocellulosic waste represents an outstanding source of new materials and platform chemicals, such as levulinic acid (LA). Herein we study the microwave (MW)-assisted acidic conversion of microcrystalline cellulose (MCC) into LA. The influence of acidic catalysts, inorganic salt addition and ball-milling pre-treatment of MCC on LA yield was assessed. Depolymerization and disruption of cellulose was monitored by FTIR, TGA and SEM, whereas the products formed were analyzed by HPLC and NMR spectroscopy. The parameters that afforded the highest LA yield (48 %, 100 % selectivity) were: ball-milling pre-treatment of MCC for 16 min at 600 rpm, followed by MW-assisted thermochemical treatment for 20 min at 190 °C, aqueous p-toluenesulfonic acid (p-TSA) 0.25 M as catalyst and saturation with KBr. These optimal conditions were further applied to a lignocellulosic feedstock, namely melon rind, to afford a 51 % yield of LA. These results corroborate the suitability of this method to obtain LA from agroindustrial wastes, in line with a circular economy-based approach.


Assuntos
Celulose , Micro-Ondas , Celulose/química , Ácidos Levulínicos/química , Ácidos
4.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768767

RESUMO

Currently, there is a great interest in the development of sustainable and green technologies for production of biofuels and chemicals. In this sense, much attention is being paid to lignocellulosic biomass as feedstock, as alternative to fossil-based resources, inasmuch as its fractions can be transformed into value-added chemicals. Two important platform molecules derived from lignocellulosic sugars are furfural and levulinic acid, which can be transformed into a large spectrum of chemicals, by hydrogenation, oxidation, or condensation, with applications as solvents, agrochemicals, fragrances, pharmaceuticals, among others. However, in many cases, noble metal-based catalysts, scarce and expensive, are used. Therefore, an important effort is performed to search the most abundant, readily available, and cheap transition-metal-based catalysts. Among these, copper-based catalysts have been proposed, and the present review deals with the hydrogenation of furfural and levulinic acid, with Cu-based catalysts, into several relevant chemicals: furfuryl alcohol, 2-methylfuran, and cyclopentanone from FUR, and γ-valerolactone and 2-methyltetrahydrofuran from LA. Special emphasis has been placed on catalytic processes used (gas- and liquid-phase, catalytic transfer hydrogenation), under heterogeneous catalysis. Moreover, the effect of addition of other metal to Cu-based catalysts has been considered, as well as the issue related to catalyst stability in reusing studies.


Assuntos
Cobre , Furaldeído , Furaldeído/química , Hidrogenação , Cobre/química , Ácidos Levulínicos/química , Catálise
5.
Molecules ; 27(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080151

RESUMO

Monometallic (Cu, Ni) and bimetallic (Cu-Ni) catalysts supported on KIT-6 based mesoporous silica/zeolite composites were prepared using the wet impregnation method. The catalysts were characterized using X-ray powder diffraction, N2 physisorption, SEM, solid state NMR and H2-TPR methods. Finely dispersed NiO and CuO were detected after the decomposition of impregnating salt on the silica carrier. The formation of small fractions of ionic Ni2+ and/or Cu2+ species, interacting strongly with the silica supports, was found. The catalysts were studied in the gas-phase upgrading of lignocellulosic biomass-derived levulinic acid (LA) to γ-valerolactone (GVL). The bimetallic, CuNi-KIT-6 catalyst showed 100% LA conversion at 250 °C and atmospheric pressure. The high LA conversion and GVL yield can be attributed to the high specific surface area and finely dispersed Cu-Ni species in the catalyst. Furthermore, the catalyst also exhibited high stability after 24 h of reaction time with a GVL yield above 80% without any significant change in metal dispersion.


Assuntos
Ácidos Levulínicos , Dióxido de Silício , Hidrogenação , Lactonas , Ácidos Levulínicos/química , Dióxido de Silício/química
6.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35163029

RESUMO

Levulinic acid and its esters (e.g., ethyl levulinate, EL) are platform chemicals derived from biomass feedstocks that can be converted to a variety of valuable compounds. Reductive amination of levulinates with primary amines and H2 over heterogeneous catalysts is an attractive method for the synthesis of N-alkyl-5-methyl-2-pyrrolidones, which are an environmentally friendly alternative to the common solvent N-methyl-2-pyrrolidone (NMP). In the present work, the catalytic properties of the different nickel phosphide catalysts supported on SiO2 and Al2O3 were studied in a reductive amination of EL with n-hexylamine to N-hexyl-5-methyl-2-pyrrolidone (HMP) in a flow reactor. The influence of the phosphorus precursor, reduction temperature, reactant ratio, and addition of acidic diluters on the catalyst performance was investigated. The Ni2P/SiO2 catalyst prepared using (NH4)2HPO4 and reduced at 600 °C provides the highest HMP yield, which reaches 98%. Although the presence of acid sites and a sufficient hydrogenating ability are important factors determining the pyrrolidone yield, the selectivity also depends on the specific features of EL adsorption on active catalytic sites.


Assuntos
Ácidos Levulínicos/química , Níquel/química , Fosfinas/química , Fósforo/farmacologia , Dióxido de Silício/química , Aminação , Catálise , Hidrogenação , Temperatura
7.
ChemSusChem ; 15(5): e202102662, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-34997688

RESUMO

In this work, three types of alumina-supported bimetallic Ni-Cu catalysts [Ni-Cu/commercial non-ordered mesoporous alumina (CMA), Ni-Cu/ordered MA (OMA), and Ni-Cu-OMA] were prepared via different fabrication strategies and investigated in the conversion of levulinic acid (LA) into γ-valerolactone and 2-methyltetrahydrofuran (2-MTHF). This study employed characterization techniques and reactions to reveal the effects of the fabrication strategy on the activities of the catalysts. It was observed that the catalysts constructed on OM supports (Ni-Cu/OMA and Ni-Cu-OMA) displayed superior catalytic performance compared to those constructed on CM supports (Ni-Cu/CMA). Specifically, Ni-Cu-OMA, which was fabricated via the one-pot evaporation-induced self-assembly strategy, exhibited the best catalytic performance, achieving a complete conversion of LA and a high selectivity of 73.0 % toward 2-MTHF in a solvent-free reaction environment. The promising activity of Ni-Cu-OMA was ascribed to the well-dispersed active sites within the framework of the support, the enhanced metal-support interaction, and the highly efficient exploitation of the synergistic effect between Ni and Cu. Detailed post-characterization techniques were also employed to highlight the outstanding stability of Ni-Cu-OMA.


Assuntos
Óxido de Alumínio , Ácidos Levulínicos , Óxido de Alumínio/química , Catálise , Hidrogenação , Ácidos Levulínicos/química
8.
Int J Mol Sci ; 23(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35054984

RESUMO

Hydrogenation of levulinic acid (LA) obtained from cellulose biomass is a promising path for production of γ-valerolactone (GVL)-a component of biofuel. In this work, we developed Ru nanoparticle containing nanocomposites based on hyperbranched pyridylphenylene polymer, serving as multiligand and stabilizing matrix. The functionalization of the nanocomposite with sulfuric acid significantly enhances the activity of the catalyst in the selective hydrogenation of LA to GVL and allows the reaction to proceed under mild reaction conditions (100 °C, 2 MPa of H2) in water and low catalyst loading (0.016 mol.%) with a quantitative yield of GVL and selectivity up to 100%. The catalysts were successfully reused four times without a significant loss of activity. A comprehensive physicochemical characterization of the catalysts allowed us to assess structure-property relationships and to uncover an important role of the polymeric support in the efficient GVL synthesis.


Assuntos
Lactonas/química , Ácidos Levulínicos/química , Polímeros/química , Rutênio/química , Catálise , Celulose/química , Hidrogenação , Estrutura Molecular , Análise Espectral , Temperatura
9.
Carbohydr Polym ; 277: 118819, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893236

RESUMO

Psoriasis does not respond adequately to the monotherapy, tailoring combined strategies for synergistical treatment remains challenging. We fabricated chitosan/hyaluronan nanogels to co-load methotrexate (MTX) and 5-aminoleavulinic acid (ALA), i.e., MTX-ALA NGs, for a combined chemo-photodynamic therapy for psoriasis. Compared with MTX-ALA suspension, the NGs enhanced the penetration and retention of MTX and ALA through and into the skin in vitro and in vivo (p < 0.001). NGs enhanced the cellular uptake (p < 0.001), protoporphyrin IX conversion (p < 0.001), and reactive oxygen species generation (3.93-fold), subsequently exerted the synergistical anti-proliferation and apoptosis on lipopolysaccharide-irritated HaCaT cells with the apoptosis rate of 78.6%. MTX-ALA NGs efficiently ameliorated the skin manifestations and down-regulated the proinflammatory cytokines of TNF-α and IL-17A in imiquimod-induced psoriatic mice (p < 0.001). Importantly, MTX-ALA NGs reduced the toxicities of oral MTX to the liver and kidney. The results support that MTX-ALA NG is a convenient, effective, and safe combined chemo-photodynamic strategy for psoriasis treatment.


Assuntos
Ácidos Levulínicos/uso terapêutico , Metotrexato/uso terapêutico , Nanogéis/química , Fármacos Fotossensibilizantes/uso terapêutico , Psoríase/tratamento farmacológico , Linhagem Celular , Quitosana/química , Quimioterapia Combinada , Humanos , Ácido Hialurônico/química , Ácidos Levulínicos/química , Lipopolissacarídeos , Metotrexato/química , Fármacos Fotossensibilizantes/química , Psoríase/induzido quimicamente , Psoríase/metabolismo , Ácido Aminolevulínico
10.
Molecules ; 26(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34885667

RESUMO

Lilac aldehydes are considered as principal olfactory molecules of lilac flowers. We have designed, prepared, and evaluated a set of racemic seco-analogues of such natural products. The synthesis employs commercially available α-chloroketones as substrates that are transformed in four steps to target compounds. Their qualitative olfactory analysis revealed that the opening of the tetrahydrofuran ring leads to a vanishing of original flowery scent with the emergence of spicy aroma accompanied by green notes, and/or fruity aspects of novel seco-analogues. These results suggest the important osmophoric role of THF moiety for the generation of the typical flowery aroma associated with lilac aldehydes.


Assuntos
Aldeídos/química , Aldeídos/síntese química , Produtos Biológicos/química , Produtos Biológicos/síntese química , Flores/química , Odorantes/análise , Óleos de Plantas/química , Olfato , Syringa/química , Álcoois/química , Alcenos/química , Furanos/química , Ácidos Levulínicos/química , Monoterpenos/química
11.
Phys Chem Chem Phys ; 23(35): 19729-19739, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524307

RESUMO

The fundamental understanding of glucose conversion to 5-ethoxymethylfurfural (EMF) and ethyl levulinate (EL) (value-added chemicals from biomass) in ethanol solution catalyzed by a Brønsted acid is limited at present. Consequently, here, the reaction pathways and mechanism of glucose conversion to EMF and EL catalyzed by a Brønsted acid were studied, using an experimental method and quantum chemical calculations at the B3LYP/6-31G(D) and B2PLYPD3/Def2TZVP level under a polarized continuum model (PCM-SMD). By further verification through GC/MS tests, the mechanism and reaction pathways of glucose conversion in ethanol solution catalyzed by a Brønsted acid were revealed, showing that glucose is catalyzed by proton and ethanol, and ethanol plays a bridging role in the process of proton transfer. There are three main reaction pathways: through glucose and ethyl glucoside (G/EG), through fructose, 5-hydroxymethylfurfural (HMF), levulinic acid (LA), and EL (G/F/H/L/EL), and through fructose, HMF, EMF, and EL (G/F/H/E/EL). The G/F/H/E/EL pathway with an energy barrier of 20.8 kcal mol-1 is considered as the thermodynamic and kinetics primary way, in which the reaction rate of this is highly related to the proton transfer in the isomerization of glucose to fructose. The intermediate HMF was formed from O5 via a ring-opening reaction and by the dehydration of fructose, and was further converted to the main product of EMF by etherification or by LA through hydrolysis. EMF and LA are both unstable, and can partially be transformed to EL. This study is beneficial for the insights aiding the understanding of the process and products controlling biomass conversion in ethanol solution.


Assuntos
Etanol/química , Furaldeído/análogos & derivados , Glucose/química , Modelos Moleculares , Ácidos Sulfúricos/química , Biocombustíveis , Catálise , Teoria da Densidade Funcional , Furaldeído/química , Ácidos Levulínicos/química , Termodinâmica
12.
ACS Appl Mater Interfaces ; 13(27): 31799-31807, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34197068

RESUMO

Catalytic conversion of a biomass derivative (levulinic acid, LA) to a high value-added product (γ-valerolactone, GVL) has attracted much attention, in which the control of catalytic selectivity plays an important role. Herein, a stepwise method was developed to prepare Co-MoOx catalysts via topological transformation (calcination reduction) from layered double hydroxide (Mo/CoAl-LDH) precursors. X-ray diffraction, high-resolution transmission electron microscopy, and hydrogen temperature-programmed reduction demonstrate the formation of MoOx-decorated Co structures of Co-MoOx samples. Remarkably, the sample that is reduced at 500 °C is featured with the most abundant interfacial Coδ+ (denoted as Co-MoOx-500), which exhibits an excellent catalytic performance toward the hydrodeoxygenation (HDO) reaction of several biomass-derived platform molecules (furfural, FAL; succinic acid, SA; 5-hydroxymethyl-furfural, HMF; and levulinic acid, LA). Especially, this optimal catalyst displays a high yield (99%) toward the HDO reaction of LA to GVL, which stands at the highest level among non-noble metal catalysts. The combination of in situ FT-IR characterization and theoretical calculation further confirms that interfacial Coδ+ sites in Co-MoOx-500 act as adsorption active sites for the polarization of a C═O bond in an LA molecule, which simultaneously promotes C═O hydrogenation and C-O cleavage. Moreover, the MoOx overlayer suppresses the formation of byproducts by covering the Co0 sites. This work offers a cost-effective and efficient catalyst, which can be potentially applied in catalytic conversion of biomass-derived platform molecules.


Assuntos
Biomassa , Cobalto/química , Ácidos Levulínicos/química , Tilidina/química , Catálise , Hidrogenação , Temperatura
13.
Carbohydr Polym ; 269: 118271, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294303

RESUMO

In this study, an economically competitive and sustainable levulinic acid-based protic ionic liquids were identified to be good solvents for the dissolution pretreatment of cellulose towards enhanced enzymatic hydrolysis. The influences of protic ionic liquids species, dissolution pretreatment time, and pretreatment temperature on the physico-chemical structures of cellulose were systematically investigated by various analytical techniques. The findings indicate that the pretreatment efficiency was correlated to the basicity of the organic bases, and the presence of ketone group in the levulinate anion with particular hydrogen bonding forming ability via keto-enol tautomerism. The DBN derived protic ionic liquids exhibited best performance at 100 °C in 1 h, as evidenced by a 94% glucose yield. This solvent system was also suitable for the dissolution pretreatment of corn stover-based lignocellulosic biomass for sugars production, although a higher temperature and longer pretreatment time was required. Furthermore, the solvent system could be recycled and reused.


Assuntos
Celulase/química , Celulose/química , Líquidos Iônicos/química , Ácidos Levulínicos/química , Solventes/química , Hidrólise , Solubilidade , Zea mays/química
14.
Int J Biochem Cell Biol ; 137: 106036, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34217813

RESUMO

BACKGROUND: We previously demonstrated that M-PDT is painless and effective in precancerous skin diseases treatment. However, whether M-PDT is effective in cSCC and the underlying inhibitory mechanism remains enigmatic. OBJECTIVE: We aims to unveil the effect of M-PDT on cSCC cell proliferation and the regulatory effect of M-PDT on MAPK signaling. METHODS: The proliferation and migration of cSCC cells were revealed by CCK8 assay, tumor sphere formation assay and scratch assay respectively. The expression of MAPKs was examined by western blot. The activity of PP2A and PP5 was regulated by inhibitor and recombinant adenoviruses. RESULTS: Here, we show that M-PDT inhibits cSCC cell proliferation by activating p-JNK, p-p38 and inhibiting p-Erk1/2, as well as activation of PP2A and inactivation of PP5. Furthermore, pharmacological inhibition of PP2A conferred resistance to M-PDT's suppression on p-Erk1/2 and attenuated inhibitory effects of M-PDT on cell proliferation whereas overexpression of wild-type PP2A showed the contrary results. Pharmacological inhibition of PP5 potentiated M-PDT's elevation on p-JNK and strengthened inhibitory effects of M-PDT on cell proliferation whereas overexpression of wild-type PP5 exhibited the contrary results. CONCLUSION: Our findings indicate that M-PDT inhibits cSCC cell proliferation via targeting PP2A/PP5-mediated MAPK signaling pathway.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicoproteínas/metabolismo , Ácidos Levulínicos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fotoquimioterapia/métodos , Proteína Fosfatase 2/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células , Glicoproteínas/genética , Humanos , Ácidos Levulínicos/química , Proteína Fosfatase 2/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Células Tumorais Cultivadas , Ácido Aminolevulínico
15.
Chem Soc Rev ; 50(10): 6042-6093, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34027943

RESUMO

Transformation of biomass to chemicals and fuels is a long-term goal in both science and industry. However, high cost is one of the major obstacles to the industrialization of this sustainable technology. Thus, developing catalysts with high activity and low-cost is of great importance for biomass conversion. The last two decades have witnessed the increasing achievement of the use of earth-abundant 3d-transition-metals in catalysis due to their low-cost, high efficiency and excellent stability. Here, we aim to review the fast development and recent advances of 3d-metal-based catalysts including Cu, Fe, Co, Ni and Mn in lignocellulosic biomass conversion. Moreover, present research trends and invigorating perspectives on future development are given.


Assuntos
Lignina/química , Elementos de Transição/química , Biomassa , Carboidratos/química , Catálise , Furanos/química , Hidrogenação , Ácidos Levulínicos/química , Lignina/metabolismo , Magnetismo , Oxirredução
16.
Inorg Chem ; 60(11): 7785-7793, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33755456

RESUMO

Catalytic transformation of levulinic acid (LA) to γ-valerolactone (γ-GVL) is an important route for biomass upgradation. Because both Bro̷nsted and Lewis acidic sites are required in the cascade reaction, herein we fabricate a series of H3PW12O40@Zr-based metal-organic framework (HPW@MOF-808) by a facile impregnation method. The synthesized HPW@MOF-808 is active for the conversion of LA to γ-GVL using isopropanol as a hydrogen donor. Interestingly, with the increase in the HPW loading amount, the yield of γ-GVL increases first and then decreases, and 14%-HPW@MOF-808 gave the highest γ-GVL yield (86%). The excellent catalytic performance was ascribed to the synergistic effect between the accessible Lewis acidic Zr4+ sites in MOF-808 and Bro̷nsted acidic HPW sites. Based on the experimental results, a plausible reaction mechanism was proposed: the Zr4+ sites catalyze the transfer hydrogenation of carbonyl groups and the HPW clusters promote the esterification of LA with isopropanol and lactonization to afford γ-GVL. Moreover, HPW@MOF-808 is resistant to leaching and can be reused for five cycles without significant loss of its catalytic activity.


Assuntos
Lactonas/química , Ácidos Levulínicos/química , Ácidos de Lewis/química , Estruturas Metalorgânicas/química , Compostos de Tungstênio/química , Zircônio/química , 2-Propanol/química , Biomassa , Estruturas Metalorgânicas/síntese química , Modelos Moleculares , Estrutura Molecular
17.
Int J Mol Sci ; 22(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572104

RESUMO

In this paper, we present a versatile template-directed colloidal self-assembly method for the fabrication in aqueous phase of composition-tuned mesoporous RuO2@TiO2-SiO2 catalysts. Randomly methylated ß-cyclodextrin/Pluronic F127 supramolecular assemblies were used as soft templates, TiO2 colloids as building blocks, and tetraethyl orthosilicate as a silica source. Catalysts were characterized at different stages of their synthesis using dynamic light scattering, N2-adsorption analysis, powder X-ray diffraction, temperature programmed reduction, high-resolution transmission electron microscopy, high-angle annular bright-field and dark-field scanning transmission electron microscopy, together with EDS elemental mapping. Results revealed that both the supramolecular template and the silica loading had a strong impact on the pore characteristics and crystalline structure of the mixed oxides, as well as on the morphology of the RuO2 nanocrystals. Their catalytic performance was then evaluated in the aqueous phase hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) under mild conditions (50 °C, 50 bar H2). Results showed that the cyclodextrin-derived catalyst displayed almost quantitative LA conversion and 99% GVL yield in less than one hour. Moreover, this catalyst could be reused at least five times without loss of activity. This work offers an effective approach to the utilization of cyclodextrins for engineering the surface morphology of Ru nanocrystals and pore characteristics of TiO2-based materials for catalytic applications in hydrogenation reactions.


Assuntos
Química Verde/métodos , Lactonas/química , Ácidos Levulínicos/química , Rutênio/química , Catálise , Engenharia Química/métodos , Ciclodextrinas/química , Hidrogenação , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanopartículas/ultraestrutura , Porosidade , Estudo de Prova de Conceito , Dióxido de Silício/química , Propriedades de Superfície , Titânio/química , Difração de Raios X
18.
Molecules ; 27(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35011389

RESUMO

The methods for hydrogen yield efficiency improvements, the gaseous stream purification in gaseous biofuels generation, and the biomass pretreatment are considered as the main trends in research devoted to gaseous biofuel production. The environmental aspect related to the liquid stream purification arises. Moreover, the management of post-fermentation broth with the application of various biorefining techniques gains importance. Chemical compounds occurring in the exhausted liquid phase after biomass pretreatment and subsequent dark and photo fermentation processes are considered as value-added by products. The most valuable are furfural (FF), 5-hydroxymethylfurfural (HMF), and levulinic acid (LA). Enriching their solutions can be carried with the application of liquid-liquid extraction with the use of a suitable solvent. In these studies, hydrophobic deep eutectic solvents (DESs) were tested as extractants. The screening of 56 DESs was carried out using the Conductor-like Screening Model for Real Solvents (COSMO-RS). DESs which exposed the highest inhibitory effect on fermentation and negligible water solubility were prepared. The LA, FF, and HMF were analyzed using FT-IR and NMR spectroscopy. In addition, the basic physicochemical properties of DES were carefully studied. In the second part of the paper, deep eutectic solvents were used for the extraction of FF, LA, and HMF from post-fermentation broth (PFB). The main extraction parameters, i.e., temperature, pH, and DES: PFB volume ratio (VDES:VPFB), were optimized by means of a Box-Behnken design model. Two approaches have been proposed for extraction process. In the first approach, DES was used as a solvent. In the second, one of the DES components was added to the sample, and DES was generated in situ. To enhance the post-fermentation broth management, optimization of the parameters promoting HMF, FF, and LA extraction was carried under real conditions. Moreover, the antimicrobial effect of the extraction of FF, HMF, and LA was investigated to define the possibility of simultaneous separation of microbial parts and denatured peptides via precipitation.


Assuntos
Solventes Eutéticos Profundos , Fermentação , Interações Hidrofóbicas e Hidrofílicas , Extração Líquido-Líquido , Furaldeído/análogos & derivados , Furaldeído/química , Furaldeído/isolamento & purificação , Química Verde , Ligação de Hidrogênio , Ácidos Levulínicos/química , Ácidos Levulínicos/isolamento & purificação , Extração Líquido-Líquido/métodos , Estrutura Molecular , Solubilidade , Análise Espectral
19.
Mar Drugs ; 20(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35049880

RESUMO

(1) Background: The mussel (Mytilus edulis, Mytilus galloprovincialis) is the most widespread lamellibranch mollusk, being fished on all coasts of the European seas. Mussels are also widely grown in Japan, China, and Spain, especially for food purposes. This paper shows an original technique for mussel shell processing for preparation of calcium salts, such as calcium levulinate. This process involves synthesis of calcium levulinate by treatment of Mytilus galloprovincialis shells with levulinic acid. The advantage of mussel shell utilization results in more straightforward qualitative composition. Thus, the weight of the mineral component lies with calcium carbonate, which can be used for extraction of pharmaceutical preparations. (2) Methods: Shell powder was first deproteinized by calcination, then the mineral part was treated with levulinic acid. The problem of shells generally resulting from the industrialization of marine molluscs creates enough shortcomings, if one only mentions storage and handling. One of the solutions proposed by us is the capitalization of calcium from shells in the pharmaceutical industry. (3) Results: The toxicity of calcium levulinate synthesized from the mussel shells was evaluated by the method known in the scientific literature as the Constantinescu phytobiological method (using wheat kernels, Triticum vulgare Mill). Acute toxicity of calcium levulinate was evaluated; the experiments showed the low toxicity of calcium levulinate. (4) Conclusion: The experimental results highlighted calcium as the predominant element in the composition of mussel shells, which strengthens the argument of capitalizing the shells as an important natural source of calcium.


Assuntos
Exoesqueleto/química , Bivalves , Ácidos Levulínicos/química , Animais , Organismos Aquáticos , Indústria Farmacêutica , Resíduos Industriais
20.
Molecules ; 25(22)2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33212838

RESUMO

The influence of the nature of carbon materials used as a support for Ru/C catalysts on levulinic acid hydrogenation with formic acid as a hydrogen source toward gamma-valerolactone was investigated. It has been shown that the physicochemical properties of carbon strongly affect the catalytic activity of Ru catalysts. The relationship between the hydrogen mobility, strength of hydrogen adsorption, and catalytic performance was established. The catalyst possessing the highest number of defects, stimulating metal support interaction, exhibited the highest activity. The effect of the catalyst grain size was also studied. It was shown that the decrease in the grain size resulted in the formation of smaller Ru crystallites on the catalyst surface, which facilitates the activity.


Assuntos
Carbono/química , Hidrogênio/química , Ácidos Levulínicos/química , Rutênio/química , Amônia/química , Dióxido de Carbono/química , Monóxido de Carbono/química , Catálise , Formiatos/química , Hidrogenação , Tamanho da Partícula , Análise Espectral Raman , Temperatura , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA