Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
J Vet Sci ; 25(1): e12, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38311325

RESUMO

BACKGROUND: Staphylococcus aureus and S. pseudintermedius are the major etiological agents of staphylococcal infections in humans, livestock, and companion animals. The misuse of antimicrobial drugs has led to the emergence of antimicrobial-resistant Staphylococcus spp., including methicillin-resistant S. aureus (MRSA) and methicillin-resistant S. pseudintermedius (MRSP). One novel therapeutic approach against MRSA and MRSP is a peptide nucleic acid (PNA) that can bind to the target nucleotide strands and block expression. Previously, two PNAs conjugated with cell-penetrating peptides (P-PNAs), antisense PNA (ASP)-cmk and ASP-deoD, targeting two essential genes in S. aureus, were constructed, and their antibacterial activities were analyzed. OBJECTIVES: This study analyzed the combined antibacterial effects of P-PNAs on S. aureus and S. pseudintermedius clinical isolates. METHODS: S. aureus ATCC 29740 cells were treated simultaneously with serially diluted ASP-cmk and ASP-deoD, and the minimal inhibitory concentrations (MICs) were measured. The combined P-PNA mixture was then treated with S. aureus and S. pseudintermedius veterinary isolates at the determined MIC, and the antibacterial effect was examined. RESULTS: The combined treatment of two P-PNAs showed higher antibacterial activity than the individual treatments. The MICs of two individual P-PNAs were 20 and 25 µM, whereas that of the combined treatment was 10 µM. The application of a combined treatment to clinical Staphylococcus spp. revealed S. aureus isolates to be resistant to P-PNAs and S. pseudintermedius isolates to be susceptible. CONCLUSIONS: These observations highlight the complexity of designing ASPs with high efficacy for potential applications in treating staphylococcal infections in humans and animals.


Assuntos
Doenças do Cão , Staphylococcus aureus Resistente à Meticilina , Ácidos Nucleicos Peptídicos , Infecções Estafilocócicas , Animais , Humanos , Cães , Staphylococcus aureus , Ácidos Nucleicos Peptídicos/farmacologia , Ácidos Nucleicos Peptídicos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana/veterinária , Doenças do Cão/tratamento farmacológico
2.
Infect Disord Drug Targets ; 24(1): e240723219021, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37723954

RESUMO

Antibiotic resistance is a growing global problem, so there is an urgent need for new antimicrobial agents and strategies. Peptide nucleic acid (PNA) oligomers could be designed and utilized as gene-specific oligonucleotides to target any infectious agents. Selectivity and high-affinity binding are the main properties of PNA. However, in therapeutic applications, intracellular delivery of peptide nucleic acids is still a challenge. In photodynamic therapy (PDT), which could be a useful adjunct to mechanical and antibiotics in removing pathogenic agents, low-power lasers are used in appropriate wavelength for killing the microorganisms that have been treated with a photosensitizer drug. Antimicrobial photodynamic therapy (aPDT) in combination with lipid-charged nanoparticles of PNA is a promising alternative therapy proposed to control infectious diseases. This review summarizes progress in the uptake of peptide nucleic acids at intracellular targets. In addition, we focus on recent nanoparticle- based strategies to efficiently deliver conventional and chemically modified peptide nucleic acids. The likely impact of using two treatment methods simultaneously, i.e., PNP and PDT, has already been discussed.


Assuntos
Anti-Infecciosos , Doenças Transmissíveis , Ácidos Nucleicos Peptídicos , Fotoquimioterapia , Humanos , Ácidos Nucleicos Peptídicos/farmacologia , Ácidos Nucleicos Peptídicos/uso terapêutico , Anti-Infecciosos/farmacologia , Anti-Infecciosos/uso terapêutico , Doenças Transmissíveis/tratamento farmacológico , Resultado do Tratamento
3.
ACS Biomater Sci Eng ; 9(3): 1656-1671, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36853144

RESUMO

As the world braces to enter its fourth year of the coronavirus disease 2019 (COVID-19) pandemic, the need for accessible and effective antiviral therapeutics continues to be felt globally. The recent surge of Omicron variant cases has demonstrated that vaccination and prevention alone cannot quell the spread of highly transmissible variants. A safe and nontoxic therapeutic with an adaptable design to respond to the emergence of new variants is critical for transitioning to the treatment of COVID-19 as an endemic disease. Here, we present a novel compound, called SBCoV202, that specifically and tightly binds the translation initiation site of RNA-dependent RNA polymerase within the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome, inhibiting viral replication. SBCoV202 is a Nanoligomer, a molecule that includes peptide nucleic acid sequences capable of binding viral RNA with single-base-pair specificity to accurately target the viral genome. The compound has been shown to be safe and nontoxic in mice, with favorable biodistribution, and has shown efficacy against SARS-CoV-2 in vitro. Safety and biodistribution were assessed using three separate administration methods, namely, intranasal, intravenous, and intraperitoneal. Safety studies showed the Nanoligomer caused no outward distress, immunogenicity, or organ tissue damage, measured through observation of behavior and body weight, serum levels of cytokines, and histopathology of fixed tissue, respectively. SBCoV202 was evenly biodistributed throughout the body, with most tissues measuring Nanoligomer concentrations well above the compound KD of 3.37 nM. In addition to favorable availability to organs such as the lungs, lymph nodes, liver, and spleen, the compound circulated through the blood and was rapidly cleared through the renal and urinary systems. The favorable biodistribution and lack of immunogenicity and toxicity set Nanoligomers apart from other antisense therapies, while the adaptability of the nucleic acid sequence of Nanoligomers provides a defense against future emergence of drug resistance, making these molecules an attractive potential treatment for COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Genoma Viral , Nanomedicina , Nanoestruturas , Oligorribonucleotídeos , Ácidos Nucleicos Peptídicos , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , COVID-19/virologia , Tratamento Farmacológico da COVID-19/efeitos adversos , Tratamento Farmacológico da COVID-19/métodos , Nanoestruturas/administração & dosagem , Nanoestruturas/efeitos adversos , Nanoestruturas/uso terapêutico , Nanomedicina/métodos , Segurança do Paciente , Ácidos Nucleicos Peptídicos/administração & dosagem , Ácidos Nucleicos Peptídicos/efeitos adversos , Ácidos Nucleicos Peptídicos/farmacocinética , Ácidos Nucleicos Peptídicos/uso terapêutico , Oligorribonucleotídeos/administração & dosagem , Oligorribonucleotídeos/efeitos adversos , Oligorribonucleotídeos/farmacocinética , Oligorribonucleotídeos/uso terapêutico , Animais , Camundongos , Camundongos Endogâmicos BALB C , Técnicas In Vitro , Genoma Viral/efeitos dos fármacos , Genoma Viral/genética , Distribuição Tecidual
4.
RNA ; 29(4): 434-445, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36653113

RESUMO

RNA therapeutics have emerged as next-generation therapy for the treatment of many diseases. Unlike small molecules, RNA targeted drugs are not limited by the availability of binding pockets on the protein, but rather utilize Watson-Crick (WC) base-pairing rules to recognize the target RNA and modulate gene expression. Antisense oligonucleotides (ASOs) present a powerful therapeutic approach to treat disorders triggered by genetic alterations. ASOs recognize the cognate site on the target RNA to alter gene expression. Nine single-stranded ASOs have been approved for clinical use and several candidates are in late-stage clinical trials for both rare and common diseases. Several chemical modifications, including phosphorothioates, locked nucleic acid, phosphorodiamidate, morpholino, and peptide nucleic acids (PNAs), have been investigated for efficient RNA targeting. PNAs are synthetic DNA mimics where the deoxyribose phosphate backbone is replaced by N-(2-aminoethyl)-glycine units. The neutral pseudopeptide backbone of PNAs contributes to enhanced binding affinity and high biological stability. PNAs hybridize with the complementary site in the target RNA and act by a steric hindrance--based mechanism. In the last three decades, various PNA designs, chemical modifications, and delivery strategies have been explored to demonstrate their potential as an effective and safe RNA-targeting platform. This review covers the advances in PNA-mediated targeting of coding and noncoding RNAs for a myriad of therapeutic applications.


Assuntos
Ácidos Nucleicos Peptídicos , RNA , RNA/genética , RNA/uso terapêutico , RNA/química , Ácidos Nucleicos Peptídicos/farmacologia , Ácidos Nucleicos Peptídicos/uso terapêutico , Ácidos Nucleicos Peptídicos/química , DNA/química , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/uso terapêutico , Pareamento de Bases
5.
ACS Appl Mater Interfaces ; 13(38): 45244-45258, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34524806

RESUMO

Cationic polymeric nanoformulations have been explored to increase the transfection efficiency of small molecules and nucleic acid-based drugs. However, an excessive positive charge density often leads to severe cell and tissue-based toxicity that restricts the clinical translation of cationic polymeric nanoformulations. Herein, we investigate a series of cationic poly(lactic-co-glycolic acid) (PLGA)-histidine-based nanoformulations for enhanced cytoplasmic delivery with minimal toxicity. PLGA/poly-l-histidine nanoparticles show promising physico-biochemical features and transfection efficiency in a series of in vitro and cell culture-based studies. Further, the use of acetone/dichloromethane as a solvent mixture during the formulation process significantly improves the morphology and size distribution of PLGA/poly-l-histidine nanoparticles. PLGA/poly-l-histidine nanoformulations undergo clathrin-mediated endocytosis. A contrast-matched small-angle neutron scattering experiment confirmed poly-l-histidine's distribution on the PLGA nanoformulations. PLGA/poly-l-histidine formulations containing paclitaxel as a small molecule-based drug and peptide nucleic acids targeting microRNA-155 as nucleic acid analog are efficacious in in vitro and in vivo studies. PLGA/poly-l-histidine NPs significantly decrease tumor growth in PNA-155 (∼6 fold) and paclitaxel (∼6.5 fold) treatment groups in a lymphoma cell line derived xenograft mice model without inducing any toxicity. Hence, PLGA/poly-l-histidine nanoformulations exhibit substantial transfection efficiency and are safe to deliver reagents ranging from small molecules to synthetic nucleic acid analogs and can serve as a novel platform for drug delivery.


Assuntos
Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Linfoma/tratamento farmacológico , Nanopartículas/química , Paclitaxel/uso terapêutico , Ácidos Nucleicos Peptídicos/uso terapêutico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Portadores de Fármacos/metabolismo , Endocitose/fisiologia , Feminino , Histidina/química , Histidina/metabolismo , Humanos , Camundongos Endogâmicos NOD , MicroRNAs/antagonistas & inibidores , Nanopartículas/metabolismo , Paclitaxel/farmacologia , Ácidos Nucleicos Peptídicos/farmacologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Biochem Biophys Res Commun ; 529(3): 707-713, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32736696

RESUMO

Despite improved therapeutic efficacy of the locked nucleic acid (LNA)- and peptide nucleic acid (PNA)-modified antisense microRNAs (anti-miRs), their wider application in clinical practice is still not thoroughly investigated. This study aimed to investigate the stability and therapeutic efficacy of the modified LNA- and PNA-type anti-miRs in a murine prostate cancer model under various treatment conditions. After verifying the anti-cancer potential of anti-miR21 by targeting tumor suppressor PTEN, the potential of the modified LNA- and PNA-type anti-miR21s was compared in vitro and in vivo. We found that PNA-type anti-miR21 showed better stability and therapeutic efficacy in the xenografted mouse tumor model than the LNA-type anti-miR21. Furthermore, PNA-type anti-miR21 treatment showed reduced tumor metastasis. This study may serve as a ground for exploring diverse choices in therapeutic oligonucleotide modification techniques to improve cancer treatment.


Assuntos
Antagomirs/uso terapêutico , MicroRNAs/genética , Oligonucleotídeos/uso terapêutico , Ácidos Nucleicos Peptídicos/uso terapêutico , Neoplasias da Próstata/terapia , Animais , Antagomirs/genética , Linhagem Celular Tumoral , Terapia Genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica/genética , Metástase Neoplásica/terapia , Oligonucleotídeos/genética , Células PC-3 , Ácidos Nucleicos Peptídicos/genética , Neoplasias da Próstata/genética
7.
Cancer Res ; 79(24): 6166-6177, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615807

RESUMO

Approximately half of high-risk neuroblastoma is characterized by MYCN amplification. N-Myc promotes tumor progression by inducing cell growth and inhibiting differentiation. MYCN has also been shown to play an active role in mitochondrial metabolism, but this relationship is not well understood. Although N-Myc is a known driver of the disease, it remains a target for which no therapeutic drug exists. Here, we evaluated a novel MYCN-specific antigene PNA oligonucleotide (BGA002) in MYCN-amplified (MNA) or MYCN-expressing neuroblastoma and investigated the mechanism of its antitumor activity. MYCN mRNA and cell viability were reduced in a broad set of neuroblastoma cell lines following BGA002 treatment. Furthermore, BGA002 decreased N-Myc protein levels and apoptosis in MNA neuroblastoma. Analysis of gene expression data from patients with neuroblastoma revealed that MYCN was associated with increased reactive oxygen species (ROS), downregulated mitophagy, and poor prognosis. Inhibition of MYCN caused profound mitochondrial damage in MNA neuroblastoma cells through downregulation of the mitochondrial molecular chaperone TRAP1, which subsequently increased ROS. Correspondingly, inhibition of MYCN reactivated mitophagy. Systemic administration of BGA002 downregulated N-Myc and TRAP1, with a concomitant decrease in MNA neuroblastoma xenograft tumor weight. In conclusion, this study highlights the role of N-Myc in blocking mitophagy in neuroblastoma and in conferring protection to ROS in mitochondria through upregulation of TRAP1. BGA002 is a potently improved MYCN-specific antigene oligonucleotide that reverts N-Myc-dysregulated mitochondrial pathways, leading to loss of the protective effect of N-Myc against mitochondrial ROS. SIGNIFICANCE: A second generation antigene peptide oligonucleotide targeting MYCN induces mitochondrial damage and inhibits growth of MYCN-amplified neuroblastoma cells.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/patologia , Ácidos Nucleicos Peptídicos/farmacologia , Adolescente , Adulto , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Criança , Pré-Escolar , Feminino , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Lactente , Recém-Nascido , Estimativa de Kaplan-Meier , Masculino , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitofagia/efeitos dos fármacos , Proteína Proto-Oncogênica N-Myc/antagonistas & inibidores , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/mortalidade , Ácidos Nucleicos Peptídicos/genética , Ácidos Nucleicos Peptídicos/uso terapêutico , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
8.
Bioconjug Chem ; 30(3): 572-582, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30620563

RESUMO

The B-cell lymphoma 2 (Bcl-2) gene encodes for an antiapoptotic protein associated with the onset of many human tumors. Several oligonucleotides (ONs) and ON analogues are under study as potential tools to counteract the Bcl-2 expression. Among these are Peptide Nucleic Acids (PNAs). The absence of charges on PNA backbones allows the formation of PNA/DNA complexes provided with higher stability than the corresponding natural DNA/DNA counterparts. To date, the use of PNAs in antigene or antisense strategies is strongly limited by their inability to efficiently cross the cellular membranes. With the aim of downregulating the expression of Bcl-2, we propose here a novel antigene approach which uses oncolytic adenoviral vectors (OAds) as a new cancer cell-targeted PNA delivery system. The ability of oncolytic Ad5D24 vectors to selectively infect and kill cancer cells was exploited to transfect with high efficiency and selectivity a short cytosine-rich PNA complementary to the longest loop of the main G-quadruplex formed by the 23-base-long bcl2midG4 sequence located 52-30 bp upstream of the P1 promoter of Bcl-2 gene. Physico-chemical and biological investigations confirmed the ability of the PNA-conjugated Ad5D24 vectors to load and transfect their PNA cargo into human A549 and MDA-MB-436 cancer cell lines, as well as the synergistic (OAd+PNA) cytotoxic effect against the same cell lines. This approach holds promise for safer chemotherapy because of reduced toxicity to healthy tissues and organs.


Assuntos
Adenoviridae/genética , Vetores Genéticos/administração & dosagem , Neoplasias/terapia , Ácidos Nucleicos Peptídicos/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/genética , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Quadruplex G , Terapia Genética , Vetores Genéticos/genética , Vetores Genéticos/uso terapêutico , Humanos , Neoplasias/genética , Ácidos Nucleicos Peptídicos/genética , Ácidos Nucleicos Peptídicos/uso terapêutico , Proto-Oncogene Mas
9.
Nucleic Acid Ther ; 29(1): 1-12, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30307373

RESUMO

The review starts with a historical perspective of the achievements of the Gait group in synthesis of oligonucleotides (ONs) and their peptide conjugates toward the award of the 2017 Oligonucleotide Therapeutic Society Lifetime Achievement Award. This acts as a prelude to the rewarding collaborative studies in the Gait and Wood research groups aimed toward the enhanced delivery of charge neutral ON drugs and the development of a series of Arg-rich cell-penetrating peptides called Pip (peptide nucleic acid/phosphorodiamidate morpholino oligonucleotide [PNA/PMO] internalization peptides) as conjugates of such ONs. In this review we concentrate on these developments toward the treatment of the neuromuscular diseases Duchenne muscular dystrophy and spinal muscular atrophy toward a platform technology for the enhancement of cellular and in vivo delivery suitable for widespread use as neuromuscular and neurodegenerative ON drugs.


Assuntos
Peptídeos Penetradores de Células/uso terapêutico , Atrofia Muscular Espinal/tratamento farmacológico , Distrofia Muscular de Duchenne/tratamento farmacológico , Doenças Neuromusculares/tratamento farmacológico , Peptídeos Penetradores de Células/genética , Humanos , Morfolinos/genética , Morfolinos/uso terapêutico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Doenças Neuromusculares/genética , Doenças Neuromusculares/patologia , Ácidos Nucleicos Peptídicos/genética , Ácidos Nucleicos Peptídicos/uso terapêutico
10.
Molecules ; 23(3)2018 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-29534473

RESUMO

Peptide nucleic acids (PNAs) can bind duplex DNA in a sequence-targeted manner, forming a triplex structure capable of inducing DNA repair and producing specific genome modifications. Since the first description of PNA-mediated gene editing in cell free extracts, PNAs have been used to successfully correct human disease-causing mutations in cell culture and in vivo in preclinical mouse models. Gene correction via PNAs has resulted in clinically-relevant functional protein restoration and disease improvement, with low off-target genome effects, indicating a strong therapeutic potential for PNAs in the treatment or cure of genetic disorders. This review discusses the progress that has been made in developing PNAs as an effective, targeted agent for gene editing, with an emphasis on recent in vivo, nanoparticle-based strategies.


Assuntos
DNA/metabolismo , Edição de Genes/métodos , Ácidos Nucleicos Peptídicos/farmacologia , Animais , DNA/química , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/uso terapêutico
11.
Yale J Biol Med ; 90(4): 583-598, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29259523

RESUMO

Since their invention in 1991, peptide nucleic acids (PNAs) have been used in a myriad of chemical and biological assays. More recently, peptide nucleic acids have also been demonstrated to hold great potential as therapeutic agents because of their physiological stability, affinity for target nucleic acids, and versatility. While recent modifications in their design have further improved their potency, their preclinical development has reached new heights due to their combination with recent advancements in drug delivery. This review focuses on recent advances in PNA therapeutic applications, in which chemical modifications are made to improve PNA function and nanoparticles are used to enhance PNA delivery.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Ácidos Nucleicos Peptídicos/administração & dosagem , Ácidos Nucleicos Peptídicos/uso terapêutico , Elementos Antissenso (Genética) , Estabilidade de Medicamentos , Edição de Genes , Humanos , MicroRNAs , Estrutura Molecular , Nanopartículas/administração & dosagem , Nanopartículas/química , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/farmacocinética , Solubilidade
12.
Molecules ; 22(7)2017 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-28698463

RESUMO

Cystic Fibrosis (CF) is one of the most common life shortening conditions in Caucasians. CF is caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene which result in reduced or altered CFTR functionality. Several microRNAs (miRNAs) downregulate the expression of CFTR, thus causing or exacerbating the symptoms of CF. In this context, the design of anti-miRNA agents represents a valid functional tool, but its translation to the clinic might lead to unpredictable side effects because of the interference with the expression of other genes regulated by the same miRNAs. Herein, for the first time, is proposed the use of peptide nucleic acids (PNAs) to protect specific sequences in the 3'UTR (untranslated region) of the CFTR messenger RNA (mRNA) by action of miRNAs. Two PNAs (7 and 13 bases long) carrying the tetrapeptide Gly-SerP-SerP-Gly at their C-end, fully complementary to the 3'UTR sequence recognized by miR-509-3p, have been synthesized and the structural features of target PNA/RNA heteroduplexes have been investigated by spectroscopic and molecular dynamics studies. The co-transfection of the pLuc-CFTR-3´UTR vector with different combinations of PNAs, miR-509-3p, and controls in A549 cells demonstrated the ability of the longer PNA to rescue the luciferase activity by up to 70% of the control, thus supporting the use of suitable PNAs to counteract the reduction in the CFTR expression.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/terapia , MicroRNAs/genética , Ácidos Nucleicos Peptídicos/uso terapêutico , Regiões 3' não Traduzidas/genética , Células A549 , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/antagonistas & inibidores , Humanos , MicroRNAs/antagonistas & inibidores , Mutação , Ácidos Nucleicos Peptídicos/genética , RNA Mensageiro/genética , Transfecção
13.
Biomed Pharmacother ; 93: 580-588, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28686972

RESUMO

In recent years, the emergence of ESBL-producing and multi-drug resistant bacteria have been increased and designing novel components is necessary for confrontation these bacteria. Peptide nucleic acids (PNAs) are one of the synthetic components that bind to single strand DNA and RNA. Applications of these components are wide while, and one of the important applications of these components is inhibition of gene expression and knock downing the target gene follow as inhibition of bacterial growth. For PNA targeting gene, peptide-PNAs (PPNA) activity cannot be occurred without sequence homology, at the same time, it has been affected by sequence-based specific target and dose-dependent-based manner. Choosing the conserved sequence in different bacterial genus can provide broad-spectrum antimicrobial activity. In this review article, we studied several research papers and extract PNA targeting genes that cause gene knock down and inhibition of bacterial growth. Some novel opportunities for advancement and the design ultra-narrow-spectrum antimicrobial drugs against multi-drug can be accessible by utilizing PNA against necessary genes of pathogens. These results open novel vision for therapeutic intervention. Future researches are required to evaluate the safety, toxicity and pharmacokinetics properties of PPNAs in order to be utilized in clinical treatment.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ácidos Nucleicos Peptídicos/farmacologia , Ácidos Nucleicos Peptídicos/uso terapêutico , Animais , Bactérias/efeitos dos fármacos , Humanos
14.
Sci Rep ; 7(1): 894, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28420874

RESUMO

Long non-coding RNAs (lncRNAs) play key roles in human diseases, including cancer. Functional studies of the lncRNA HOTAIR (HOX transcript antisense RNA) provide compelling evidence for therapeutic targeting of HOTAIR in cancer, but targeting lncRNAs in vivo has proven to be difficult. In the current study, we describe a peptide nucleic acids (PNA)-based approach to block the ability of HOTAIR to interact with EZH2 and subsequently inhibit HOTAIR-EZH2 activity and resensitize resistant ovarian tumors to platinum. Treatment of HOTAIR-overexpressing ovarian and breast cancer cell lines with PNAs decreased invasion and increased chemotherapy sensitivity. Furthermore, the mechanism of action correlated with reduced nuclear factor-kappaB (NF-κB) activation and decreased expression of NF-κB target genes matrix metalloprotease 9 and interleukin 6. To deliver the anti-lncRNA to the acidic (pH approximately 6) tumor microenvironment, PNAs were conjugated to pH-low insertion peptide (pHLIP). Treatment of mice harboring platinum-resistant ovarian tumor xenografts with pHLIP-PNA constructs suppressed HOTAIR activity, reduced tumor formation and improved survival. This first report on pHLIP-PNA lncRNA targeting solid tumors in vivo suggests a novel cancer therapeutic approach.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Ácidos Nucleicos Peptídicos/uso terapêutico , RNA Longo não Codificante/antagonistas & inibidores , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Sinergismo Farmacológico , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/metabolismo , Ácidos Nucleicos Peptídicos/administração & dosagem , Ácidos Nucleicos Peptídicos/farmacologia
15.
Biomaterials ; 118: 51-62, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27940382

RESUMO

Autoimmune diseases occur when the immune system incorrectly recognizes self-molecules as foreign; in the case of multiple sclerosis (MS), myelin is attacked. Intriguingly, new studies reveal toll-like receptors (TLRs), pathways usually involved in generating immune responses against pathogens, play a significant role in driving autoimmune disease in both humans and animal models. We reasoned polyplexes formed from myelin self-antigen and regulatory TLR antagonists might limit TLR signaling during differentiation of myelin-specific T cells, inducing tolerance by biasing T cells away from inflammatory phenotypes. Complexes were formed by modifying myelin peptide with cationic amino acids to create peptides able to condense the anionic nucleic-acid based TLR antagonist. These immunological polyplexes eliminate synthetic polymers commonly used to condense polyplexes and do not rely on gene expression; however, the complexes mimic key features of traditional polyplexes such as tunable loading and co-delivery. Using these materials and classic polyplex analysis techniques, we demonstrate condensation of both immune signals, protection from enzymatic degradation, and tunable physicochemical properties. We show polyplexes reduce TLR signaling, and in primary dendritic cell and T cell co-culture, reduce myelin-driven inflammation. During mouse models of MS, these tolerogenic polyplexes improve the progression, severity, and incidence of disease.


Assuntos
Autoantígenos/imunologia , Autoantígenos/uso terapêutico , Autoimunidade/imunologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/terapia , Ácidos Nucleicos Peptídicos/uso terapêutico , Receptores Toll-Like/imunologia , Animais , Autoantígenos/farmacologia , Autoimunidade/efeitos dos fármacos , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Nucleicos , Ácidos Nucleicos Peptídicos/imunologia , Ácidos Nucleicos Peptídicos/farmacologia , Transdução de Sinais , Receptores Toll-Like/antagonistas & inibidores , Resultado do Tratamento
16.
Adv Mater ; 28(36): 7984-7992, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27383910

RESUMO

Self-assembled polymer/porous silicon nanocomposites overcome intracellular and systemic barriers for in vivo application of peptide nucleic acid (PNA) anti-microRNA therapeutics. Porous silicon (PSi) is leveraged as a biodegradable scaffold with high drug-cargo-loading capacity. Functionalization with a diblock polymer improves PSi nanoparticle colloidal stability, in vivo pharmacokinetics, and intracellular bioavailability through endosomal escape, enabling PNA to inhibit miR-122 in vivo.


Assuntos
MicroRNAs/antagonistas & inibidores , Nanocompostos/química , Ácidos Nucleicos Peptídicos/administração & dosagem , Ácidos Nucleicos Peptídicos/uso terapêutico , Polímeros/química , Silício/química , Animais , Linhagem Celular Tumoral , Coloides/química , Feminino , Humanos , Camundongos , MicroRNAs/genética , Ácidos Nucleicos Peptídicos/farmacologia , Porosidade , Terapêutica com RNAi
17.
Nucleic Acids Res ; 44(4): 1937-43, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26717983

RESUMO

PNA is a promising molecule for antisense therapy of trinucleotide repeat disorders. We present the first crystal structures of RNA-PNA duplexes. They contain CUG repeats, relevant to myotonic dystrophy type I, and CAG repeats associated with poly-glutamine diseases. We also report the first PNA-PNA duplex containing mismatches. A comparison of the PNA homoduplex and the PNA-RNA heteroduplexes reveals PNA's intrinsic structural properties, shedding light on its reported sequence selectivity or intolerance of mismatches when it interacts with nucleic acids. PNA has a much lower helical twist than RNA and the resulting duplex has an intermediate conformation. PNA retains its overall conformation while locally there is much disorder, especially peptide bond flipping. In addition to the Watson-Crick pairing, the structures contain interesting interactions between the RNA's phosphate groups and the Π electrons of the peptide bonds in PNA.


Assuntos
Ácidos Nucleicos Peptídicos/química , RNA Antissenso/genética , RNA/química , Expansão das Repetições de Trinucleotídeos/genética , Pareamento de Bases , Cristalografia por Raios X , Humanos , Distrofia Miotônica/genética , Distrofia Miotônica/terapia , Ácidos Nucleicos Peptídicos/genética , Ácidos Nucleicos Peptídicos/uso terapêutico , Peptídeos/genética , RNA/genética , RNA Antissenso/química , RNA Antissenso/uso terapêutico , Repetições de Trinucleotídeos/genética
18.
Nat Commun ; 6: 6952, 2015 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-25914116

RESUMO

Cystic fibrosis (CF) is a lethal genetic disorder most commonly caused by the F508del mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. It is not readily amenable to gene therapy because of its systemic nature and challenges including in vivo gene delivery and transient gene expression. Here we use triplex-forming peptide nucleic acids and donor DNA in biodegradable polymer nanoparticles to correct F508del. We confirm modification with sequencing and a functional chloride efflux assay. In vitro correction of chloride efflux occurs in up to 25% of human cells. Deep-sequencing reveals negligible off-target effects in partially homologous sites. Intranasal delivery of nanoparticles in CF mice produces changes in the nasal epithelium potential difference assay, consistent with corrected CFTR function. Also, gene correction is detected in the nasal and lung tissue. This work represents facile genome engineering in vivo with oligonucleotides using a nanoparticle system to achieve clinically relevant levels of gene editing without off-target effects.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/terapia , Terapia Genética/métodos , Ácidos Nucleicos Peptídicos/uso terapêutico , Animais , Linhagem Celular , Cloretos/metabolismo , Proteínas de Ligação a DNA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ácido Láctico , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Ácido Poliglicólico , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros , Mucosa Respiratória/metabolismo
19.
Nature ; 518(7537): 107-10, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25409146

RESUMO

MicroRNAs are short non-coding RNAs expressed in different tissue and cell types that suppress the expression of target genes. As such, microRNAs are critical cogs in numerous biological processes, and dysregulated microRNA expression is correlated with many human diseases. Certain microRNAs, called oncomiRs, play a causal role in the onset and maintenance of cancer when overexpressed. Tumours that depend on these microRNAs are said to display oncomiR addiction. Some of the most effective anticancer therapies target oncogenes such as EGFR and HER2; similarly, inhibition of oncomiRs using antisense oligomers (that is, antimiRs) is an evolving therapeutic strategy. However, the in vivo efficacy of current antimiR technologies is hindered by physiological and cellular barriers to delivery into targeted cells. Here we introduce a novel antimiR delivery platform that targets the acidic tumour microenvironment, evades systemic clearance by the liver, and facilitates cell entry via a non-endocytic pathway. We find that the attachment of peptide nucleic acid antimiRs to a peptide with a low pH-induced transmembrane structure (pHLIP) produces a novel construct that could target the tumour microenvironment, transport antimiRs across plasma membranes under acidic conditions such as those found in solid tumours (pH approximately 6), and effectively inhibit the miR-155 oncomiR in a mouse model of lymphoma. This study introduces a new model for using antimiRs as anti-cancer drugs, which can have broad impacts on the field of targeted drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Linfoma/genética , Linfoma/terapia , MicroRNAs/antagonistas & inibidores , Microambiente Tumoral , Ácidos , Animais , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Modelos Animais de Doenças , Feminino , Concentração de Íons de Hidrogênio , Linfoma/patologia , Masculino , Camundongos , MicroRNAs/genética , Terapia de Alvo Molecular , Nanopartículas/administração & dosagem , Nanopartículas/química , Oncogenes/genética , Ácidos Nucleicos Peptídicos/administração & dosagem , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/uso terapêutico , Microambiente Tumoral/genética
20.
Biomed Res Int ; 2014: 610718, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24829907

RESUMO

Computational techniques, and in particular molecular dynamics (MD) simulations, have been successfully used as a complementary technique to predict and analyse the structural behaviour of nucleic acids, including peptide nucleic acid- (PNA-) RNA hybrids. This study shows that a 7-base long PNA complementary to the seed region of miR-509-3p, one of the miRNAs involved in the posttranscriptional regulation of the CFTR disease-gene of Cystic Fibrosis, and bearing suitable functionalization at its N- and C-ends aimed at improving its resistance to nucleases and cellular uptake, is able to revert the expression of the luciferase gene containing the 3'UTR of the gene in A549 human lung cancer cells, in agreement with the MD results that pointed at the formation of a stable RNA/PNA heteroduplex notwithstanding the short sequence of the latter. The here reported results widen the interest towards the use of small PNAs as effective anti-miRNA agents.


Assuntos
Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/antagonistas & inibidores , Ácidos Nucleicos Peptídicos/farmacologia , Ácidos Nucleicos Peptídicos/uso terapêutico , Linhagem Celular Tumoral , Dicroísmo Circular , Ensaio de Desvio de Mobilidade Eletroforética , Fluoresceína-5-Isotiocianato/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Simulação de Dinâmica Molecular , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Desnaturação de Ácido Nucleico/efeitos da radiação , Ácidos Nucleicos Peptídicos/síntese química , Espectrofotometria Ultravioleta , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA