Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
1.
Nutrients ; 16(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38794765

RESUMO

In the process of validating the elevated zero maze, a common test of anxiety-like behavior, in our laboratory, we demonstrated an anxiolytic-like effect of castor oil and its primary component, ricinoleic acid. We tested the effects of vehicle and chlordiazepoxide in male mice in the elevated zero maze following a 30-min pretreatment time. Chlordiazepoxide is a United States Food and Drug Administration-approved drug that was previously shown to exert anxiolytic-like effects in both the elevated zero maze and elevated plus maze. Chlordiazepoxide was administered at doses of 5 or 10 mg/kg. We used 5% polyoxyl 35 castor oil (Kolliphor® EL) and saline as treatment vehicles and found that the effect of chlordiazepoxide on open zone occupancy and open zone entries was blunted when 5% Kolliphor was used as the vehicle. These tests demonstrated that chlordiazepoxide increased open zone occupancy and entries in the elevated zero maze more effectively when saline was used as the treatment vehicle and that Kolliphor dampened the anxiolytic-like effect of chlordiazepoxide when it was used as the treatment vehicle. Notably, 5% Kolliphor alone slightly increased baseline open zone occupancy and entries. Given that Kolliphor is a derivative of castor oil, we next tested the effect of 5% castor oil and 5% ricinoleic acid, which is a major component of castor oil. We found that both castor oil and ricinoleic acid increased open zone occupancy but not entries compared with saline. Altogether, our findings demonstrate that Kolliphor, castor oil, and ricinoleic acid may exert anxiolytic-like effects in male mice in the elevated zero maze. This potential anxiolytic-like effect of castor oil is consistent with its well-established beneficial effects, including anti-inflammatory, antioxidant, antifungal, and pain-relieving properties.


Assuntos
Ansiolíticos , Ansiedade , Óleo de Rícino , Ácidos Ricinoleicos , Animais , Ácidos Ricinoleicos/farmacologia , Ansiolíticos/farmacologia , Masculino , Camundongos , Ansiedade/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Clordiazepóxido/farmacologia , Aprendizagem em Labirinto/efeitos dos fármacos , Comportamento Exploratório/efeitos dos fármacos
2.
Food Chem ; 447: 138979, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38518617

RESUMO

Traditional Beijing roast duck often suffers from uneven color and high sugar content after roasting. Water-in-oil (W/O) nanoemulsion is a promising alternative to replace high concentration of sugar solution used in sugaring process according to similarity-intermiscibility theory. Herein, 3% of xylose was embedded in the aqueous phase of W/O emulsion to replace 15% maltose solution. W/O emulsions with different ratios of lecithin (LEC) and polyglycerol polyricinoleate (PGPR) were constructed by high-speed homogenization and high-pressure homogenization. Distribution and penetration extent of solutions and emulsions through the duck skin, as well as the color uniformity of Beijing roast duck were analyzed. Emulsions with LEC:PGPR ratios of 1:3 and 2:2 had better stability. Stable interfacial film and spatial structure were important factors influencing emulsion stabilization. The stable W/O emulsions could more uniformly distribute onto the surface of duck skin and longitudinally penetrate through the skin than solutions.


Assuntos
Patos , Glicerol/análogos & derivados , Lecitinas , Ácidos Ricinoleicos , Animais , Lecitinas/química , Emulsões/química , Açúcares , Água/química , Pequim
3.
Artigo em Inglês | MEDLINE | ID: mdl-38507391

RESUMO

PGPR is an emulsifier (E476) widely used in the food industry. In this study, a gas chromatography-flame ionisation detection (GC-FID) method was developed for the quantitative characterisation of the polyglycerol composition of PGPR. The method was validated to analyse quantitatively the polyglycerol species in neat PGPR products and in PGPR samples present in a lipid matrix. This method consists of saponification, acidification and petroleum ether extraction to remove interfering fatty acids, neutralisation, silylation and finally GC-FID analysis. Phenyl ß-D-glucopyranoside was used as internal standard as sorbitol proved unsuitable due to its susceptibility to interference from Na/K chloride during silylation. The response factors of glycerol and diglycerol towards phenyl ß-D-glucopyranoside were determined using pure standards, while response factors of polyglycerols with a degree of polymerisation of at least 3 could be reliably estimated according to an effective carbon number (ECN) approach. The validity of the method applied to PGPR samples was further supported on the basis of a mass balance considering the experimentally determined polyglycerol and fatty acid content. Moreover, recoveries of di-, tri-, tetra- and pentaglycerol were more than 95% for various PGPR samples added to two different lipid matrices at 2 wt% and 5 wt% concentrations. Furthermore, the method proved to be very repeatable (with relative standard deviation values below 2.2%). On the other hand, the inevitable presence of glycerol in the lipid samples caused fouling of the detector and column overloading, requiring frequent cleaning of the detector and trimming off part of the column.


Assuntos
Glicerol , Lipídeos , Polímeros , Glicerol/análise , Glicerol/análogos & derivados , Polímeros/química , Cromatografia Gasosa , Lipídeos/análise , Lipídeos/química , Ácidos Ricinoleicos/análise , Ácidos Ricinoleicos/química , Ionização de Chama
5.
Metab Eng ; 81: 197-209, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072356

RESUMO

Ricinoleic acid (C18:1-OH, RA) is a valuable hydroxy fatty acid with versatile applications. The current industrial source of RA relies on the hydrolysis of castor bean oil. However, the coexistence of the toxic compound ricin and the unstable supply of this plant have led to an exploration of promising alternatives: generating RA in heterologous plants or microorganisms. In this study, we engineered the oleaginous yeast Yarrowia lipolytica to produce RA in the form of free fatty acids (FFA). First, we overexpressed fungal Δ12 oleate hydroxylase gene (CpFAH12) from Claviceps purpurea while deleting genes related to fatty acid degradation (MEF1 and PEX10) and oleic acid desaturation (FAD2). Since Δ12 oleate hydroxylase converts oleic acid (C18:1) located at the sn-2 position of phosphatidylcholine (PC), we next focused on increasing the PC pool containing oleic acid. This objective was achieved thorough implementing metabolic engineering strategies designed to enhance the biosynthesis of PC and C18 fatty acids. To increase the PC pool, we redirected the flux towards phospholipid biosynthesis by deleting phosphatidic acid phosphatase genes (PAH1 and APP1) and diacylglycerol acyltransferase gene (DGA1), involved in the production of diacylglycerol and triacylglycerol, respectively. Furthermore, the PC biosynthesis via the CDP-DAG pathway was enhanced through the overexpression of CDS1, PSD1, CHO2, and OPI3 genes. Subsequently, to increase the oleic acid content within PC, we overexpressed the heterologous fatty acid elongase gene (MaC16E) involved in the conversion of C16 to C18 fatty acids. As RA production titer escalated, the produced RA was mainly found in the FFA form, leading to cell growth inhibition. The growth inhibition was mitigated by inducing RA secretion via Triton X-100 treatment, a process that simultaneously amplified RA production by redirecting flux towards RA synthesis. The final engineered strain JHYL-R146 produced 2.061 g/L of free RA in a medium treated with 5% Triton X-100, constituting 74% of the total FFAs produced. Generating free RA offers the added benefit of bypassing the hydrolysis stage required when employing castor bean oil as an RA source. This achievement represents the highest level of RA synthesis from glucose reported thus far, underscoring the potential of Y. lipolytica as a host for sustainable RA production.


Assuntos
Ácidos Graxos não Esterificados , Yarrowia , Ácidos Graxos não Esterificados/genética , Ácidos Graxos não Esterificados/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Ácido Oleico/genética , Ácido Oleico/metabolismo , Ácidos Ricinoleicos/metabolismo , Octoxinol/metabolismo , Ácidos Graxos/metabolismo , Oxigenases de Função Mista/genética , Engenharia Metabólica
6.
Compr Rev Food Sci Food Saf ; 22(6): 4282-4301, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37583303

RESUMO

Polyglycerol polyricinoleate (PGPR) is a synthetic food additive containing a complex mixture of various esters. In recent years, there has been a growing trend to use PGPR-stabilized water-in-oil (W/O) emulsions to replace fat in order to produce low-calorie food products. In this respect, it is essential to comprehensively characterize the PGPR molecular species composition, which might enable to reduce its required amount in emulsions and foods based on a better understanding of the structure-activity relationship. This review presents the recent research progress on the characterization and quantitative analysis of PGPR. The influencing factors of the emulsifying ability of PGPR in W/O emulsions are further illustrated to provide new insights on the total or partial replacement of PGPR. Moreover, the latest progress on applications of PGPR in food products is described. Current studies have revealed the complex structure of PGPR. Besides, recent research has focused on the quantitative determination of the composition of PGPR and the quantification of the PGPR concentration in foods. However, research on the quantitative determination of the (poly)glycerol composition of PGPR and of the individual molecular species present in PGPR is still limited. Some natural water- or oil-soluble surfactants (e.g., proteins or lecithin) have been proven to enable the partial replacement of PGPR in W/O emulsions. Additionally, water-dispersible phytosterol particles and lecithin have been successfully used as a substitute of PGPR to create stable W/O emulsions.


Assuntos
Glicerol , Lecitinas , Glicerol/química , Ácidos Ricinoleicos/química , Emulsões/química , Água/química
7.
Food Res Int ; 165: 112472, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869485

RESUMO

Chloroplasts are abundant organelles in a diverse range of plant materials; they are predominantly composed of multicomponent thylakoid membranes which are lipid and protein rich. Intact or unravelled thylakoid membranes should, in principle, have interfacial activity, but little has been published on their activity in oil-in-water systems, and nothing on their performance on an oil continuous system. In this work different physical methods were used to produce a range of chloroplast/thylakoid suspensions with varying degrees of membrane integrity. Transmission electron microscopy revealed that pressure homogenisation led to the greatest extent of membrane and organelle disruption compared to less energy intensive preparation methods The ability of the derived materials to modulate the flow behaviour of a chocolate model system (65% (w/w) sugar/ sunflower oil (natural amphiphiles removed) suspension) was investigated by acquiring rheological parameters. All chloroplast/thylakoid preparations reduced yield stress, apparent viscosity, tangent flow point and cross over point in a concentration-dependent fashion, although not as significantly as polyglycerol polyricinoleate applied at a commercially relevant concentration in the same chocolate model system. Confocal laser scanning microscopy confirmed presence of the alternative flow enhancer material at the sugar surfaces. This research reveals that low-energy processing methods that do not extensively disrupt thylakoid membranes are applicable to generating materials with marked capacity to affect the flow behaviour of a chocolate model system. In conclusion, chloroplast/thylakoid materials hold strong potential as natural alternatives to synthetic rheology modifiers for lipid-based systems such as PGPR.


Assuntos
Cacau , Tilacoides , Cloroplastos , Ácidos Ricinoleicos , Açúcares
8.
Biomacromolecules ; 23(8): 3417-3428, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35881559

RESUMO

The alternating architecture and hydrophobic side chains hinder hydrolytic cleavage and anhydride interchange in poly(sebacic acid-ricinoleic acid) (P(SA-RA)), which provides stable polyanhydrides at room temperature. In this report, a series of polyanhydrides were designed to investigate the effect of ester bonds, hydrophobic side chains, phenyl moieties, and their distance from anhydride bonds on their stability and properties. Polyanhydrides with alternating architecture are constructed by the polymerization of ester-diacids prepared from ricinoleic or other hydroxy acids with anhydrides such as succinic, maleic, and phthalic anhydrides. The hydrophobic side chains are designed closer to anhydride bonds to investigate hindrance to hydrolytic cleavage and anhydride interchange. Polyanhydrides were obtained by the activation of ester-diacid using acetic anhydride followed by melt condensation. The reactions were monitored by NMR, Fourier transform infrared (FTIR), and gel permeation chromatography (GPC). The synthesized poly(ester-anhydride)s with a shorter chain length compared to P(SA-RA) were stable at room temperature. The hydrolytic degradation studies reveal that the phenyl moiety present in poly(ricinoleic acid phthalate) (PRAP) and poly(hydroxystearic acid phthalate) (PHSAP) reduces the hydrolysis of anhydride bonds. Poly(hydroxyoctanoic acid succinate) (PHOAS) demonstrates the highest molecular weight of all tested polymers. The results reveal that the presence of hydrophobic side chains, phenyl moieties, and their distance from anhydride bonds significantly improves the stability. These stable polyanhydrides can provide convenience to use in control drug-delivery applications. The in vitro drug release study using ibuprofen shows that polymers with aromatic units such as PRAP and PHSAP establish sustained release, which presents more than 50 and 40% of ibuprofen over a period of 28 days.


Assuntos
Anidridos , Polianidridos , Anidridos/química , Ésteres/química , Hidroxiácidos , Ibuprofeno , Ácidos Ricinoleicos/química
9.
Sci Rep ; 12(1): 11946, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831366

RESUMO

In this study, effects of sesamol on improving the oxidative stability of sunflower oil and its oil-in-water emulsion was investigated. To investigate the kinetic parameters related to the initiation and propagation stages of oxidation, a sigmoidal-model was used. Sesamol exhibited higher antioxidant activity in sunflower oil-in-water emulsion than that of sunflower oil. In both sunflower oil and sunflower oil-in-water emulsion, the inhibitory effect of sesamol against lipid oxidation continued even after the induction period. To improve the efficiency of sesamol in sunflower oil, polyglycerol polyricinoleate (PGPR) was incorporated into the functional environment of the sesamol. Sesamol exhibited a synergistic effect with PGPR during both initiation (synergistic effect of 68.87%) and propagation (synergistic effect of 36.84%) stages. Comparison of the size of reverse micelles in samples containing PGPR with those without PGPR revealed that PGPR can enhance the efficiency of sesamol by increasing the acceptance capacity of lipid hydroperoxides in reveres micelles structures. This can result in enhancing the effective collisions between sesamol and lipid hydroperoxides in the presence of PGPR. The water produced as a major byproduct of oxidation played a key role on the antioxidant activity of sesamol alone or in combination with PGPR during oxidation process.


Assuntos
Antioxidantes , Micelas , Antioxidantes/farmacologia , Benzodioxóis , Emulsões/química , Glicerol/análogos & derivados , Fenóis , Ácidos Ricinoleicos/química , Óleo de Girassol , Água/química
10.
J Oleo Sci ; 71(6): 781-793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35661063

RESUMO

Castor oil is a vegetable product extracted from Ricinus communis L (castor seed), which is primarily considered an important commercial value for the manufacturing of soaps, lubricants, coatings, etc. It is rich in hydroxylated fatty acids (ricinoleic acid, 89-92%) and is widely used in the cosmetic, pharmaceutical, oleochemical, and agricultural industries. This oil has also been confirmed as a bactericidal, anti-inflammatory, and antiherpetic agents, due to the ricinoleic acid having functional groups, such as -COOH, -OH, and -C=C-. Furthermore, it is converted into various acid derivative compounds with several applications. Therefore, this article reviewed some reaction stages to the preparation of ricinoleic acid from castor oil. Several methods or reaction pathways were employed in the preparation procedure, such as the Twitchell and Colgate-Emery processes, as well as the alkaline catalyzed, transesterification with methyl ricinoleic, and lipase-catalyzed hydrolysis, respectively. Although each of these preparation methods has advantages and disadvantages, the most effective technique was the hydrolysis through the use of the enzyme lipozyme TL IM. Besides being a green method, the conversion rate in the hydrolysis process was 96.2 ± 1.5.


Assuntos
Ácidos Ricinoleicos , Ricinus communis , Óleo de Rícino/química , Esterificação , Ácidos Graxos/metabolismo , Ácidos Ricinoleicos/metabolismo
11.
J Oleo Sci ; 71(6): 915-925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35661069

RESUMO

In this study, bio-based ionic liquid prepared from ricinoleic acid and choline was firstly used as additive in lithium base grease. The characterization and tribological performance of the prepared ionic liquid ([cho][ricinoleic]) as additive in grease were studied compared with the traditional ionic liquid such as L-P104. All the concentrations showed promising friction-reducing and anti-wear properties, though a 3% concentration has superior lubricating properties than others. Furthermore, [cho][ricinoleic]) can greatly enhance the lubrication capability of lithium base greaseunder different frequency and load at room temperature. Although L-P104 showed good lubricating performance than [cho][ricinoleic] at 150°C, the chosen formulation (1.5% [cho][ricinoleic] + 1.5% L-P104) could have better synergism at high and room temperature, which could be a good supplement to ionic liquid as grease additive. Thin films formed according to the results of SEM and XPS were attributed to be the main account for the preferable tribological properties of [cho][ricinoleic] in lithium base grease.


Assuntos
Líquidos Iônicos , Lítio , Colina , Hidrocarbonetos , Lubrificantes , Ácidos Ricinoleicos
12.
ACS Synth Biol ; 11(3): 1178-1185, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35157794

RESUMO

Ricinoleic acid (RA) is a long-chain hydroxy fatty acid produced from castor bean that is used in the manufacturing of a variety of industrial products. The demand for RA keeps increasing due to its broad applications. However, due to the presence of a potent toxin ricin, the native oilseed plant is not an ideal source for hydroxy fatty acid production. Although there have been significant efforts on engineering different microorganisms for heterologous production of RA, all had very limited success. The main reason for this is the exhibited toxicity of the intracellularly accumulated RA. To avoid this issue, we genetically modified a Starmerella bombicola strain by engineering its native sophorolipid production pathway to direct the synthesized RA bound with sophorolipid to be secreted out of the cell, followed by acid hydrolysis to recover RA. The engineered S. bombicola strain expressing the heterologous codon-optimized oleate hydroxylase-encoding gene from ergot fungus Claviceps purpurea resulted in a record production titer of RA at about 2.96 g/L. Thus, this work highlights a new strategy to produce a high level of hydroxy fatty acids in engineered yeast through a sophorolipid intermediate, enabling a new biocatalysis platform for the future.


Assuntos
Ácidos Graxos , Ácidos Ricinoleicos , Ácido Oleico , Ácidos Oleicos , Ácidos Ricinoleicos/metabolismo , Saccharomycetales
13.
Microbiol Spectr ; 9(2): e0117921, 2021 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-34643412

RESUMO

Conjugated linoleic acid (CLA) has been the subject of numerous studies in recent decades because of its associated health benefits. CLA is an intermediate product of the biohydrogenation pathway of linoleic acid (LA) in bacteria. Several bacterial species capable of efficiently converting LA into CLA have been widely reported in the literature, among them Lactobacillus delbrueckii subsp. bulgaricus LBP UFSC 2230. Over the last few years, a multicomponent enzymatic system consisting of three enzymes involved in the biohydrogenation process of LA has been proposed. Sequencing the genome of L. delbrueckii subsp. bulgaricus LBP UFSC 2230 revealed only one gene capable of encoding an oleate hydratase (OleH), unlike the presence of multiple genes typically found in similar strains. This study investigated the biological effect of the OleH enzyme of L. delbrueckii subsp. bulgaricus LBP UFSC 2230 on the hydration of LA and dehydration of ricinoleic acid (RA) and its possible role in the production of CLA. The OleH was cloned, expressed, purified, and characterized. Fatty acid measurements were made by an internal standard method using a gas chromatography-coupled flame ionization detector (GC-FID) system. It was found that the enzyme is a hydratase/dehydratase, leading to a reversible transformation between LA and RA. In addition, the results showed that L. delbrueckii subsp. bulgaricus LBP UFSC 2230 OleH protein plays a role in stress tolerance in Escherichia coli. In conclusion, the OleH of L. delbrueckii subsp. bulgaricus LBP UFSC 2230 catalyzes the initial stage of saturation metabolism of LA, although it has not converted the substrates directly into CLA. IMPORTANCE This study provides insight into the enzymatic mechanism of CLA synthesis in L. delbrueckii subsp. bulgaricus and broadens our understanding of the bioconversion of LA and RA by OleH. The impact of OleH on the production of the c9, t11 CLA isomer and stress tolerance by E. coli has been assisted. The results provide an understanding of the factors which influence OleH activity. L. delbrueckii subsp. bulgaricus LBP UFSC 2230 OleH presented two putative fatty acid-binding sites. Recombinant OleH catalyzed both LA hydration and RA dehydration. OleH was shown to play a role in bacterial growth performance in the presence of LA.


Assuntos
Hidroliases/metabolismo , Lactobacillus delbrueckii/enzimologia , Lactobacillus delbrueckii/metabolismo , Ácido Linoleico/metabolismo , Ácidos Ricinoleicos/metabolismo , Genoma Bacteriano/genética , Hidroliases/genética , Hidrogenação , Lactobacillus delbrueckii/genética , Estresse Fisiológico/fisiologia , Sequenciamento Completo do Genoma
14.
Artigo em Inglês | MEDLINE | ID: mdl-34266373

RESUMO

Polyglycerol polyricinoleate (PGPR) is a powerful lipophilic emulsifier used in low-fat spreads and chocolate. It should be used at the lowest level at which the desired technological effect is achieved, not exceeding the specified maxima according to Annexe II to Regulation (EC) No 1333/2008. A gas chromatography-flame ionisation detection (GC-FID) method was developed for quantification of PGPR. This method is based on estimating the content of ricinoleic acid using 12-hydroxyoctadecanoic acid as an internal standard, from which the PGPR concentration was deduced. The method involved saponification, methylation, a two-step solid phase extraction (SPE) separation of the fatty acid methyl esters (FAMEs), silylation, and GC-FID analysis. The limits of detection and quantification of ricinoleic acid were 2.2 and 6.7 µg/mL, respectively, at 0.1 µL injection volume. Considering the average content of ricinoleic acid in PGPR (i.e. 86.63 ± 2.0 wt%) and the amount of food product that is used in the proposed protocol (i.e. 20 mg), this resulted in a LOD and LOQ of 0.76 and 2.32 µg PGPR per mg of food product, respectively. The developed method was validated by determining PGPR recovery from a high oleic sunflower oil (HOSO) solution, from chocolate spiked with a commercially available PGPR, and from commercially available low fat spreads with a known PGPR content. The actual recovery was more than 95% for all matrices, indicating the accuracy of the developed analytical technique. Moreover, the method proved to be very reproducible, with RSD < 4% for concentrations ranging from 0.2 to 5 wt%. The results showed that our proposed GC-FID method enables the reliable and quantitative determination of the PGPR concentration in commercial food products with various fat contents.


Assuntos
Cromatografia Gasosa/métodos , Análise de Alimentos/métodos , Glicerol/análogos & derivados , Ácidos Ricinoleicos/química , Emulsificantes , Glicerol/análise , Humanos , Estrutura Molecular , Reprodutibilidade dos Testes , Ácidos Ricinoleicos/análise
15.
Int J Biol Macromol ; 186: 759-769, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34271051

RESUMO

The present work aims to fabricate the genipin-crosslinked alkaline soluble polysaccharides-whey protein isolate conjugates (G-AWC) to stabilize W/O/W emulsions for encapsulation and delivery of grape seed proanthocyanidins (GSP). After crosslinking reaction, the molecular weight was increased and surface hydrophobicity was decreased. Then, the G-AWC and polyglycerol polyricinoleate (PGPR, a lipophilic emulsifier) were employed to prepare a GSP-loaded W/O/W emulsion with the addition of gelatin and sucrose in W1 phase via a two-step procedure. Creamed emulsion could be fabricated at W1/O volume fraction (Φ) of 10%-70% and further increased Φ to 75% or even up to 90% could obtain gel-like emulsion with notably elastic behaviors. In the W1/O/W2 emulsion with Φ of 80%, the encapsulation efficiency (EE) of GSP reached up to 95.86%, and decreased by ca. 10% after a week of storage. Moreover, the encapsulated GSP in the emulsion showed a remarkably higher bioaccessibility (40.72%) compared to free GSP (13.11%) in the simulated gastrointestinal digestion. These results indicated that G-AWC-stabilized W/O/W emulsions could be an effective carrier to encapsulate water-soluble bioactive compounds with enhanced stability and bioaccessibility.


Assuntos
Reagentes de Ligações Cruzadas/química , Digestão , Manipulação de Alimentos , Extrato de Sementes de Uva/química , Iridoides/química , Óleos/química , Polissacarídeos/química , Proantocianidinas/química , Água/química , Proteínas do Soro do Leite/química , Disponibilidade Biológica , Emulsificantes/química , Emulsões , Suco Gástrico/química , Géis , Glicerol/análogos & derivados , Glicerol/química , Concentração de Íons de Hidrogênio , Secreções Intestinais/química , Lipólise , Ácidos Ricinoleicos/química , Solubilidade
16.
J Biomater Appl ; 36(3): 385-405, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33530824

RESUMO

Nosocominal infections associated with biofilm formation on urinary catheters cause serious complications. The aim of this study was to investigate the feasibility of the polyurethane (PU) catheter modified with tetracycline hydrochloride (TCH) attached Ag nanoparticles embedded PolyRicinoleic acid-Polystyrene Nanoparticles (PU-TCH-AgNPs-PRici-PS NPs) and the influence on antimicrobial and antibiofilm activity of urinary catheters infected by Escherichia coli and Staphylococcus aureus. For this purpose, AgNPs embedded PRici graft PS graft copolymers (AgNPs-PRici-g-PS) were synthesized via free radical polymerization and characterized by FTIR, HNMR and DSC. AgNPs-PRici-PS NPs were prepared and optimized by the different parameters and the optimized size of nanoparticle was found as about 150 ± 1 nm. The characterization of the nanoparticles and the morphological evaluation were carried out by FTIR and SEM. Short term stability of nanoparticles was realised at 4°C for 30 days. In vitro release profiles of TCH and Ag NPs were also investigated. The formation of biofilm on PU modified TCH-Ag NPs-PRici-PS NPs, was evaluated and the biocompatibility test of the nanoparticles was realized via the mouse fibroblast (L929) and mouse urinary bladder cells (G/G An1). This is the first time that TCH-AgNPs-PRici-PS NPs used in the modification of PU catheter demonstrated high antimicrobial and antibiofilm activities against the urinary tract infection.


Assuntos
Antibacterianos/administração & dosagem , Infecções Relacionadas a Cateter/prevenção & controle , Poliestirenos/química , Ácidos Ricinoleicos/química , Prata/administração & dosagem , Infecções Urinárias/prevenção & controle , Animais , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Catéteres/efeitos adversos , Catéteres/microbiologia , Linhagem Celular , Portadores de Fármacos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Camundongos , Nanopartículas/química , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
17.
Lipids Health Dis ; 19(1): 128, 2020 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-32505182

RESUMO

BACKGROUND: Inhalation of common air pollutants such as diesel and biodiesel combustion products can induce vascular changes in humans which may contribute to increased mortality and morbidity associated with fine particulate matter exposures. Diesel, biodiesel, and other combustion byproducts contain fatty acid components capable of entering the body through particulate matter inhalation. Fatty acids can also be endogenously released into circulation following a systemic stress response to some inhaled pollutants such as ozone. When in the circulation, bioactive fatty acids may interact with cells lining the blood vessels, potentially inducing endothelial dysfunction. To examine whether fatty acids could potentially be involved in human vascular responses to air pollutants, we determined the effects of fatty acids and derivatives on important vascular cell functions. METHODS: Human umbilical vein endothelial cells (HUVEC) were exposed in vitro to oleic acid (OA) or OA metabolites for 4-48 h. Cytotoxicity, vasodilator production (by ELISA measurement), mitochondrial function (using Sea Horse assays), and iron metabolism (inferred by ICP-OES measurements) were examined, with standard statistical testing (ANOVA, t-tests) employed. RESULTS: Dose-dependent cytotoxicity was noted at 24 h, with 12-hydroxy OA more potent than OA. Mitochondrial stress testing showed that 12-hydroxy OA and OA induce mitochondrial dysfunction. Analysis of soluble mediator release from HUVEC showed a dose-dependent increase in prostaglandin F2α, a lipid involved in control of vascular tone, at 24 h (85% above controls) after OA-BSA exposure. RT-PCR analysis revealed OA did not induce changes in gene expression at noncytotoxic concentrations in exposed HUVEC, but 12-OH OA did alter ICAM and COX2 gene expression. CONCLUSIONS: Together, these data demonstrate that FA may be capable of inducing cytotoxic effects and altering expression of mediators of vascular function following inhalation exposure, and may be implicated in air pollutant-induced deaths and hospitalizations. (267 of max 350 words).


Assuntos
Células Endoteliais da Veia Umbilical Humana/ultraestrutura , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/fisiologia , Ácido Oleico/toxicidade , Sistema Vasomotor/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Ciclo-Oxigenase 2/genética , Dinoprosta/biossíntese , Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Molécula 1 de Adesão Intercelular/genética , Ferro/metabolismo , Ácidos Ricinoleicos/toxicidade , Sistema Vasomotor/fisiologia
18.
Food Chem ; 327: 127014, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32434126

RESUMO

The influence of diacylglycerol (DAG) combined with polyglycerol polyricinoleate (PGPR) on the stability of water-in-oil (W/O) emulsions containing hydrogenated palm oil (HPO) was studied. Polarized light microscope revealed that DAG promoted HPO to crystallize at the water-oil interface, providing the combination of Pickering and network stabilization effects. It was proposed that the molecular compatibility of fatty acids in DAG with HPO accounted for the promotional effect. The interfacial crystallization of DAG together with the surface activity of PGPR led to the formation of emulsions with uniform small droplets and high freeze-thaw stability. Further exploration of physical properties indicated that the combination of DAG and PGPR dramatically improved the emulsion's viscoelasticity and obtained a larger deformation yield. Water droplets in DAG-based emulsions acted as active fillers to improve the network rigidity. Therefore, DAG is a promising material to be used as emulsifier to enhance the physical stability of W/O emulsions.


Assuntos
Diglicerídeos/química , Emulsões/química , Cristalização , Congelamento , Glicerol/análogos & derivados , Glicerol/química , Óleo de Palmeira/química , Óleo de Brassica napus/química , Ácidos Ricinoleicos/química , Viscosidade , Água/química
19.
Biotechnol Lett ; 42(8): 1547-1558, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32246345

RESUMO

Microbial production of hydroxy fatty acids (HFAs) was widely studied because of important biological properties of HFAs. Among microorganisms producing HFAs, Pseudomonas aeruginosa PR3 was well known to produce various HFAs from different unsaturated fatty acids. Recently, a new variant species of P. aeruginosa PR3 was isolated and characterized, showing improved efficiency for producing 7,10-dihydroxy-8(E)-octadecenoic acid from oleic acid. In this study, we report the production of 7,10,12-trihydroxy-8(E)-octadecenoic acid (TOD) from ricinoleic acid by the newly isolated P. aeruginosa KNU-2B. TOD was efficiently produced from ricinoleic acid by KNU-2B with the maximum conversion yield of 56.7% under the optimum reaction conditions of pH 8.0 and 48-h incubation at 27 °C, 150 rpm. Under optimized reaction conditions, maximum TOD production reached 340.3 mg/100 mL of the culture. However, requirement of nutritional factors by KNU-2B for production of TOD were considerably different from those by PR3 strain.


Assuntos
Hidroxiácidos , Ácidos Oleicos , Pseudomonas aeruginosa/metabolismo , Ácidos Ricinoleicos , Hidroxiácidos/análise , Hidroxiácidos/química , Hidroxiácidos/metabolismo , Ácidos Oleicos/análise , Ácidos Oleicos/química , Ácidos Oleicos/metabolismo , Ácidos Ricinoleicos/química , Ácidos Ricinoleicos/metabolismo
20.
Chirality ; 32(7): 998-1007, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32250002

RESUMO

(R)-ricinoleic acid is the main component of castor oil from Ricinus communis L. Due to the presence of the hydroxyl group in homoallylic position and asymmetrically substituted carbon atom, it may undergo a number of chemical and biochemical transformations resulting in the products with some specific bioactivities. Conversion of (R)-ricinoleic acid into its (S)-enantiomer enables synthesis of both (R)- and (S)-ricinoleic acid derivatives and comparison of their biological activities. In the present research, (R)- and (S)-ricinoleic acid amides synthesized from methyl ricinoleates and ethanolamine or pyrrolidine as well as acetate derivatives of ethanolamine amides were studied to demonstrate their biological activities using HT29 cancer cells. Double staining of cells with fluorochromes (Hoechst 33258/propidium iodide) as well as 2,'7'-dichlorodihydrofluorescein (DCF) and comet assays were performed. Both the tested amides and acetates caused DNA damage and induced apoptotic and necrotic cell death. In the case of (R)- and (S)-enantiomers of one of the tested acetates, significant difference in the ability to induce DNA damage was observed, which showed the impact of the stereogenic center on the activities of these compounds.


Assuntos
Acetatos/química , Amidas/química , Antineoplásicos/farmacologia , Óleo de Rícino/química , Ácidos Ricinoleicos/química , Antineoplásicos/química , Dano ao DNA/efeitos dos fármacos , Células HT29 , Humanos , Ácidos Ricinoleicos/toxicidade , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA