Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
J Food Prot ; 87(7): 100309, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38815808

RESUMO

Recent cyclosporiasis outbreaks associated with fresh produce grown in the United States highlight the need to better understand Cyclospora cayetanensis prevalence in U.S. agricultural environments. In this study, C. cayetanensis occurrence was assessed in municipal wastewater sludge, on-farm portable toilets, irrigation pond water, and spent packing house dump tank water in a Southeastern Georgia growing region over two years. Detection of the C. cayetanensis 18S rRNA qPCR gene target in pond samples was 0%, 28%, and 42% (N = 217) depending on the detection definition used, and ≤1% in dump tank samples (N = 46). However, no qPCR detections were confirmed by sequencing, suggesting false detection occurred due to cross-reactions. C. cayetanensis qPCR detections were confirmed in 9% of wastewater sludge samples (N = 76). The human-specific fecal markers HF183 and crAssphage were detected in 33% and 6% of pond samples, respectively, and 4% and 0% of dump tank samples, respectively. Despite community Cyclospora shedding and evidence of human fecal contamination in irrigation water, there was no correlation between C. cayetanensis and HF183 qPCR detections, further supporting that 18S gene target qPCR amplifications were due to cross-reactions. When evaluating C. cayetanensis qPCR environmental detection data, the impact of assay specificity and detection criteria should be considered. Moreover, additional sequence-based testing may be needed to appropriately interpret Cyclospora qPCR environmental data.


Assuntos
Cyclospora , Cyclospora/isolamento & purificação , Humanos , Prevalência , Ciclosporíase/epidemiologia , Esgotos/parasitologia , Fezes/parasitologia , Águas Residuárias/parasitologia , Sudeste dos Estados Unidos
4.
J Water Health ; 20(9): 1405-1415, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36170194

RESUMO

Cryptosporidium and Giardia are the main etiologies of waterborne outbreaks caused by protozoa. These parasites are commonly detected in wastewater; however, there is little knowledge about the concentration of viable forms in treated sewage, mainly in small communities. To understand more about the presence of viable oocysts and cysts in domestic sewage, we monitored the affluent and effluent of a wastewater treatment plant (WWTP) in inner-city Brazil. Ten samplings and seven follow-ups were performed in 2020. Samples were concentrated by centrifugation, filtration and purified by fluctuation. Viability was accessed by propidium-monoazide (PMA) associated with nPCR and qPCR. Both viable protozoa were detected in all raw sewage samples (average: 438.5 viable oocysts/L). Regarding treated sewage, Cryptosporidium was detected in all of the samples (average: 92.8 viable oocysts/L) and Giardia was detected in 70% with viable cysts in 30%. Considering the follow-ups, 31.17% of Cryptosporidium viable oocysts remained in the effluent after the treatment. High amounts of Cryptosporidium and a high frequency of Giardia were detected, therefore both arrived at WWTP and were discharged into the river. These alert the presence of agro-industrial effluents into domestic sewage and demonstrated the effectiveness of the concentration technique for monitoring protozoa in wastewater.


Assuntos
Criptosporidiose , Cryptosporidium , Cistos , Giardíase , Animais , Brasil , Criptosporidiose/epidemiologia , Giardia , Giardíase/epidemiologia , Oocistos , Propídio , Esgotos/parasitologia , Águas Residuárias/parasitologia
5.
Exp Parasitol ; 234: 108216, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35104468

RESUMO

Infections caused by protozoan parasites are a major public health concern globally. These infections are commonly diagnosed during water-borne outbreaks, necessitating accurate and highly sensitive detection procedures to assure public health protection. Current molecular techniques are challenged by several factors, such as low parasite concentration, inefficient DNA extraction methods, and inhibitors in environmental samples. This study focused on the development and validation of a molecular protocol for DNA extraction, efficient protozoan (oo)cyst recovery and quantification of protozoan parasites from wastewater using droplet digital polymerase chain reaction (ddPCR). Five DNA extraction methods, including commercial kits, custom phenol-chloroform, and in-house modified methods, were evaluated. The efficiency of each method was assessed via spectrophotometric analysis and ddPCR amplification using specific primers. Lastly, the developed protocol was evaluated for the detection and quantification of Cryptosporidium parvum in wastewater from different regions in South Africa. The conventional phenol-chloroform extraction method yielded the highest DNA concentration of 223 (±0.71) ng/µl and detected the highest number of Cryptosporidium parvum (1807 (±0.30) copies/ddPCR reaction) compared to other methods evaluated in this study. Additionally, the phenol-chloroform method demonstrated high sensitivity in extracting DNA from as few as one cyst/L of Cryptosporidium parvum, corresponding to 5.93 copies/ddPCR reaction. It was also observed that analysis of both the filtered supernatant and pellets after centrifugation improves the recovery efficiency of oocysts from wastewater by 10.5%, resulting in a total recovery of 64.1%. This optimized protocol was successfully applied to measure protozoan concentration in wastewater from different regions in South Africa. The improved DNA extraction and quantification method proposed in this study would be effective in monitoring protozoan concentration in the environment, which will help in instituting mitigation measures to reduce water-borne infections.


Assuntos
Cryptosporidium/isolamento & purificação , DNA de Protozoário/isolamento & purificação , Águas Residuárias/parasitologia , Centrifugação , Cryptosporidium/genética , Cryptosporidium/crescimento & desenvolvimento , Primers do DNA/normas , Filtração , Limite de Detecção , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade
6.
Braz. J. Pharm. Sci. (Online) ; 58: e18691, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1374574

RESUMO

Abstract Two sensitive and selective methods were developed for the simultaneous determination of four commonly used non-steroidal anti-inflammatory drugs (NSAIDs), namely; paracetamol (PCM), diclofenac sodium (DCF), ibuprofen (IBP), and indomethacin (IND) in wastewater effluents. The first method used HPLC for the determination of the studied drugs using a mobile phase consisting of phosphate buffer (pH 3.0) and acetonitrile at a flow rate of 1 mL/min. in gradient elution mode and detection at 220 nm. The separation process was performed on BDS Hypersil Cyano column (250 x 4.6 mm, 5 µm). The second method was a TLC-densitometric one which was performed using n-Hexane: ethyl acetate: acetic acid in the ratio (6:3.5:0.5) as a developing system. The proposed chromatographic methods were successfully applied for the selective determination of the four studied drugs in simulated and real pharmaceutical wastewater samples after their solid-phase extraction


Assuntos
Efluentes Industriais , Anti-Inflamatórios não Esteroides/análise , Indústria Farmacêutica/classificação , Águas Residuárias/parasitologia , Cromatografia Líquida de Alta Pressão/métodos , Acetatos/efeitos adversos
7.
J Microbiol Methods ; 189: 106320, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34478762

RESUMO

Exposure to enteric pathogens in the environment poses a serious risk for infection and disease. The accurate detection and quantification of enteric pathogens in environmental samples is critical for understanding pathogen transport and fate and developing risk assessment models. In this study, we successfully applied TaqMan real-time PCR assays to quantitatively detect five human-specific pathogens (Shigella/EIEC, Salmonella Typhi, Vibrio cholera, Norovirus, and Giardia) in samples from open drains, canals, floodwater, septic tanks, and anaerobic baffled reactors (ABR) collected in Mirpur, Dhaka, Bangladesh from April to October 2019. Overall, the grab and sediment samples showed low inhibition but the ultrafiltration samples collected from open drain had significantly higher (P = 0.0049) degree of PCR inhibition (median Ct = 31.06) compared to the extraction controls (Ct = 28.54). We developed a two-step method to adjust underestimation of pathogen quantities due to PCR inhibition and non-optimum PCR efficiency. Compared to other sample types, ultrafiltration samples demonstrated a wide range of concentration increase (1.0%-182.5%) by pathogens after adjusting for PCR inhibition and non-optimum efficiencies. These quantitative qPCR assays are successful in quantifying multiple enteric pathogens in environmental samples, and the adjustment method would be useful for correcting underestimates of pathogen quantities due to partial PCR inhibition and non-optimum efficiency.


Assuntos
Genoma Bacteriano/genética , Genoma Viral/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase em Tempo Real/normas , Manejo de Espécimes/métodos , Bactérias/genética , Bactérias/isolamento & purificação , Microbiologia Ambiental , Fezes/microbiologia , Fezes/parasitologia , Fezes/virologia , Giardia/genética , Giardia/isolamento & purificação , Ultrafiltração , Vibrio cholerae/genética , Vibrio cholerae/isolamento & purificação , Vírus/genética , Vírus/isolamento & purificação , Águas Residuárias/microbiologia , Águas Residuárias/parasitologia , Águas Residuárias/virologia
8.
Acc Chem Res ; 54(19): 3656-3666, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34524795

RESUMO

The spread of infectious diseases due to travel and trade can be seen throughout history, whether from early settlers or traveling businessmen. Increased globalization has allowed infectious diseases to quickly spread to different parts of the world and cause widespread infection. Posthoc analysis of more recent outbreaks-SARS, MERS, swine flu, and COVID-19-has demonstrated that the causative viruses were circulating through populations for days or weeks before they were first detected, allowing disease to spread before quarantines, contact tracing, and travel restrictions could be implemented. Earlier detection of future novel pathogens could decrease the time before countermeasures are enacted. In this Account, we examined a variety of novel technologies from the past 10 years that may allow for earlier detection of infectious diseases. We have arranged these technologies chronologically from pre-human predictive technologies to population-level screening tools. The earliest detection methods utilize artificial intelligence to analyze factors such as climate variation and zoonotic spillover as well as specific species and geographies to identify where the infection risk is high. Artificial intelligence can also be used to monitor health records, social media, and various publicly available data to identify disease outbreaks faster than traditional epidemiology. Secondary to predictive measures is monitoring infection in specific sentinel animal species, where domestic animals or wildlife are indicators of potential disease hotspots. These hotspots inform public health officials about geographic areas where infection risk in humans is high. Further along the timeline, once the disease has begun to infect humans, wastewater epidemiology can be used for unbiased sampling of large populations. This method has already been shown to precede spikes in COVID-19 diagnoses by 1 to 2 weeks. As total infections increase in humans, bioaerosol sampling in high-traffic areas can be used for disease monitoring, such as within an airport. Finally, as disease spreads more quickly between humans, rapid diagnostic technologies such as lateral flow assays and nucleic acid amplification become very important. Minimally invasive point-of-care methods can allow for quick adoption and use within a population. These individual diagnostic methods then transfer to higher-throughput methods for more intensive population screening as an infection spreads. There are many promising early warning technologies being developed. However, no single technology listed herein will prevent every future outbreak. A combination of technologies from across our infection timeline would offer the most benefit in preventing future widespread disease outbreaks and pandemics.


Assuntos
Doenças Transmissíveis Emergentes/diagnóstico , Animais , Inteligência Artificial , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/virologia , Doenças Transmissíveis Emergentes/epidemiologia , Humanos , Programas de Rastreamento , Pandemias , SARS-CoV-2/isolamento & purificação , Águas Residuárias/microbiologia , Águas Residuárias/parasitologia , Águas Residuárias/virologia , Zoonoses/diagnóstico , Zoonoses/epidemiologia
9.
Parasit Vectors ; 14(1): 66, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33472683

RESUMO

BACKGROUND: The waterborne pathogens Cryptosporidium spp., Giardia duodenalis, Enterocytozoon bieneusi and Cyclospora cayetanensis can cause intestinal diseases in humans. An understanding of their occurrence and transport in the environment is essential for accurate quantitative microbial risk assessment. METHODS: A total of 238 influent samples were collected from four wastewater treatment plants (WWTPs) and 88 samples from eight sewer locations in Guangzhou, China. PCR-based tools were used to detect and genetically characterize Cryptosporidium spp., G. duodenalis and E. bieneusi. Eimeria spp. and Cyclospora spp. were also analyzed to assess the sources of Cryptosporidium spp., G. duodenalis and E. bieneusi in wastewater. RESULTS: The overall occurrence rates in the WWTP and sewer samples were 14.3% (34/238) and 13.6% (12/88) for Cryptosporidium spp., 55.5% (132/238) and 33.0% (29/88) for G. duodenalis, 56.3% (134/238) and 26.1% (23/88) for E. bieneusi and 45.4% (108/238) and 47.7% (42/88) for Eimeria spp., respectively. Altogether, 11 Cryptosporidium species and genotypes, six G. duodenalis genotypes, 11 E. bieneusi genotypes and four C. cayetanensis were found, together with the presence of nine Eimeria species. The common occurrence of Cryptosporidium rat genotype IV, C. muris and Eimeria papillata and E. nieschulzi suggested that rodents were significant sources of the enteric pathogens detected in the wastewater samples. CONCLUSIONS: While the dominant Cryptosporidium spp. detected in the raw wastewater sampled in this study are not pathogenic to humans, the widely detected G. duodenalis assemblage A and E. bieneusi genotypes D and Type IV are well-known zoonotic pathogens. Further studies are needed to monitor the occurrence of these waterborne pathogens in WWTPs to better understand their transmission and environmental transport in China.


Assuntos
Cryptosporidium/genética , Cyclospora/genética , Enterocytozoon/genética , Giardia lamblia/genética , Esgotos/parasitologia , Águas Residuárias/parasitologia , China , Cryptosporidium/classificação , Cryptosporidium/isolamento & purificação , Cryptosporidium/patogenicidade , Cyclospora/classificação , Cyclospora/isolamento & purificação , Cyclospora/patogenicidade , DNA de Protozoário/genética , Enterocytozoon/classificação , Enterocytozoon/isolamento & purificação , Enterocytozoon/patogenicidade , Genótipo , Giardia lamblia/classificação , Giardia lamblia/isolamento & purificação , Giardia lamblia/patogenicidade , Filogenia
10.
Appl Environ Microbiol ; 86(23)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32948525

RESUMO

Cyclospora cayetanensis is a protozoan parasite that causes foodborne and waterborne diarrheal illness outbreaks worldwide. Most of these outbreaks are associated with the consumption of fresh produce. Sensitive and specific methods to detect C. cayetanensis in agricultural water are needed to identify the parasite in agricultural water used to irrigate crops that have been implicated in outbreaks. In this study, a method to detect C. cayetanensis in water by combining dead-end ultrafiltration (DEUF) with sensitive and specific molecular detection was developed and evaluated. Triplicates of 10-liter agricultural water samples were seeded with 200, 100, 25, 12, and 6 C. cayetanensis oocysts. Surface water samples were also collected in the Mid-Atlantic region. All water samples were processed by DEUF and backflushed from the ultrafilters. DNA was extracted from concentrated samples and analyzed by quantitative PCR (qPCR) targeting the C. cayetanensis 18S rRNA gene. All water samples seeded with 12, 25, 100, and 200 oocysts were positive, and all unseeded samples were negative. Samples seeded with 6 oocysts had a detection rate of 66.6% (8/12). The method was also able to detect C. cayetanensis isolates in surface water samples from different locations of the Chesapeake and Ohio Canal (C&O Canal) in Maryland. This approach could consistently detect C. cayetanensis DNA in 10-liter agricultural water samples contaminated with low levels of oocysts, equivalent to the levels that may be found in naturally incurred environmental water sources. Our data demonstrate the robustness of the method as a useful tool to detect C. cayetanensis from environmental sources.IMPORTANCECyclospora cayetanensis is a protozoan parasite that causes foodborne and waterborne outbreaks of diarrheal illness worldwide. These foodborne outbreaks associated with the consumption of fresh produce and agricultural water could play a role in the contamination process. In this study, a method to detect C. cayetanensis in agricultural water by combining a robust filtration system with sensitive and specific molecular detection was developed and validated by the FDA. The results showed that this approach could consistently detect low levels of C. cayetanensis contamination in 10 liters of agricultural water, corresponding to the levels that may be found in naturally occurring environmental water sources. The method was also able to detect C. cayetanensis in surface water samples from a specific location in the Mid-Atlantic region. Our data demonstrate the robustness of the method to detect C. cayetanensis in agricultural water samples, which could be very useful to identify environmental sources of contamination.


Assuntos
Agricultura , Cyclospora/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Ultrafiltração/métodos , Águas Residuárias/parasitologia , Água Doce/parasitologia , Maryland , Oocistos
11.
Exp Parasitol ; 217: 107959, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32795471

RESUMO

Helminths are parasitic worms that constitute a major public health problem. Conventional analytical techniques to evaluate helminth eggs in environmental samples rely on different steps, namely sedimentation, filtration, centrifugation, and flotation, to separate the eggs from a variety of particles and concentrate them in a pellet for direct observation under an optical microscope. To improve this process, a new approach was implemented in which various image processing algorithms were developed and implemented by a Helminth Egg Automatic Detector (HEAD). This allowed identification and quantification of pathogenic helminth eggs of global medical importance and it was found to be useful for relatively clean wastewater samples. After the initial version, two improvements were developed: first, a texture verification process that reduced the number of false positive results; and second, the establishment of the optimal thresholds (morphology and texture) for each helminth egg species. This second implementation, which was found to improve on the results of the former, was developed with the objective of using free software as a platform for the system. This does not require the purchase of a license, unlike the previous version that required a Mathworks® license to run. After an internal statistical verification of the system was carried out, trials in internationally recognized microbiology laboratories were performed with the aim of reinforcing software training and developing a web-based system able to receive images and perform the analysis throughout a web service. Once completed, these improvements represented a useful and cheap tool that could be used by environmental monitoring facilities and laboratories throughout the world; this tool is capable of identifying and quantifying different species of helminth eggs in otherwise difficult environmental samples: wastewater, soil, biosolids, excreta, and sludge, with a sensitivity and specificity for the TensorFlow (TF) model in the web service values of 96.82% and 97.96% respectively. Additionally, in the case of Ascaris, it may even differentiate between fertile and non-fertile eggs.


Assuntos
Helmintos/isolamento & purificação , Processamento de Imagem Assistida por Computador/métodos , Contagem de Ovos de Parasitas/instrumentação , Algoritmos , Animais , Anisotropia , Biossólidos/parasitologia , Fezes/parasitologia , Helmintos/classificação , Processamento de Imagem Assistida por Computador/normas , Distribuição Normal , Óvulo/classificação , Contagem de Ovos de Parasitas/normas , Sensibilidade e Especificidade , Esgotos/parasitologia , Solo/parasitologia , Águas Residuárias/parasitologia
12.
Parasitol Res ; 119(9): 3033-3040, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32748039

RESUMO

We assessed the potential contribution of hospitals to contaminations of wastewater by enteric protists, including Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in raw wastewater. Wastewater samples were collected from storage tanks in two hospitals and one associated wastewater treatment plant in Shanghai, China, from March to November 2009. Enteric pathogens were detected and identified using PCR and DNA sequencing techniques. Among a total of 164 samples analyzed, 31 (18.9%), 45 (27.4%), and 122 (74.4%) were positive for Cryptosporidium spp., G. duodenalis, and E. bieneusi, respectively. Altogether, three Cryptosporidium species, four G. duodenalis assemblages, and 12 E. bieneusi genotypes were detected. Cryptosporidium hominis, G. duodenalis sub-assemblage AII, and E. bieneusi genotype D were the dominant ones in wastewater from both hospitals and the wastewater treatment plant. A similar distribution in genotypes of enteric pathogens was seen between samples from hospitals and the wastewater treatment plant, suggesting that humans are one of the major sources for these pathogens and hospitals are important contributors of enteric parasites in urban wastewater. Data from this study might be useful in the formulation of preventive measures against environmental contamination of waterborne pathogens.


Assuntos
Infecção Hospitalar/microbiologia , Infecção Hospitalar/parasitologia , Cryptosporidium/isolamento & purificação , Enterocytozoon/isolamento & purificação , Giardia lamblia/isolamento & purificação , Águas Residuárias/microbiologia , Águas Residuárias/parasitologia , China/epidemiologia , Infecção Hospitalar/epidemiologia , Criptosporidiose/epidemiologia , Criptosporidiose/parasitologia , Cryptosporidium/classificação , Cryptosporidium/genética , Enterocytozoon/classificação , Enterocytozoon/genética , Genótipo , Giardia lamblia/classificação , Giardia lamblia/genética , Giardíase/epidemiologia , Giardíase/parasitologia , Hospitais , Humanos , Microsporidiose/epidemiologia , Microsporidiose/microbiologia , Reação em Cadeia da Polimerase
13.
Molecules ; 25(9)2020 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-32357416

RESUMO

Water resources contamination has a worldwide impact and is a cause of global concern. The need for provision of clean water is becoming more and more demanding. Nanotechnology may support effective strategies for the treatment, use and reuse of water and the development of next-generation water supply systems. The excellent properties and effectiveness of nanomaterials make them particularly suitable for water/wastewater treatment. This review provides a comprehensive overview of the main categories of nanomaterials used in catalytic processes (carbon nanotubes/graphitic carbon nitride (CNT/g-C3N4) composites/graphene-based composites, metal oxides and composites, metal-organic framework and commercially available nanomaterials). These materials have found application in the removal of different categories of pollutants, including pharmaceutically active compounds, personal care products, organic micropollutants, as well as for the disinfection of bacterial, viral and protozoa microbial targets, in water and wastewater matrices. Apart from reviewing the characteristics and efficacy of the aforementioned nanoengineered materials for the removal of different pollutants, we have also recorded performance limitations issues (e.g., toxicity, operating conditions and reuse) for their practical application in water and wastewater treatment on large scale. Research efforts and continuous production are expected to support the development of eco-friendly, economic and efficient nanomaterials for real life applications in the near future.


Assuntos
Grafite/farmacologia , Estruturas Metalorgânicas/farmacologia , Nanoestruturas/química , Nanotubos de Carbono/química , Compostos de Nitrogênio/farmacologia , Purificação da Água/métodos , Catálise , Desinfecção/métodos , Grafite/química , Estruturas Metalorgânicas/química , Compostos de Nitrogênio/química , Óxidos/química , Águas Residuárias/microbiologia , Águas Residuárias/parasitologia , Águas Residuárias/toxicidade , Águas Residuárias/virologia , Poluentes Químicos da Água
14.
Exp Parasitol ; 210: 107848, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32004534

RESUMO

Marine bivalves are usually cultivated in shallow, estuarine waters where there is a high concentration of nutrients. Many micro-pollutants, including the protozoan parasites Giardia duodenalis and Cryptosporidium spp., which also occur in such environments, may be concentrated in shellfish tissues during their feeding process. Shellfish can thus be considered as vehicles for foodborne infections, as they are usually consumed lightly cooked or raw. Therefore, the main objective of this study was to investigate the presence of both parasites in Mediterranean mussels, Mytilus galloprovincialis that are cultivated in Thermaikos Gulf, North Greece, which is fed by four rivers that are contaminated with both protozoa. Moreover, the occurrence of these protozoa was monitored in treated wastewaters from 3 treatment plants that discharge into the gulf. In order to identify potential sources of contamination and to estimate the risk for human infection, an attempt was made to genotype Giardia and Cryptosporidium in positive samples. Immunofluorescence was used for detection and molecular techniques were used for both detection and genotyping of the parasites. In total, 120 mussel samples, coming from 10 farms, were examined for the presence of both protozoa over the 6-month farming period. None of them were found positive by immunofluorescence microscopy for the presence of parasites. Only in 3 mussel samples, PCR targeting the GP60 gene detected Cryptosporidium spp. DNA, but sequencing was not successful. Thirteen out of 18 monthly samples collected from the 3 wastewater treatment plants, revealed the presence of Giardia duodenalis cysts belonging to sub-assemblage AII, at relatively low counts (up to 11.2 cysts/L). Cryptosporidium oocysts (up to 0.9 oocysts/L) were also detected in 4 out of 8 samples, although sequencing was not successful at any of the target genes. At the studied location and under the sampling conditions described, mussels tested were not found to be harboring Giardia cysts and the presence of Cryptosporidium was found only in few cases (by PCR detection only). Our results suggest that the likelihood that mussels from these locations act as vehicles of human infection for Giardia and Cryptosporidium seems low.


Assuntos
Bivalves/parasitologia , Cryptosporidium/isolamento & purificação , Doenças Transmitidas por Alimentos/parasitologia , Giardia/isolamento & purificação , Animais , Criptosporidiose/transmissão , Cryptosporidium/genética , DNA de Protozoário/isolamento & purificação , Giardia/genética , Giardíase/transmissão , Grécia , Humanos , Oocistos/isolamento & purificação , Reação em Cadeia da Polimerase , Rios/parasitologia , Águas Residuárias/parasitologia
15.
Environ Pollut ; 257: 113545, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31733962

RESUMO

This study aimed to quantify Giardia and Cryptosporidium in disinfected water reuse samples from two Wastewater Treatment Plants (A and B), which were quantified by USEPA 1693/2014 Method. Giardia was found in 35.8% of the total samples (<0.03 to 16 cysts/L) while Cryptosporidium in 30.2% (<0.03 to 25.8 oocysts/L). This study highlights the presence of both parasites in water for reuse despite treatment processes for their removal, which means there is a challenge to overcome. Their presence is preoccupant even though in low concentrations because the infectivity dose is low coupled with high prevalence in the global population. The practice of water recycling is valuable for sustainable water management and it is in line with Sustainable Developments Goals but should not threaten human health. Tackling this issue is more critical in developing countries because treatment processes are often more limited, the monitoring data from water reuse are not always available, the lack of regulation for water reuse quality and the lack of planning for its sustainable usage.


Assuntos
Cryptosporidium , Giardia , Oocistos , Eliminação de Resíduos Líquidos , Águas Residuárias/parasitologia , Animais , Criptosporidiose , Humanos , Reciclagem , Água , Purificação da Água
16.
ScientificWorldJournal ; 2019: 3415617, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31772510

RESUMO

In Tanzania, waste stabilization ponds (WSPs) are employed to treat wastewater, and effluents are used for urban agricultural activities. The use of untreated or partially treated wastewater poses risks of disease transmission, including parasitic and bacterial infections, to exposed communities. Little is known about the occurrence, concentration, and removal of parasites and fecal coliform (FC) bacteria in WSPs in Tanzania. This study evaluates the occurrence and concentration of parasites and FCs in wastewater, the efficiency of WSPs in removing parasites and FCs, and the validity of using FCs as an indicator of parasites. This was a cross-sectional study conducted between February and August 2018. Wastewater samples were collected from three WSPs located in the Morogoro, Mwanza, and Iringa regions. APHA methods were used to test physicochemical parameters. The modified Bailenger method and Ziehl-Neelsen stain were used to analyse parasites. Membrane filtration method was used to analyse FCs. Data were analysed using IBM SPSS version 20. Helminth egg removal ranged from 80.8% to 100%. Protozoan (oo)cyst removal ranged from 98.8% to 99.9%. The Mwanza WSP showed the highest FC reduction (3.8 log units (100 mL)-1). Both the parasites and FCs detected in the effluents of assessed WSPs were of higher concentrations than World Health Organization and Tanzania Bureau of Standards limits, except for helminths in the Morogoro WSP and FCs in the Mwanza WSP. FCs were significantly correlated with protozoa (p < 0.01) and predicted protozoa occurrence well (p=0.011). There were correlations between physicochemical parameters, parasites, and FC bacteria in the WSP systems. Inadequate performance of these systems may be due to lack of regular maintenance and/or systems operating beyond their capacity. FC indicators were observed to be a good alternative for protozoa monitoring, but not for helminths. Therefore, during wastewater quality monitoring, helminths should be surveyed independently.


Assuntos
Fezes/parasitologia , Lagoas/parasitologia , Gerenciamento de Resíduos , Águas Residuárias/parasitologia , Animais , Fenômenos Químicos , Estudos Transversais , Carga Parasitária , Tanzânia , Gerenciamento de Resíduos/métodos , Águas Residuárias/análise , Águas Residuárias/química
17.
J Water Health ; 17(5): 701-716, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31638022

RESUMO

The variability of fecal microorganisms and wastewater micropollutants (WWMPs) loads in relation to influent flow rates was evaluated for a water resource recovery facility (WRRF) in support of a vulnerability assessment of a drinking water source. Incomplete treatment and bypass discharges often occur following intense precipitation events that represent conditions that deviate from normal operation. Parasites, fecal indicator bacteria, and WWMPs concentrations and flow rate were measured at the WRRF influent and effluent during dry and wet weather periods. Influent concentrations were measured to characterize potential bypass concentrations that occur during wet weather. Maximum influent Giardia and C. perfringens loads and maximum effluent Escherichia coli and C. perfringens loads were observed during wet weather. Influent median loads of Cryptosporidium and Giardia were 6.8 log oocysts/day and 7.9 log cysts/day per 1,000 people. Effluent median loads were 3.9 log oocysts/day and 6.3 log cysts/day per 1,000 people. High loads of microbial contaminants can occur during WRRF bypasses following wet weather and increase with increasing flow rates; thus, short-term infrequent events such as bypasses should be considered in vulnerability assessments of drinking water sources in addition to the increased effluent loads during normal operation following wet weather.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias/química , Purificação da Água , Animais , Bactérias , Cryptosporidium , Giardia , Parasitos , Águas Residuárias/microbiologia , Águas Residuárias/parasitologia , Recursos Hídricos
18.
J Water Health ; 17(5): 837-844, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31638033

RESUMO

Treated wastewater samples were collected, filtered using sterile 47-mm cellulose nitrate membrane and DNA extracted from the filtered materials. The presence of Blastocystis sp. was confirmed via polymerase chain reaction (PCR) targeting the SSU rRNA gene of Blastocystis sp. in 5/12 of samples. Based on the subtype analysis after sequencing, 2, 2 and 1 of ST2, ST6 and ST8 were detected among the isolates, respectively. Furthermore, both ST6s were allele 139, alleles 11 and 138 were identified in ST2 and the only ST8 was allele 95. The phylogenetic tree showed that one of ST2 was clustered together with those ST2 that were already reported from humans and animals. The presence of Blastocystis sp. in treated wastewater can indicate the potential role of this type of water for irrigation in the transmission of pathogenic microorganisms to downstream farmlands.


Assuntos
Irrigação Agrícola , Infecções por Blastocystis , Blastocystis/genética , Eliminação de Resíduos Líquidos , Águas Residuárias/parasitologia , Animais , Blastocystis/isolamento & purificação , DNA de Protozoário , Fazendas , Fezes , Variação Genética , Humanos , Irã (Geográfico) , Filogenia , Verduras
19.
Ann Parasitol ; 65(2): 139-144, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31376343

RESUMO

One of the most important quality characteristics associated with wastewater reuse in discharging in water bodies is the microbial quality. This study aimed to determine the efficiency of Médéa wastewater treatment plant (conventional activated sludge system) in the removal of protozoan cysts and parasitic eggs. This study was carried out during four months and samples were collected at weekly intervals from influent and effluent of the wastewater plant. In order to determine the concentration of ova, samples were analyzed according to Bailenger method. The wastewater treatment plant (WWTP) of Médéa has removed 88.9­100% of parasite eggs and more than 95% of protozoan cysts.


Assuntos
Cistos , Eucariotos , Helmintos , Esgotos , Purificação da Água , Argélia , Animais , Eucariotos/isolamento & purificação , Helmintos/isolamento & purificação , Esgotos/parasitologia , Águas Residuárias/parasitologia , Purificação da Água/métodos
20.
Parasit Vectors ; 12(1): 337, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31287014

RESUMO

BACKGROUND: Aedes aegypti were found developing in the water in open public drains (drain-water, DW) in Jaffna city in northern Sri Lanka, a location where the arboviral diseases dengue and chikungunya are endemic. METHODS: Susceptibilities to the common insecticides dichlorodiphenyltrichloroethane (DDT), malathion, propoxur, permethrin and deltamethrin and activities of the insecticide-detoxifying enzymes carboxylesterase (EST), glutathione S-transferase (GST) and monooxygenase (MO) were compared in adult Ae. aegypti developing in DW and fresh water (FW). RESULTS: DW Ae. aegypti were resistant to the pyrethroids deltamethrin and permethrin, while FW Ae. aegypti were susceptible to deltamethrin but possibly resistant to permethrin. Both DW and FW Ae. aegypti were resistant to DDT, malathion and propoxur. Greater pyrethroid resistance in DW Ae. aegypti was consistent with higher GST and MO activities. CONCLUSIONS: The results demonstrate the potential for insecticide resistance developing in Ae. aegypti adapted to DW. Urbanization in arboviral disease-endemic countries is characterized by a proliferation of open water drains and therefore the findings identify a potential new challenge to global health.


Assuntos
Aedes/enzimologia , Arbovírus/fisiologia , Resistência a Inseticidas , Mosquitos Vetores/enzimologia , Águas Residuárias/parasitologia , Aedes/efeitos dos fármacos , Aedes/virologia , Animais , Carboxilesterase/metabolismo , DDT/farmacologia , Feminino , Saúde Global , Glutationa Transferase/metabolismo , Humanos , Inseticidas/farmacologia , Malation/farmacologia , Masculino , Camundongos , Oxigenases de Função Mista/metabolismo , Mosquitos Vetores/efeitos dos fármacos , Mosquitos Vetores/virologia , Nitrilas/farmacologia , Permetrina/farmacologia , Propoxur/farmacologia , Piretrinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA